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is Hawks Optimizer (HHO) is one of the many recent algorithms in the field of metaheurist

HHO algorithm mimics the cooperative behavior of Harris Hawks and their foraging behavio

re called surprise pounce. HHO benefits from a small number of controlling parameters sett

licity of implementation, and a high level of exploration and exploitation. To alleviate 

backs of this algorithm, a modified version called Nonlinear based Chaotic Harris Ha

mization (NCHHO) is proposed in this paper. NCHHO uses chaotic and nonlinear con

meters to improve HHO’s optimization performance. The main goal of using the chaotic map

proposed method is to improve the exploratory behavior of HHO. In addition, this pa

duces a nonlinear control parameter to adjust HHO’s exploratory and exploitative behaviors. 

osed NCHHO algorithm shows an improved performance using a variety of chaotic maps 

 implemented to identify the most effective one and tested on several well-known benchm

tions. The paper also considers solving an Internet of Vehicles (IoV) optimization problem 

cases the applicability of NCHHO in solving large-scale, real-world problems. The res

onstrate that the NCHHO algorithm is very competitive, and often superior, compared to the o

rithms. In particular, NCHHO provides 92% better results in average to solve the uni-modal 

i-modal functions with problem dimension sizes of D = 30 and 50, whereas, with respect to

er dimension problem, our proposed algorithm shows 100% consistent improvement with D

and 1000 compared to other algorithms. In solving the IoV problem, the success rate was 62.

h is substantially better in comparison with the state-of-the-art algorithms. To this end, 

osed NCHHO algorithm in this paper demonstrates a promising method to be widely used

rent applications, which brings benefits to industries and businesses in solving their optimiza

lems experienced daily, such as resource allocation, information retrieval, finding the opti

 for sending data over networks, path planning, and so many other applications. 

words: Optimization; Artificial intelligence; Harris hawks optimization algorithm; Chaos the

net of Vehicles 

troduction

r the past decade, challenging real-world optimization problems have been the center of atten

any areas, including but not limited to, information science-related problems, data analy

neering design, and wireless communication-related problems. Such optimization probl

ally have common characteristics such as constraints, decision variables, objectives, etc. [1], 

 common classes of optimization algorithms are used to solve such problems: conventional 

ern algorithms. In the former class, there are usually mathematical optimization algorith

tly gradient-based), which suffer from local optima stagnation. In the latter class, howe

heuristics are not gradient-based that benefit from a high chance of local optima avoidance, 
1 

eir stochastic behaviour [3],[4]. 



Simple implementation, robustness, and high efficiency are the superior characteristics of 
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heuristic approaches. These properties assist metaheuristics to overcome the drawbacks

tional approaches: premature convergence and local optima stagnation [5], [6]. As metaheuri

ods belong to the stochastic optimization family, they benefit from random operators to be

d locally optimal solutions when solving optimization problems [7], [8]. Due to these dist

acteristics, metaheuristics are applicable to a wide range of problems in both science and indus

mmon drawback for most metaheuristic algorithms, however, is that they often show resista

ser-defined parameter adjustments [9]. Moreover, metaheuristics may not always converge

al optimum solutions [10]. In addition, due to the use of a population of the solution, they ten

omputationally more expensive than conventional optimization algorithms.  

erally speaking, metaheuristic methods can be categorized into two classes: Evolution

rithms (EA) and swarm intelligence (SI) techniques [11]. EA imitate the evolution

hanisms in nature. Some of the evolution-inspired techniques in this class are Evolution

egy (ES) [12], Genetic Algorithms (GA) [13], Differential Evolution (DE) [14] 

eography-Based Optimization (BBO) algorithm [15]. However, to avoid being trapped in a lo

t of the solution in these methods, their parameters need to be optimally selected before 

mencement of optimization. As such, a number of studies have been conducted to find the best

rameters for such evolutionary algorithms. 

ethods, on the other hand, mimic the collective behavior of herds, schools, or flock in nature

bat the difficulties of an optimization process, the relationship between the individuals in swa

mulated in such methods. In nature, SI methods produce more than one random solution 

ove them over the course of optimization process. Ant Colony Optimization (ACO) [16] 

cle Swarm Optimization (PSO) [17] are the two most popular algorithms that fall under 

ory. The ACO algorithm emulates ants’ social behavior to determine the shortest path betw

est and a food source. The PSO algorithm simulates the birds’ collective movement and hun

vior. Other recent SI methods are: Salp Swarm Algorithm (SSA) [7], Cuckoo Search (

rithm[18], Fruit Fly Optimization Algorithm (FOA) [19], Dolphin Echolocation (DE) [20], G

f Optimizer (GWO) [21], Bat Algorithm (BA) [22], Whale Optimization Algorithm (WOA) [

Lion Optimizer (ALO)[24] and Artificial Bee Colony (ABC) algorithm [25]. 

e is a common feature between these despite the differences in these algorithms; meta-heuris

e the search process into two phases: exploration and exploitation. The exploration phase ta

e when a meta-heuristic algorithm attempts to identify the best areas of a given search space.

rithm should use its randomized operators to thoroughly explore diverse areas of the search sp

In contrast, the exploitation phase allows the optimizer to concentrate on the neighborhood 

ists of better-quality solutions within the searching space. Due to conflicting nature of explora

exploitation, a well-structured optimizer should be able to achieve a proper balance between

oratory and exploitative tendencies. The probability of being stuck in local optima will be m

er in case of an improper balance between exploration and exploitation [26], [27].  

ntly, a new metaheuristics technique, Harris Hawks Optimizer (HHO), has been introduce

This algorithm mimics Harris Hawks’ hunting skills to catch their preys. The HHO is used

e global optimization problems using these mechanisms.  This algorithm consists of six step

oration and exploitation that make HHO capable of avoiding locally optimal solutions 

ting the convergence rate. We observed that its capability to exploit is more prominent compa

ploration [28].  

entioned earlier, balancing the two phases of exploration and exploitation is one of the m

rtant features in meta-heuristics that make these algorithms more capable of solving optimiza

lems. As a way to advance the performance of the basic HHO and improve its exploration ph

paper modifies the HHO algorithm using different chaotic maps, which are utilized to change

om behavior of the basic HHO’s parameters.  Although the use of chaotic maps improves

 algorithm’s exploration phase, it has the potential to disturb the tuning and the switcho
2 

een the exploration and exploitation phases. This challenging adaptation process will eventually 



lead the algorithm to be trapped in local optimal points of solutions, thus hindering it from finding 
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efore, the existence of a controlling parameter is crucial for balancing the algorithm’s two sta

nother contribution of this work, a nonlinear parameter from Salp Swarm Algorithm (SSA) [6

osed as a control parameter operator for adjusting the exploration and exploitation pha

rdingly, the proposed method is named as a Nonlinear-based Chaotic Harris Hawks Optim

HHO). The efficiency of the proposed NCHHO algorithm in finding the optimal solutio

hmarked in solving a wide range of well-known optimization test functions as well as in solv

l-world problem of finding the optimal network route on the Internet of Vehicles (IoV).  

ould be noted that  there are similar works in the literature on chaotic metaheuristics that wil

nsively reviewed and discussed in the next section. However, not many research works targe

-scale problems as well as IoV problems. We have tailored and modified the mechanism of H

arge-scale problems, including IoV problems for the first time in the literature.   

e case of HHO, it is evident that this algorithm is not a suitable algorithm for large-s

lems. As a soft computing method, HHO requires improvements and modifications. 

ovements will be targeted to solve a very challenging case study in the area of IoV. Theref

ollowing contributions are made for the first time in the literature of meta-heuristic and IoV. 

The use of chaotic map in HHO instead of random components to improve its exploratio

the first contribution of this paper. We leverage chaotic maps to improve the explora

behavior of HHO without increasing its computational cost, which was identified as on

the shortcomings of the existing chaotic meta-heuristics. While the use of chaotic value

successful in improving the algorithm’s exploration process, it also creates a disrup

between the exploration phase and the algorithm’s exploitation, which is the motivation of

next contribution.

To improve the accuracy and quality of selected best solutions in addition to improvising

exploitation ability of HHO, a nonlinear parameter is proposed for the first time in 

literature for this algorithm.

The last contribution is the use of NCHHO in solving one of the challenging optimiza

problems in the area of wireless communication for IoV as a seminal attempt to tackle 

challenging problem using metaheuristics. This contribution will then facilitate a c

effective, robust solution for the field of autonomous vehicles to improve data dissemina

over a reliable optimal route.

efore, the novelty is on the modification of HHO in an attempt to solve large-scale probl

ding IoV problems. 

rest of the paper is organized as follows. Section 2 demonstrates the state-of-the-ar

heuristics and their applications. This section also highlights the research gaps targeted in 

. In addition to defining different types of chaotic maps that will be hybridized and exami

 HHO algorithm, Section 3 also briefs the readers with the main concepts and preliminaries of

 HHO algorithm. In Section 4, we have demonstrated the detailed design of the propo

rithm. Section 5 presents the comparative results and discussion to verify the performance 

iency of the proposed NCHHO algorithm. Finally, Section 6 concludes the paper and highlig

e works. 

iterature Review

e last few years, metaheuristics have established a trustworthy tie with a wide range of indust

to their strength in solving numerous real-world problems effectively. A substantial numbe
3 

ications have adopted metaheuristic algorithms to solve problems with diverse difficulties, such 



as single-objective, multi-objective, combinatorial, and constrained [29], [30]. As a way to brief the 
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ers with the existing and most recent metaheuristic algorithms along with some real-w

lems, this section presents some of these algorithms accordingly. Please note that we will fo

e IoV network traffic routing problem, as it has been selected to show case the applicability

roposed NCHHO algorithm in solving such a highly dynamic problem with large dimensions.

can observe from the literature that metaheuristics are widely adopted in solving problems wi

re of minimization, maximization, and mixed mode, with multi-constrains as well as fea

tion problems [72]. While metaheuristic algorithms attempt to solve such kind of problems

oximation is inherently used by applying a combination of incremental convergence approac

g with local and population-based search schemes. Such a strategy will facilitate the ability

l optima avoidance in metaheuristics. One of the main challenges that has been constantly arg

t metaheuristic algorithms is their stochastic nature[31]. Despite being non-determini

heuristic algorithms can substantially save computational resources and make educated decisi

duce the search space, whereas other exact type of algorithms struggle. Except for a gi

lem that could be solved by a deterministic algorithm within polynomial time that is equivalen

n-deterministic algorithm P = NP, an exact method will not be able to solve an NP-h

ization problem; worst case scenario will take polynomial time (with an exponential gro

 the problem size). There are numerous research studies on investigating ways to bring ex

od processing with maintained exponential time, yet this is very challenging to achieve. [

, [76]. 

pite of the fact that metaheuristics, on some occasions, could not provide very high qua

tions that meet 100% of the pre-defined objectives on a given optimization problem, they

idered as the most promising methods in solving real-life problems due to their time efficie

. For instance, from the literature, we can observe that conventional metaheuristics, such as G

, GWO, etc., have demonstrated high potential in solving problems with complex behav

ering, and classification. This has motivated a lot of researchers to find new strategies or impr

e of the existing algorithms to develop metaheuristic algorithms that are derived from na

omena such as Multi-Verse Optimizer (MVO) [50] and Volcano Eruption Optimizer (VEO) [

nspired from natural creatures such as GWO, SSA, WOA; Hybrid multi-objective Disc

icial Bee Colony (HDABC) algorithm for the Blocking Lot-Streaming Flow Shop (BLS

duling problem [34] and many others.  

worth mentioning that the well-known No Free Lunch (NFL) theorem [35] has logically pro

there is no metaheuristic algorithm that can produce the best results for all given optimiza

lems. In this context, several metaheuristic algorithms have been recently developed

rchers across the globe to find the optimal design that can be used to solve a wide range

ization problems. For instance, Mafarja and Mirjalili [36] introduced two variants of the W

rithm: the roulette wheel and tournament selection variants. These newly introduced variants h

ced the conventional random operator that is used by WOA. Additionally, they have introdu

rossover and mutation operators as a way to improve the algorithm’s performance. The limita

eir method is the degraded exploitation of the algorithm, especially when solving large-s

sets.  

he other hand, in [37], the authors proposed the use of the chaotic search combined with WOA

come the problems of trapping within the local optima and leveraging the convergence sp

h eventually contributes to their showcase scenario of the feature selection problems. 

ation of their method is the lack of in-depth analysis of the impact of chaotic map on explora

exploitative behavior of WOA. As another attempt in [38], a filter algorithm utilizing Pear

lation coefficient and correlation distance has been developed along with WOA. Their propo

nique intended to improve the algorithm in extracting the optimal set of features of a gi

ization problem. The limitation of their method is the high computational cost of calculating

nce in each iteration. This is a real issue when solving real-world problems with computation

nsive objective functions. Hence, we could figure out that there are shortcomings within
4 



existing work, which are mainly high computational cost and degraded exploitation when solving 
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Fig. ons. 
-scale problems.  

iscussed above, HHO is a new algorithm that is proposed in [9] with a promising performanc

ing optimization problems. However, this algorithm has a potential gap that needs to be revis

way to improve its performance. The main drawback of this algorithm is that it has a degra

oitation when it comes to solving problems with high dimensions and dynamic behavior. Besi

e HHO algorithm, the exploration is conducted based on normal distribution and random val

 nature of the population’s initialization could lead to a non-strategic way of creating the in

lation of solutions, which eventually impacts the computational time and quality of solutions 

ils of this algorithm are discussed further in Section 3.1). 

s theory is a popular way of balancing exploration and exploitation in metaheuristics

inear dynamic systems, chaos is a stochastic phenomenon that is generated due to the fact 

larity, randomness, sensitivity to the initial condition, and periodicity are most likely experien

e initialization phase of SI algorithms. [39]. Such chaos properties allow the algorithms to w

 generic probability distributions at higher speeds than standard stochastic search and avoid be

ed in the optimal local stage [40], [41]. With the advantages of chaos theory and metaheuri

ods, in recent years, these two methods have shown promising potential to improve 

rmance of metaheuristics. Some examples are Chaotic Krill Heard [42], Fruit fly Optimiza

rithm (FOA) [43], Runner-Root Algorithm [44], Chaotic PSO [45], [46] Chaotic Gravitatio

ch Algorithm [47], and Chaotic WOA (CMWOA) [48][49]. Accordingly, the efficiency

heuristic methods was enhanced by utilizing this type of hybridization, which imposes 

rtance of chaos theory. 

ntly, metaheuristic algorithms have been employed to solve optimization problems related

icular Ad hoc Network (VANET) as well as Internet of Things (IoT) [74], particularly rou

ork traffic problem within the emerged era of IoV. For instance, in [50], García-Nieto et

ored the use of several metaheuristic algorithms to find the optimal values of three defi

iguration matrices like chunk size, total attempts, and retransmission time for the Vehicular D

sfer Protocol (VDTP) for vehicular communications scenarios such as PSO, DE, GA, ES, 

lated Annealing (SA). On the other hand, Optimization of Link State Routing (OLSR) proto

een developed by the authors in [51], [52] for vehicular communications. Ghafor et al. [53] h

loped a new metaheuristic algorithm named Laying Chicken Algorithm (LCA) to solve a defi

ete optimization problem in Software-defined Internet of Vehicles (SDIoV). LCA has been u

nding the optimal candidate route to be used in forwarding network traffic over smart vehicle

 Although the LCA has shown promising results, there are still some limitations that could

er improved. For instance, the developed routing algorithm introduces extra overhead, whic

to the nature of LCA that inquires some time converging to the optimal solution using the h

fer mechanism among solutions candidates. 

Fig. 1. Heuristics versus meta-heuristics 

e area of metaheuristics, the algorithms are designed generic enough to solve a wide range

lems. They are not heuristic and problem-focused, but rather general-purpose. This is show

1. As can be seen, each of these two classes of optimization algorithms has its own pros and c

Meta-heuristic Heuristic 

General purpose Problem focused 
5 



However, the literature evidently shows that metaheuristics have become extremely popular in both 
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ce and industry.  

main reason why metaheuristics have become popular is due to several reasons, of which

 one is its black-box nature. However, this does not mean that a metaheuristic is able to solve

ization problems. The NFL theorem, as mentioned earlier, logically proved that there is

heuristic to solve all optimization problems. Therefore, we need to tailor a metaheuristic

e targeted problems. This does not make them problem-focused as heuristics, but modificati

tunings are required to ensure high accuracy. 

e 1 summarizes and compares the most recent metaheuristic algorithms in the literature t

hmark them with the proposed NCHHO algorithm. 

TABLE 1 Characteristic summary of popular algorithms 
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SSA ✓ 3 1 N N N Swarm 

MFO ✓ 3 n N N N Swarm 

GWO ✓ 3 3 N N N Swarm 

PSO ✓ 5 n+1 N N N Swarm 

DE ✓ 4 0 N N N Math 

SA ✘ 2 1 N N N Physics  

MVO ✓ 4 n N N N Physics 

HHO ✓ 4 n Y N N Swarm 

NCHHO ✓ 4 n Y Y Y Swarm 

subsequent sections present the preliminaries and definitions of standard HHO and the propo

HO algorithms. Also, we will introduce improvements to the HHO algorithm to alleviate

backs when solving optimization problems, including solving a wide range of comp

ization functions and finding an optimal network traffic route for IoV applications.  

eliminaries and definition

 section introduces the preliminaries and the essential definitions of the HHO algorithm and

tic Maps that will be used in developing the proposed NCHHO algorithm. 

Harris Hawks optimization (HHO) 

HHO algorithm was proposed in 2019 [9], which mimics some aspects of the Harris Haw

l hunting mechanism. Harris’s Hawks are medium-sized birds with a distinct dark brown c

usually live in semi-open desert lowlands. They can be found in urban regions too. They ten

 and migrate in groups. In finding the optimal solution to an optimization problem, the HHO u

 steps. These steps include exploration, shifting from exploration to exploitation, and exploita

. Exploration phase 

ng the search space exploration (selecting the appropriate prey (rabbit)) as described in Eq. 

HO used two strategies to simulate the Harris Hawks’ behaviors [9].  
6 



𝑥𝑖(𝑡 + 1) = {
𝑋𝑟𝑎𝑛𝑑(𝑡) −  𝑟1|𝑋𝑟𝑎𝑛𝑑(𝑡) − 2𝑟2𝑋𝑖(𝑡)|      𝑞 ≥ 0.5

 (1) 

In E ∗(𝑡)
spec and

𝑞 ar wer 

boun  the 

aver (𝑡),

resp

𝑋𝑚(

whe
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haw r is 

impl

𝑥𝑖(𝑡

∆𝑥𝑖(
(𝑋∗(𝑡) − 𝑋𝑚(𝑡)) − 𝑟3(𝑙𝑏 + 𝑟4(𝑢𝑏 − 𝑙𝑏))  𝑞 ≤ 0.5  

q. (1), 𝑥𝑖(𝑡 + 1) is the position vector of the hawks in the next iteration. Meanwhile, 𝑋
ifies  the position of the prey, 𝑋𝑖(𝑡) consists the current position vector of hawks. 𝑟1, 𝑟2, 𝑟3, 𝑟4, 

e random numbers generated at interval 0, 1 in each iteration. 𝑙𝑏 and 𝑢𝑏 are the upper and lo

ds of the variables. Randomly selected solutions from the current population of hawks and

age of the solutions (i.e., the current position of hawk) are placed in 𝑋𝑟𝑎𝑛𝑑(𝑡) and 𝑋𝑚

ectively. 𝑋𝑚(𝑡) is attained using Eq. (2) [9]:

𝑡) =
1

𝑁
∑ 𝑋𝑖(𝑡)   (2)

𝑁

𝑖=1

 

re 𝑁 refers to the total number of hawks. 

. Shifting from exploration to exploitation 

rding to the energy of the prey (𝐸) in HHO, the algorithm changes from exploration

oitation phase. This concept has been defined as follows [9]: 

2𝐸0 (1 −
𝑡

𝑇
) , 𝐸0𝜖[−1,1]  (3) 

re 𝐸 is the energy of the prey, 𝑇 and 𝑡 indicates the maximum number of iteration and the cur

tion, respectively. 𝐸0 is the initial prey energy state that changes randomly within the range (

 each iteration.

. Exploitation phase 

is phase, by mimicking the prey’s attacking strategy discussed in the previous process, Har

ks perform the surprise pounce. However, preys often try to evade dangerous situations. Supp

the chance of a prey to successfully escape from the hawks’ siege (c < 0.5) or to be trapped

 (c ≥0.5) before the surprise pounce. Hawks will use a hard or soft siege to hunt their p

rdless of the different escape strategies performed by the prey. In other words, hawks enci

 prey in different ways, depending on the energy that remains with the prey [9]. 

erent patterns of chasing exist in real situations. In the HHO, four potential strategies 

ested to model the attacking stage based on common escaping behaviors of the prey and chas

rns of the Harris’ hawks [9]. These strategies include soft and hard besieges: a soft besiege w

ressive rapid dives, and a hard besiege with progressive rapid dives.  

hawks will finally conduct a hard or soft besiege to hunt the prey [9]. In nature, by performing

rise pounce, hawks get closer and closer to the targeted prey to reduce the risk of losing t

, and eventually catch the prey. As time passes, the prey will get exhausted and lose its ene

, the last step of hunting begins; the hawks will step up the process of besieging the prey

g it. In the HHO algorithm, 𝐸 parameter is used for simulating this hunting pattern and enab

HO to move between processes of soft and hard besieging. When|𝐸| ≥ 0.5, the hawks do a 

ge and if|𝐸| < 0.5, a hard besiege has occurred. 

.1. Soft besiege 

is phase, the prey still has enough energy and tries to escape. It is softly surrounded by the Har

ks to exhaust the prey, after which the surprise pounce will be performed[9]. This behavio

emented by the following rules: 

+ 1) = ∆𝑥𝑖(𝑡) − 𝐸|𝐽 × 𝑋∗(𝑡) − 𝑥𝑖(𝑡)|,  𝐽 = 2(1 − 𝑟5)  (4) 

𝑡) = 𝑋∗(𝑡) − 𝑥 (𝑡)  (5) 
7 
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where 𝐽 indicates the jump intensity of the prey (rabbit), which changes its value randomly in each 

itera

3.1.3

Whe nce. 

This ): 

𝑥𝑖(𝑡

3.1.3

In th ris’ 

haw his 

conc

𝑌(𝑡)

The ring 

the e

𝑍(𝑡)

In E ight 

func

𝐿𝐹(𝑥

whe inal 

step ) as 

follo

𝑥𝑖(𝑡

3.1.3

In co e is 

desig  Eq. 

(11)

𝑥𝑖(𝑡

whe

𝑌′(𝑡

𝑍′(𝑡

3.2. 

The ery 

impo ion, 

deci
tion. 𝑟5 is a random number generated inside the range 0 to 1.

.2. Hard besiege 

n the prey has low escape energy, the Harris hawks hardly surround the prey for surprise pou

 phase is called hard besieges in the HHO. In this phase, the solutions are updated using Eq. (6

+ 1) = 𝑋∗(𝑡) − 𝐸|∆𝑥𝑖(𝑡)|  (6) 

.3. Soft besiege with progressive rapid dives 

e soft besiege with progressive rapid dives, the prey has enough energy to escape from Har

k successfully, even before the surprise pounce; a soft besiege is shaped step by step [9]. T

ept is performed using Eq. (7): 

= 𝑋∗(𝑡) − 𝐸|𝐽 × 𝑋∗(𝑡) − 𝑥𝑖(𝑡)|  (7) 

HHO uses levy flight (𝐿𝐹) to simulate real zigzag movements of prey (especially rabbits) du

scape phase. So the levy flight is used to update Eq. (8) as [9]: 

= 𝑌(𝑡) + 𝑆 × 𝐿𝐹(𝐷)  (8) 

q. (8) 𝐷 is a problem dimension, 𝑆 is a random vector by size 1 × 𝐷, and 𝐿𝐹 is a levy fl

tion that is calculated using Eq. (9) [54] as follows: 

) = 0.01 ×
𝑢 × 𝜎

|𝑣|
1
𝛽

 , 𝜎 = (
Γ(1 + 𝛽) × sin (

𝜋𝛽
2

)

Γ(
1 + 𝛽

2 ) × 𝛽 × 2
(

𝛽−1
2

)
)

1
𝛽

 (9) 

re 𝑢, 𝑣 are random values generated in the range of 0 to 1, and 𝛽 is set to 1.5. Therefore, the f

for updating the position of current solutions in this phase will be performed by Eq. (10

ws [9]: 

+ 1) = {
𝑌(𝑡)    𝑖𝑓 𝐹(𝑌(𝑡)) < 𝐹(𝑥𝑖(𝑡))

𝑍(𝑡)   𝑖𝑓 𝐹(𝑍(𝑡)) < 𝐹(𝑥𝑖(𝑡))
 (10) 

.4. Hard besiege with progressive rapid dives 

mparison to the previous phase, the prey has low energy in this phase, and a strong besieg

ned to track and kill the prey before the surprise pounce[9]. So, the solutions are updated by

as follows [9]:

+ 1) = {
𝑌′(𝑡)    𝑖𝑓 𝐹(𝑌′(𝑡)) < 𝐹(𝑥𝑖(𝑡))

𝑍′(𝑡)   𝑖𝑓 𝐹(𝑍′(𝑡)) < 𝐹(𝑥𝑖(𝑡))
 (11) 

re 𝑌 and 𝑍 are calculated using new formulas in Eqs. (12) and (13) [9], 

) = 𝑋∗(𝑡) − 𝐸|𝐽 × 𝑋∗(𝑡) − 𝑥𝑚(𝑡)|  (12) 

) = 𝑌′(𝑡) + 𝑆 × 𝐿𝐹(𝐷)        (13) 

Proposed chaotic maps for HHO 

development of random sequences with a long period and a high degree of accuracy are v

rtant for the uncompromising simulation of complex phenomena, sampling, statistical evaluat
8 

sion-making, and heuristic optimization in particular [55]. Chaos behavior could generally be a 



deterministic, random-like phenomenon that occurs in non-linear, dynamic (non-period), non-
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ergent, and bounded systems. Any number within the range [0-1] (or depending on the contex

haotic map) can be selected as the initial value in these chaotic maps. However, it should

d that the initial value could have significant impacts on the oscillation pattern of a few of

tic maps [56].  

y chaotic maps with various mathematical equations are used to propose chaotic optimiza

rithms (COA) [42]. Due to the dynamic behavior of chaotic maps, during the last dec

rchers have been extensively adopted in the field of optimization. The reason is that these cha

s offer assistance to optimization algorithm in empowering the exploratory ability in the sea

e. In other words, exploration performed can be more systematic than stochastic, which 

ability-based search [57]. Furthermore, chaotic maps could effectively help optimiza

rithms in avoiding locally optimal solutions and improving the convergence speed [28]. 

Table 2 Chaotic maps and their equations used in improvising HHO’s exploration phase. 

Map equation Map name No. 

𝑋𝑛+1 = 𝑎𝑋𝑛(1 − 𝑋𝑛), 𝑎 = 4 Logistic map 1 

𝑋𝑛+1 = {
2𝑋𝑛             𝑋𝑛 < 0.5

2(1 − 𝑋𝑛)  𝑋𝑛 ≥ 0.5
Tent map 2 

𝑋𝑛+1 = 𝑎𝑋𝑛 
2 sin (𝜋𝑋𝑛) sinusoidal map 3 

𝑋𝑛+1 = 𝑋𝑛 + 𝑏 − (
𝑎

2𝜋
) sin(2𝜋𝑋𝑛) 𝑚𝑜𝑑(1), 𝑎 = 0.5 𝑎𝑛𝑑 𝑏 = 0.2 circle map 4 

𝑋𝑛+1 = {

0    𝑋𝑛 = 0
1

𝑋𝑛𝑚𝑜𝑑(1)
  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Gauss map 5 

𝑋𝑛+1 = cos (a. 𝑐𝑜𝑠−1𝑋𝑛) Chebyshev map 6 

𝑋𝑛+1 = a(7.86𝑋𝑛 − 23.31𝑋𝑛
2 + 28.75𝑋𝑛

3 − 13.302875𝑋𝑛
4) , 𝑎 = 1.07 Singer map 7 

𝑋𝑛+1 =
𝑎

4
sin(𝜋𝑋𝑛) , 𝑎 = 4 Sine 8 

𝑋𝑛+1 = sin(
𝑎𝜋

𝑋𝑛

) , 𝑎 = 0.7 Iterative 9 

rder to improve the parameters of HHO algorithm, we use one-dimensional and other n

rtible maps to produce a set of chaotic values. Nine chaotic maps were used in experiments [5

as listed in Table 2. These equations were also visualized as a way to provide the readers wi

 comprehensive understanding of their behavior. Fig. 2 demonstrates these nine selected cha

s that have been implemented and tested to show the impact on improving the explora

vior of the proposed NCHHO algorithm. In each subfigure in Fig. 2, a chaotic map has b

alized out of the given related equation in Table 1. The presented behavior using 2-dimentio

hs was illustrated for Logistic, Tent, Sinusoidal, Circle, Gauss, Chebyshev, Singer, Sine 

tive maps in Fig. 2(a)-(i) accordingly. The y-axis shows the values of the chaotic map while th

presents the iteration numbers. As can be seen from each chaotic map’s behavior, there are m

d values for the covered regions and the frequency of movements. Hence, the use of each m

compensate each other in improvising the exploration behavior of an optimization algorithm. 

important to mention that these maps are chosen because they have different behaviors

ucing their chaotic values and have been shown to be successful in numerous studies in 

ture [44], [60].

   (a)    (b)     (c) 
9 
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(h) Sine (i) Iterative

onlinear based Chaotic Harris Hawks Optimization

 section discusses the proposed algorithm’s structure, which is named as Nonlinear based Cha

is Hawks Optimization (NCHHO). The NCHHO’s main goal is to advance the performance

asic HHO algorithm in two ways; the first is to combine the HHO with the chaotic maps, w

econd stage is the use of a non-linear control parameter as an adjustment operator between

oration and exploitation phases. This combination in the basic HHO uses the behavior of cha

s that advance the strength of the algorithm to explore the search space while using the non-lin

rol parameter to improve the performance of HHO by adjusting the exploration and exploita

es.  

worth mentioning that the main purpose of using chaotic maps values is to deploy procedur

rated values rather than random values for NCHHO in the exploration phase. In addition, the

aos in the proposed method speeds up its performance compared to the original algorithm, wh

stochastic algorithm, and uses a standard probability distribution. In consideration of th

ntages and in advance of the exploration phase in HHO, chaotic values have been utilized inst

ndom values in this process. Therefore, Eq. (1) is updated as follow: 

+ 1) = {
𝑋𝑟𝑎𝑛𝑑(𝑡) −  𝑐𝑚1|𝑋𝑟𝑎𝑛𝑑(𝑡) − 2𝑐𝑚2𝑋𝑖(𝑡)|      𝑞 ≥ 0.5

(𝑋∗(𝑡) − 𝑋𝑚(𝑡)) − 𝑐𝑚3(𝑙𝑏 + 𝑐𝑚4(𝑢𝑏 − 𝑙𝑏))  𝑞 ≤ 0.5 
(14) 

re 𝑐𝑚 is a chaotic number based on the selected map generated in each iteration. 

lgorithm 1, the pseudo-code for the proposed NCHHO algorithm is stated. 

rithm 1 Pseudo-code of NCHHO algorithm 
ts: The population(Harris’ hawks) size N and maximum number of Algorithm 

ations T 

uts: Position and fitness of the prey(rabbit) Initialize the random 

lation 𝑋𝑟𝑎𝑛𝑑 (i = 1, 2, . . . , N)

e (stopping condition is not terminate) do 

Calculate the hawks ' fitness values 

Set 𝑋𝑖as the location of prey (best location)

for(each hawk (𝑋 )) do
10 

𝑟𝑎𝑛𝑑

Update the initial energy 𝐸0 (𝐸0=2rand()-1) and jump strength J(J=2(1-



rand())) 

Update Eq. (3) 

Exp

Exp

Sof

Har

Sof

Har

Retu

To b

The ons, 

but ges. 

[61]

impo

p
O 

YE
loration phase 

 if (|E|≥ 1) then 

Update the hawks location using Eq. (14) 

loitation phase 

if (|E|< 1) then 

t besiege 

if (r ≥0.5 and |E|≥ 0.5 ) then 

Update the hawks location using Eq. (4) 

d besiege 

else if (r ≥0.5 and |E|< 0.5 ) then

Update the hawks location using Eq. (6) 

t besiege with progressive rapid dives 

else if (r < 0.5 and |E|≥ 0.5 ) then

Update the hawks location using Eq. (16) 

d besiege with progressive rapid dives 

else if (r < 0.5 and |E|< 0.5 ) then

Update the hawks location using Eq. (19) 

rn 𝑋𝑖

etter see the algorithm of the proposed method, Fig. 3 is provided. 

Fig. 3. The flowchart of the proposed method 

levels of exploration and exploitation are not only influenced by the variety of potential soluti

are also controlled by different operators that monitor the intensity of search at various sta

Start 
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(𝑋𝑟𝑎𝑛𝑑) 
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End 
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. Although the use of chaotic values improves the exploration phase of the HHO, it is very 

rtant to strike a balance between the exploration and exploitation phases of the metaheuristic 



methods in order to achieve reasonable results. As a consequence, a nonlinear control parameter that 
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introduced in SSA [7], was implemented with a few modifications (the downward slope of

ction of the value of this parameter has been changed according to the algorithm structure)

linear control parameter is used in our modified version of HHO algorithm to balance explora

exploitation phases. Moreover, it makes the transition from exploration to exploitation in 

osed method to be executed smoothly. This parameter is defined as follow: 

2𝑒
−(

8𝑡

𝑇
)

2

 (15) 

q. (15), 𝑡 is the current iteration and 𝑇 is the total number of iterations. 

use the same equation in this work as well. As such, the process of soft besiege with progres

 dives in Eq. (10) has been modified in as follows:  

+ 1) = {
𝑌(𝑡)    𝑖𝑓 𝐹(𝑌(𝑡)) < 𝐹(𝑥𝑖(𝑡))

𝑍(𝑡)   𝑖𝑓 𝐹(𝑍(𝑡)) < 𝐹(𝑥𝑖(𝑡))
 (16) 

= 𝑐𝑋∗(𝑡) − 𝐸|𝐽 × 𝑋∗(𝑡) − 𝑥𝑖(𝑡)|  (17) 

= 𝑐𝑌(𝑡) + 𝑆 × 𝐿𝐹(𝐷)        (18) 

eover, in hard besiege with progressive rapid dives, Eq. (11) is modified using the follow

tions: 

+ 1) = {
𝑌′(𝑡)    𝑖𝑓 𝐹(𝑌′(𝑡)) < 𝐹(𝑥𝑖(𝑡))

𝑍′(𝑡)   𝑖𝑓 𝐹(𝑍′(𝑡)) < 𝐹(𝑥𝑖(𝑡))
 (19) 

) = 𝑐𝑋∗(𝑡) − 𝐸|𝐽 × 𝑋∗(𝑡) − 𝑥𝑚(𝑡)|  (20) 

) = 𝑐𝑌′(𝑡) + 𝑆 × 𝐿𝐹(𝐷)        (21) 

 that the computational complexity of the NCHHO algorithm in theory is identical to tha

 since chaotic maps and nonlinear equations are used instead of contact values for the m

rolling parameters. Therefore, the improvement is done without bringing extra computational 

he algorithm.  

esults and discussion

 section first discusses the research methodology of this work and then presents the results. 

other works on metaheuristics, the research methodology is quantitative. The proposed algori

sted on a wide range of test functions that will be introduced in following sub-section. Due to

astic nature of NCHHO, it is run 30 times and descriptive statistical measures are used to re

erformance. The algorithm is compared with a number of conventional and recent optimiza

rithms for results verification. Such comparisons are made using statistical measures 

ificance tests (95% confidence level) to ensure the results are not achieved by chance. In addit

calability and sensitivity analysis are also investigated to find out their impact on the performa

CHHO. Finally, the problem definition along with the performance analysis for solving 

ng optimization problem was demonstrated and discussed in this section. 

important to highlight that the datasets used in this research are sets of benchmark mathemat

tions, which have been used widely in the literature to evaluate the performance of optimiza

rithms. Besides, we have also implemented a real-world problem (Internet-of-Vehicles) 

ng problem, in which the dataset has been created based on the stated wireless chan

acteristics model that are connectivity (Pc) and packet reception (Pr) of each route, taking into

ideration the constraint of route delay (D). 

enchmark functions’ set details 
12 



Several experiments are carried out in this section to demonstrate the efficacy of the proposed method 
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Funct 𝑚𝑖𝑛 

𝑓1(𝑥) 0 

𝑓2(𝑥) 0 

𝑓3(𝑥) 0 

𝑓4(𝑥) 0 

𝑓5(𝑥) 0 

𝑓6(𝑥) 0 

𝑓7(𝑥) 0 

Tab

Tab

Funct

Funct

𝑓8(𝑥) 9×n 

𝑓9(𝑥)

𝑓10(𝑥)

𝑓11(𝑥)

𝑓12(𝑥)

𝑦𝑖 = 1

𝑓13(𝑥)
 theoretical remarks set out in the preceding sections. Based on the literature, a well-known se

ific benchmark functions is chosen, which includes 23 unimodal, multimodal and fix

nsional multimodal functions, and six composite functions which are commonly used to evalu

erformance of optimization algorithms[62], [63].  

odal functions (F1-F7), which have a single optimum solution, intentionally test the ability

lgorithm to exploit them (see Table 3). The second category covers multimodal functions (

 (Table 4) with more than one optimal solution. Local optimal solutions determine 

oratory behavior of the algorithm in these functions, while an algorithm needs to be able to sea

pace globally and avoid being trapped in local optimum to find the global optimum. Multi-mo

-dimensional functions (F14-F23), summarized in Table 5, are the other categories that are 

i-modal functions, but with low and fixed dimensions.  Functions 24-29 include the compo

hmark functions introduced in CEC 2014 special session [64]. These functions have been b

g shifted, rotated, expanded, and a combination of the most complex types of mathemat

ization problems presented in the literature [64]. These functions, along with their dimensi

 in this study, are shown in Tables 3-6.Table 3 Unimodal benchmark functions [71]–[73]. 

ions Dimensions Range 𝑓

= ∑ 𝑥𝑖
2

𝑛

𝑖=1
30,100,500,1000 [-100,100] 

= ∑ |𝑥𝑖| + ∏ |𝑥𝑖|
𝑛

𝑖=1

𝑛

𝑖=1
 30,100,500,1000 [-10,10] 

= ∑ (∑ 𝑥𝑗

𝑖

𝑗−1
)

2𝑛

𝑖=1

30,100,500,1000 [-100,100] 

= 𝑚𝑎𝑥𝑖{|𝑥𝑖|, 1 ≤ 𝑖 ≤ 𝑛} 30,100,500,1000 [-100,100] 

= ∑ [100(𝑥𝑖+1 − 𝑥𝑖
2)2 + (𝑥𝑖 − 1)2]

𝑛−1

𝑖=1
 30,100,500,1000 [-30,30] 

= ∑ ([𝑥𝑖 + 0.5])2
𝑛

𝑖=1
30,100,500,1000 [-100,100] 

= ∑ 𝑖𝑥𝑖
4 + 𝑟𝑎𝑛𝑑𝑜𝑚[0,1)

𝑛

𝑖=1
 30,100,500,1000 [-1.28,1.28] 

le 4 Multimodal benchmark functions [71]–[73]. 

le 4 Fixed-dimension multimodal benchmark functions [71]–[73]. 

ions Dimensions Range 𝑓𝑚𝑖𝑛

ions Dimensions Range 𝑓𝑚𝑖𝑛

= ∑ −𝑥𝑖𝑠𝑖𝑛 (√|𝑥𝑖|)
𝑛

𝑖=1
 30,100,500,1000 [-500,500] -418.982

= ∑ [𝑥𝑖
2 − 10𝑐𝑜𝑠(2𝜋𝑥𝑖) + 10]

𝑛

𝑖=1
 30,100,500,1000 [-5.12,5.12] 0 

= −20𝑒𝑥𝑝 (−0.2√
1

𝑛
∑ 𝑥𝑖

2
𝑛

𝑖=1
) − 𝑒𝑥𝑝 (

1

𝑛
∑ 𝑐𝑜𝑠(2𝜋𝑥𝑖)

𝑛

𝑖=1
) + 20 + 𝑒 30,100,500,1000 [-32,32] 0 

=
1

4000
∑ 𝑥𝑖

2 − ∏ 𝑐𝑜𝑠 (
𝑥𝑖

√𝑖
) + 1

𝑛

𝑖=1

𝑛

𝑖=1
 30,100,500,1000 [-600,600] 0 

=
𝜋

𝑛
{10𝑠𝑖𝑛(𝜋𝑦1) + ∑ (𝑦𝑖 − 1)2[1 + 10𝑠𝑖𝑛2(𝜋𝑦𝑖+1)] + (𝑦𝑛 − 1)2

𝑛−1

𝑖
}

+ ∑ 𝑢(𝑥𝑖 , 10,100,4)
𝑛

𝑖=1
 

+
𝑥𝑖 + 1

4
𝑢(𝑥𝑖, 𝑎, 𝑘, 𝑚) = {

𝑘(𝑥𝑖 − 𝑎)𝑚   𝑥𝑖 > 𝑎
0 − 𝑎 − 𝑎 < 𝑥𝑖 < 𝑎

𝑘(−𝑥𝑖 − 𝑎)𝑚   𝑥𝑖 < −𝑎

30,100,500,1000 [-50,50] 0 

= 0.1 {𝑠𝑖𝑛2(3𝜋𝑥𝑖)

+ ∑ (𝑥𝑖) − 12[1 + 𝑠𝑖𝑛2(3𝜋𝑥𝑖 + 1)]
𝑛

𝑖=1

+ (𝑥𝑛 − 1)2[1 + 𝑠𝑖𝑛2(2𝜋𝑥𝑛)]} + ∑ 𝑢(𝑥𝑖 , 5,100,4)
𝑛

𝑖=1
 

30,100,500,1000 [-50,50] 0 
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Functions Dimensions Range 𝑓𝑚𝑖𝑛

𝑓14(𝑥)

−1

𝑓15(𝑥) 0 

𝑓16(𝑥) 6 

𝑓17(𝑥)  

𝑓18(𝑥)

𝑓19(𝑥)  

𝑓20(𝑥)  

𝑓21(𝑥) 2 

𝑓22(𝑥) 8 

𝑓23(𝑥) 3 

Tab  of 

equa

5.2. E

We ell-

know 68], 

MFO The 

para sed 

meth n a 

com ms’ 

popu

Tab

Alg

H

NC

M

M

Funct 𝑓𝑚𝑖𝑛

𝐶𝐹24
HGBa

2400 

𝐶𝐹25
Rotate

2500 

𝐶𝐹26
High C

2600 

𝐶𝐹27
Schwe

2700 

𝐶𝐹28
Rotate

High C

2800 

𝐶𝐹29 2900 
= (
1

500
+ ∑

1

𝑗 + ∑ (𝑥𝑖 − 𝑎𝑖𝑗)
62

𝑖=1

25

𝑗=1
) 2 [-65,65] 1 

= ∑ [𝑎𝑖 −
𝑥1(𝑏𝑖

2 + 𝑏𝑖𝑥2)

𝑏𝑖
2 + 𝑏𝑖𝑥3 + 𝑥4

]

211

𝑖=1

4 [-5,5] 0.0003

= 4𝑥1
2 − 2.1𝑥1

4 +
1

3
𝑥1

6 + 𝑥1𝑥2 − 4𝑥2
2 + 4𝑥2

4 2 [-5,5] -1.031

= (𝑥2 −
5.1

4𝜋2
𝑥1

2 +
5

𝜋
𝑥1 − 6)

2

+ 10 (1 −
1

8𝜋
) 𝑐𝑜𝑠𝑥1 + 10 2 [-5,5] 0.398

= [1 + (𝑥1 + 𝑥2 + 1)2(19 − 14𝑥1 + 3𝑥1
2 − 14𝑥2 + 6𝑥1𝑥2 + 3𝑥2

2)]
× [30
+ (2𝑥1 − 3𝑥2)2

× (18 − 32𝑥1 + 12𝑥1
2 + 48𝑥2 − 36𝑥1𝑥2 + 27𝑥2

2)] 

2 [-2,2] 3 

= − ∑ 𝑐𝑖𝑒𝑥𝑝 (− ∑ 𝑎𝑖𝑗(𝑥𝑗 − 𝑝𝑖𝑗)
2

3

𝑗=1
)

4

𝑖=1
 3 [1,3] -3.86

= − ∑ 𝑐𝑖𝑒𝑥𝑝 (− ∑ 𝑎𝑖𝑗(𝑥𝑗 − 𝑝𝑖𝑗)
2

6

𝑗=1
)

4

𝑖=1
 6 [0,1] -3.32

= − ∑ [(𝑋 − 𝑎𝑖)(𝑋 − 𝑎𝑖)𝑇 + 𝑐𝑖]−1
5

𝑖=1
4 [0,10] -10.153

= − ∑ [(𝑋 − 𝑎𝑖)(𝑋 − 𝑎𝑖)𝑇 + 𝑐𝑖]−1
7

𝑖=1
4 [0,10] -10.402

= − ∑ [(𝑋 − 𝑎𝑖)(𝑋 − 𝑎𝑖)𝑇 + 𝑐𝑖]−1
10

𝑖=1
4 [0,10] -10.536

le 6 Properties and summary of the composite CEC-BC-2014 functions (for the details

tions, please refer to [70]). 

xperimental Setup 

have compared the performance of the proposed NCHHO algorithm with a number of w

n algorithms in the literature, including DE [14], PSO [17], WOA [23], SSA [7], MVO[

[69], GWO [21] and the original HHO[9] to verify the efficiency and validate the results. 

meter settings of these algorithms are same as the original work (see Table 7). The propo

od and the other benchmarked algorithms were implemented in Matlab R2018a installed o

puter with a Windows 8.1 64-bit and 6 GB RAM. Moreover, all optimization algorith

lations and iterations are set to 100 and 500 respectively. 

le 7 The Algorithms parameter settings. 

orithm Parameter Value 

HO Rabbit Energy [2 0] 

HHO 

𝑐 (𝑁𝑜𝑛𝑙𝑖𝑛𝑒𝑎𝑟 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟) [2 0] 

Sine chaotic map( 

𝑋𝑛+1 =
𝑎

4
sin(𝜋𝑋𝑛) , 𝑎 = 4, 𝑋𝑛 = 0.7) 

[1 0] 

PSO 

Topology fully connected Inertia factor 0.5 

𝑐1 2 

𝑐2 2 

DE 
Scaling factor 0.5 

Crossover probability 0.2 

VO 
maximum of Wormhole Existence Probability 1 

minimum of Wormhole Existence Probability 0.2 

ions Dimensions Range 

=Composition Function of Schwefel's Function, Rotated Rastrigin’s Function and Rotated 

t Function 
30 [-100,100] 

=Composition Function of Rotated Schwefel's Function, Rotated Rastrigin’s Function and 

d High Conditioned Elliptic Function 
30 [-100,100] 

=Composition Function of Rotated Schwefel's Function, Rotated HappyCat Function, Rotated 

onditioned Elliptic Function, Rotated Weierstrass Function and Rotated Griewank’s Function 
30 [-100,100] 

=Composition Function of Rotated HGBat Function, Rotated Rastrigin’s Function, Rotated 

fel's Function, Rotated Weierstrass Function and Rotated High Conditioned Elliptic Function 
30 [-100,100] 

=Composition Function of Rotated Expanded Griewank’s plus Rosenbrock’s Function, 

d HappyCat Function, Rotated Schwefel's Function, Rotated Expanded Scaffer’s and Rotated 

onditioned Elliptic Function 

30 [-100,100] 

=Composition Function of Hybrid Function 1, Hybrid Function 2, Hybrid Function 3 30 [-100,100] 
14 

FO Convergence constant a [-1 -2] 



SSA 𝑐1(balancing parameter of exploration and exploitation) [1 0] 

GWO Convergence constant a [2 0] 

W

5.3. P

In o the 

othe ere 

impl  by 

first ess 

func ach 

chao  the 

NCH wn 

com

Ther  in 

deve sed 

as an ], to 

be u ms 

and um 

test 

Tab

Func. nt 

F1 +00 

F2 -225 
F3 +00 

F4 -222 

F5 -02 
F6 -05 

F7 -04 

F8 E+04 

F9 +00 

F10 -16 

F11 +00 
F12 -06 

F13 -05 

Best  

5.4. 

In th dal 

and zes 

posi 4-6 

dem and 

conv  all 

throu ess 

of p ates 

that rds 

the e

It ca age 

of th the 

solu  the 

final ion 

of in due 

to su  the 

expl nce 
OA Convergence constant a [2 0] 

erformance Analysis of Non-linear Chaotic maps effects on NCHHO 

rder to evaluate the performance of the proposed NCHHO algorithm and benchmark with 

r state-of-the-art optimization algorithms, the listed fitness functions in Tables 2-5 w

emented, and the performance was measured for each algorithm. We started the evaluation

finding out the best chaotic map that could achieve the highest performance with each fitn

tion of the set of F1-13. Table 7 lists the best average fitness function value calculated for e

tic map and for each benchmark function over 30 runs. The results in Table 7 show that

HO with the Sine map provides the best global solutions with five functions and has sho

petitive results with the rest of them.  

efore, the Sine map was chosen as the best map for NCHHO algorithm and was used

loping our algorithm and compare it with other optimization algorithms. The value of 0.7 is u

 initial value for all chaotic maps. In addition, all these maps are normalized in the range [0-1

sed instead of random generators in HHO. To evaluate the results of all optimization algorith

to specify whether the results are considerably different from each other, a Wilcoxon rank-s

is used [70]. 

le 7 Results of NCHHO with different chaotic maps. 

Chebyshev Circle Gauss-mouse Iterative Logistic Sine Singer Sinusoidal Te

0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E

1.20E-227 1.82E-227 4.08E-228 3.12E-224 1.00E-223 2.45E-229 7.33E-225 1.85E-225 2.72E
0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E

9.28E-222 2.32E-228 2.94E-230 4.45E-227 6.04E-227 1.05E-225 7.54E-226 2.84E-226 2.26E

4.27E-03 2.90E-02 6.37E-03 1.12E-02 1.21E-02 6.00E-03 1.81E-02 6.22E-03 1.51E
3.11E-05 3.74E-05 4.70E-05 3.60E-05 3.29E-05 1.35E-05 5.33E-05 3.89E-05 4.29E

1.20E-04 1.06E-04 1.04E-04 1.05E-04 1.42E-04 8.08E-05 1.18E-04 1.30E-04 1.28E

-1.26E+04 -1.26E+04 -1.26E+04 -1.26E+04 -1.26E+04 -1.26E+04 -1.26E+04 -1.26E+04 -1.26

0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E

8.88E-16 8.88E-16 8.88E-16 8.88E-16 8.88E-16 8.88E-16 8.88E-16 8.88E-16 8.88E

0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E
6.58E-06 4.35E-06 5.83E-06 3.68E-06 2.29E-06 2.10E-06 3.18E-06 2.77E-06 5.19E

4.00E-05 6.48E-05 3.60E-05 7.94E-05 4.27E-05 2.01E-05 5.96E-05 2.67E-05 3.87E

1 0 1 0 0 5 0 0 0

Visualization of results 

is section, the results of the qualitative analysis of the proposed method when solving unimo

multimodal functions are presented and analyzed. Qualitative analysis intuitively analy

tional changes as well as fitness changes during the hawks’ hunting process. Figs. 

onstrate four indicators: search history, the trajectory of the first hawk, average fitness, 

ergence curve. The trajectory subplot tracks how the first hawk’s first variable changes

gh the optimization process. The average fitness curve shows the changes in the average fitn

opulation during optimization. Throughout the iteration process, the convergence curve indic

the NCHHO has obtained the optimum fitness value with relatively smooth convergence towa

nd of the course of iterations. 

n be seen in the subplot of the search history in Figs. 4-6 that the NCHHO shows a good cover

e search space while focusing on promising regions. The trajectory diagram shows that 

tions in NCHHO have faced sudden changes in the initial stages that gradually taper off in

 steps. This reassures that the NCHHO ultimately converges to a position and exploits the reg

terest [71]. The trajectories in Figs. 4-6 show a primary exploratory behavior of the algorithm 

dden movements. The rapid amplitude in the initial iterations (covering even the 50% of

oration space), and the slight amplitude in the later iterations can guarantee the rapid converge
15 



of NCHHO and an effective search close to the global optimal [71], and also facilitates NCHHO’s 

shift

Mor ess 

curv  the 

posi me 

case  the 

popu
 from exploratory to exploitative patterns.  

eover, this analysis can show NCHHO’s attitude for exploration. Inspecting the average fitn

e shown in Figs. 4-6, the changes of the NCHHO fitness during the iterations has proved

tive impact of using chaotic maps. While the average fitness of NCHHO is deviated in so

s, the curve shows gradual descent, which is an indication of improving the overall quality of

lation.  

Fig. 4. Qualitative results for unimodal F1, F2, F3, and F4 benchmark functions. 
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5.4. 

In th zed 

acco rent 

dime her-

dime f a 

sing
Fig. 5. Qualitative results for F7, F9, and F10 benchmark functions. 

Fig. 6. Qualitative results for F12 and F13 benchmark functions. 

Scalability Analysis 

is section, the scalability of the proposed NCHHO algorithm has been investigated and analy

rdingly. The scalability evaluation is used in this section to examine the effect of diffe

nsions on NCHHO’s performance. It also demonstrates how a metaheuristic can retain its hig

nsional search advantages [9]. The stochastic nature of metaheuristics causes the results o
17 

le run to be unreliable; therefore, all algorithms have been checked 30 times and statistical 



measurements; mean, and standard deviations are collected and listed in Tables 8-12. For the first two 

grou the 

expe tion 

algo

Tab

Fun HO 

F1 
+00 

+00 

F2 
-221 

+00 

F3 
+00 

+00 

F4 
-223 

+00 

F5 
-03 

-03 

F6 
-05 

-04 

F7 
-04 

-04 

F8 
E+04 

+00 

F9 
+00 

+00 

F10 
-16 

+00 

F11 
+00 

+00 

F12 
-06 
-05 

F13 
-05 

-05 

Tabl nal 

func his 

is du ith 

chao  15, 

whic

Whe ther 

tech ther 

tech  the 

case han 

othe it is 

evid sted 

case ith 

thos  the 

resu that 

the u t on 

the p

As w as a 

way HO 

algo O, 

GW that 

NCH t to 

men any 

dime ith 

these

Tab
ps of functions (F1-F13), the dimensions of 30,100,500 and 1000 are considered for 

riments.  The obtained mean (AVG) and standard deviation (STD) results of all optimiza

rithms for 30 runs with 500 iterations were collected and compared for each dimension.  

le 9 Results of benchmark functions (F1–F13), with 30 dimensions. 

c. WOA SSA MFO GWO PSO DE MVO HHO NCH

Ave 1.42E-73 1.80E-07 3.68E+03 4.87E-41 2.36E-07 3.42E+03 5.74E-01 2.11E-99 0.00E

Std 7.24E-73 1.84E-07 6.69E+03 5.50E-41 3.06E-07 9.96E+03 1.51E-01 9.11E-99 0.00E
Ave 1.51E-49 1.58E+00 3.15E+01 4.78E-24 3.99E-04 1.99E+06 4.39E+00 8.43E-51 2.61E

Std 8.19E-49 1.40E+00 2.12E+01 3.57E-24 3.98E-04 2.12E+07 2.07E+01 2.89E-50 0.00E

Ave 4.29E+04 1.95E+03 2.15E+04 1.23E-11 1.91E+01 4.06E+04 6.42E+01 7.94E-74 0.00E

Std 1.27E+04 1.34E+03 1.27E+04 5.32E-11 7.67E+00 1.11E+04 2.22E+01 4.31E-73 0.00E

Ave 5.60E+01 1.05E+01 6.98E+01 1.88E-10 5.53E-01 3.61E+01 1.17E+00 1.55E-49 4.25E

Std 2.60E+01 3.14E+00 9.05E+00 2.03E-10 1.14E-01 1.91E+01 3.57E-01 8.05E-49 0.00E
Ave 2.79E+01 4.93E+02 8.01E+06 2.66E+01 5.97E+01 7.35E+06 3.53E+02 1.37E-02 6.69E

Std 5.30E-01 1.09E+03 2.44E+07 8.70E-01 4.28E+01 2.71E+07 6.10E+02 2.62E-02 8.43E

Ave 4.61E-01 1.53E-07 1.02E+03 2.27E-01 2.49E-07 3.51E+03 6.06E-01 2.63E-04 4.84E

Std 2.68E-01 2.05E-07 3.08E+03 2.55E-01 3.88E-07 1.00E+04 1.74E-01 4.72E-04 1.04E

Ave 2.54E-03 1.86E-01 -1.28E+00 5.69E-04 7.78E-02 4.05E+00 2.06E-02 1.55E-04 1.40E

Std 2.21E-03 8.25E-02 1.03E+01 3.76E-04 2.94E-02 1.53E+01 6.97E-03 1.56E-04 1.26E
Ave -9.89E+03 -7.56E+03 -8.49E+03 -6.25E+03 -6.59E+03 -7.47E+03 -7.87E+03 -1.25E+04 -1.26

Std 1.69E+03 7.55E+02 8.70E+02 9.31E+02 7.25E+02 1.19E+03 5.21E+02 3.18E+02 2.27E

Ave -5.12E+00 5.33E+01 1.66E+02 8.60E-01 4.28E+01 1.38E+02 1.20E+02 0.00E+00 0.00E

Std 0.00E+00 2.06E+01 2.77E+01 3.04E+00 9.33E+00 6.29E+01 3.17E+01 0.00E+00 0.00E

Ave 3.97E-15 2.49E+00 1.39E+01 2.75E-14 2.62E-04 4.77E+00 1.21E+00 8.88E-16 8.88E

Std 2.59E-15 7.87E-01 7.04E+00 4.35E-15 1.77E-04 6.24E+00 5.76E-01 0.00E+00 0.00E
Ave 4.07E-03 1.86E-02 2.19E+01 2.31E-03 8.87E-03 3.00E+01 6.87E-01 0.00E+00 0.00E

Std 2.23E-02 1.26E-02 3.86E+01 4.92E-03 9.00E-03 8.29E+01 8.78E-02 0.00E+00 0.00E

Ave 1.39E-01 6.91E+00 1.04E+01 1.37E-02 3.46E-03 1.51E+07 1.47E+00 5.26E-06 5.84E
Std 6.23E-01 3.75E+00 7.06E+00 1.04E-02 1.89E-02 6.54E+07 1.31E+00 5.89E-06 1.04E

Ave 5.33E-01 1.58E+01 1.37E+07 2.10E-01 1.90E-03 2.53E+07 8.72E-02 1.03E-04 3.29E

Std 2.65E-01 1.59E+01 7.49E+07 1.53E-01 4.15E-03 1.06E+08 3.68E-02 1.92E-04 6.33E

e 9 indicates that the proposed method shows the best results. When dealing with 30-dimensio

tions, NCHHO’s results are significantly better than the original HHO and other algorithms. T

e to the fact that the proposed algorithm provides superior efficiency when it has been tuned w

s and nonlinear control parameters. This has been proven by the obtained p-values in Table

h shows that the existing differences in results are statistically significant in all cases. 

n dealing with 100-dimensional space-search functions, NCHHO can reliably outperform o

niques. The results in Table 10 show the superiority of the NCHHO over HHO and o

niques, in approximately all runs. In Table 11, it can be evidently observed that in most of

s with 500 dimensions, the NCHHO has obtained better results in terms of AVG and STD t

r optimizers, especially compared with the standard HHO. As per p-values in Table 15, 

ent that NCHHO shows significantly better performance than other optimizers with all te

s. Results obtained by the proposed algorithm have significantly improved in comparison w

e obtained by the other methods. In either case, the other methods were capable of achieving

lts that were obtained by the proposed NCHHO algorithm.  In other words, these results show 

se of chaotic map values and nonlinear control parameters seems to provide a positive effec

erformance of the proposed method. 

as observed in lower dimensions, we have applied high-dimensional optimization problems 

 to testify the performance of the proposed algorithm. Table 12 reveals that the NCH

rithm provides surprisingly superior performance compared to WOA, PSO, DE, SSA, MV

O, MFO, and HHO. Wilcoxon’s rank-sum test results are listed in Table 15 and demonstrate 

HO has the ability to outperform other methods with a great deal of difference. It is importan

tion that NCHHO has not only reached the lower global optimum in almost all cases with 

nsion than other techniques, but also has great performance as compared to HHO, in dealing w

 fitness functions. 
18 

le 10 Results of benchmark functions (F1–F13), with 100 dimensions. 



Func. WOA SSA MFO GWO PSO DE MVO HHO NCHHO 

F1 
Ave 5.51E-71 1.41E+03 6.33E+04 1.78E-18 4.75E+00 5.31E+04 8.08E+01 9.05E-97 0.00E+00 

+00 

F2 
-225 

+00 

F3 
+00 

+00 

F4 
-225 

+00 

F5 
-02 

-02 

F6 
-05 

-04 

F7 
-04 

-04 

F8 
E+04 

+00 

F9 
+00 

+00 

F10 
-16 

+00 

F11 
+00 

+00 

F12 
-06 

-06 

F13 
-05 

-05 

Tab

Fun HO 

F1 
+00 

+00 

F2 
-225 

+00 

F3 
+00 

+00 

F4 
-224 

+00 

F5 
-02 

-01 

F6 
-04 

-04 

F7 
-04 

-04 

F8 
E+05 

+01 

F9 
+00 

+00 

F10 
-16 

+00 

F11 
+00 

+00 

F12 
-07 

-06 

F13 
-04 

-04 

The 14-

F23 hes. 

From  the 

two orm 

well  of 

chao  the 

prop sed 

on th  the 

NCH

Tab
Std 2.97E-70 3.05E+02 1.65E+04 1.35E-18 1.58E+00 6.38E+04 1.34E+01 3.35E-96 0.00E

Ave 7.19E-50 4.82E+01 2.44E+02 2.18E-11 1.44E+01 3.55E+42 1.85E+24 6.35E-49 5.74E

Std 1.82E-49 5.68E+00 3.18E+01 6.62E-12 4.31E+00 5.47E+43 1.01E+25 3.47E-48 0.00E
Ave 1.02E+06 5.42E+04 2.24E+05 1.73E+01 8.84E+03 4.58E+05 4.86E+04 1.80E-42 0.00E

Std 3.16E+05 2.91E+04 4.47E+04 3.43E+01 1.87E+03 8.82E+04 6.55E+03 9.84E-42 0.00E

Ave 7.85E+01 2.86E+01 9.28E+01 2.69E-02 8.10E+00 9.12E+01 5.06E+01 1.48E-48 4.23E

Std 2.05E+01 4.02E+00 2.85E+00 5.85E-02 1.32E+00 2.17E+00 4.86E+00 6.80E-48 0.00E

Ave 9.81E+01 1.77E+05 8.01E+06 9.71E+01 3.77E+03 1.81E+08 4.37E+03 9.75E-02 4.42E

Std 2.69E-01 8.00E+04 2.44E+07 9.52E-01 1.62E+03 2.74E+08 4.82E+03 1.32E-01 9.95E
Ave 3.89E+00 1.52E+03 1.84E+08 6.14E+00 4.36E+00 5.16E+04 7.73E+01 3.84E-04 5.57E

Std 1.20E+00 3.44E+02 7.39E+07 8.62E-01 1.56E+00 6.18E+04 1.12E+01 6.46E-04 1.16E

Ave 4.30E+00 2.94E+00 2.52E+02 2.24E-03 1.32E+03 2.29E+02 3.50E-01 2.22E-04 1.93E

Std 1.32E+00 6.97E-01 1.05E+02 8.93E-04 2.55E+02 3.42E+02 7.45E-02 2.58E-04 2.38E

Ave -3.59E+04 -2.20E+04 -2.29E+04 -1.70E+04 -1.67E+04 -1.40E+04 -2.36E+04 -4.19E+04 -4.19

Std 6.22E+03 1.66E+03 2.40E+03 2.51E+03 3.71E+03 2.35E+03 1.36E+03 8.83E+00 2.51E
Ave 1.14E-14 2.41E+02 8.45E+02 3.78E+00 4.46E+02 9.90E+02 6.46E+02 0.00E+00 0.00E

Std 4.58E-14 3.51E+01 6.33E+01 5.24E+00 5.29E+01 1.88E+02 6.57E+01 0.00E+00 0.00E

Ave 3.97E-15 1.04E+01 1.98E+01 1.61E-10 2.65E+00 1.55E+01 5.40E+00 8.88E-16 8.88E

Std 2.23E-15 1.30E+00 1.64E-01 5.39E-11 3.09E-01 3.87E+00 4.04E+00 0.00E+00 0.00E

Ave 9.79E-03 1.37E+01 5.20E+02 4.45E-04 8.26E-02 4.75E+02 1.72E+00 0.00E+00 0.00E

Std 5.36E-02 4.25E+00 1.15E+02 2.44E-03 2.06E-02 5.81E+02 1.10E-01 0.00E+00 0.00E
Ave 4.81E-02 3.40E+01 2.76E+08 1.53E-01 1.29E+00 4.03E+08 1.41E+01 2.38E-06 1.45E

Std 2.14E-02 1.09E+01 2.07E+08 5.93E-02 7.67E-01 6.28E+08 3.96E+00 2.80E-06 2.22E
Ave 3.08E+00 6.43E+03 5.97E+08 4.92E+00 1.16E+01 7.62E+08 1.24E+02 8.51E-05 5.29E

Std 8.13E-01 8.15E+03 2.52E+08 4.14E-01 5.93E+00 1.15E+09 2.98E+01 1.14E-04 7.12E

le 11 Results of benchmark functions (F1–F13), with 500 dimensions. 

c. WOA SSA MFO GWO PSO DE MVO HHO CH

Ave 5.70E-69 9.61E+04 1.16E+06 1.09E-05 2.91E+03 1.21E+06 5.93E+04 5.67E-95 0.00E

Std 2.77E-68 6.05E+03 3.43E+04 3.13E-06 1.59E+02 1.50E+05 3.60E+03 2.44E-94 0.00E
Ave 6.72E-49 5.27E+02 7.99E+121 6.14E-04 1.99E+13 6.30E+257 4.64E+206 3.48E-50 1.50E

Std 1.93E-48 1.57E+01 4.38E+122 9.24E-05 1.09E+14 2.17E+10 1.64E+36 1.01E-49 0.00E

Ave 3.26E+07 1.45E+06 4.79E+06 1.55E+05 3.68E+05 1.10E+07 1.70E+06 2.33E-43 0.00E

Std 1.08E+07 6.08E+05 9.95E+05 5.16E+04 6.71E+04 1.20E+06 1.18E+05 1.06E-42 0.00E

Ave 8.16E+01 3.96E+01 9.89E+01 5.34E+01 2.39E+01 9.87E+01 9.36E+01 2.73E-49 7.50E

Std 2.02E+01 2.24E+00 3.00E-01 5.85E+00 1.06E+00 6.12E-13 1.47E+00 1.19E-48 0.00E
Ave 4.96E+02 3.77E+07 4.99E+09 4.97E+02 1.22E+07 6.50E+09 5.45E+07 1.83E-01 8.07E

Std 4.73E-01 4.83E+06 1.92E+08 3.39E-01 1.33E+06 5.43E+08 9.62E+06 2.55E-01 1.24E

Ave 3.25E+01 9.35E+04 1.16E+06 8.06E+01 2.86E+03 1.24E+06 5.79E+04 2.31E-03 4.54E

Std 7.59E+00 7.15E+03 3.09E+04 2.10E+00 1.86E+02 1.38E+05 3.75E+03 4.69E-03 7.15E

Ave 3.43E-03 2.78E+02 3.88E+04 1.49E-02 5.45E+04 4.46E+04 4.03E+02 1.63E-04 1.44E

Std 3.29E-03 4.23E+01 2.51E+03 3.50E-03 2.04E+03 7.45E+03 5.49E+01 1.25E-04 1.30E
Ave -1.75E+05 -6.12E+04 -6.22E+04 -6.19E+04 -4.97E+04 -3.08E+04 -8.08E+04 -2.09E+05 -2.09

Std 3.01E+04 5.37E+03 5.98E+03 1.30E+04 1.01E+04 4.98E+03 2.49E+03 4.70E+03 2.01E

Ave 0.00E+00 3.17E+03 6.97E+03 4.03E+01 5.80E+03 7.84E+03 6.05E+03 0.00E+00 0.00E

Std 0.00E+00 1.10E+02 1.59E+02 1.46E+01 2.31E+02 2.88E+02 1.83E+02 0.00E+00 0.00E

Ave 4.56E-15 1.42E+01 2.04E+01 1.59E-04 9.74E+00 2.09E+01 2.08E+01 8.88E-16 8.88E

Std 2.72E-15 2.33E-01 1.13E-01 2.55E-05 2.77E-01 5.52E-02 5.79E-02 0.00E+00 0.00E
Ave 3.70E-18 8.36E+02 1.04E+04 2.97E-03 2.93E+00 1.10E+04 5.36E+02 0.00E+00 0.00E

Std 2.03E-17 4.35E+01 3.46E+02 1.14E-02 1.83E-01 1.48E+03 3.02E+01 0.00E+00 0.00E

Ave 9.64E-02 1.25E+06 1.21E+10 6.37E-01 3.07E+04 1.61E+10 3.43E+07 1.85E-06 9.44E

Std 4.91E-02 6.42E+05 8.21E+08 2.91E-02 1.49E+04 5.79E+08 1.18E+07 1.76E-06 1.86E

Ave 1.80E+01 3.67E+07 2.25E+10 4.55E+01 8.24E+05 2.86E+10 1.33E+08 7.28E-04 1.67E

Std 6.14E+00 1.03E+07 1.09E+09 7.89E-01 2.39E+05 1.69E+09 3.12E+07 1.85E-03 3.22E

results in Table 13 have shown that NCHHO has very competitive results in dealing with F

cases. However, the best global results for F14-F23 can also be achieved with other approac

 the results obtained, it can be deduced that whenever we have a good equilibrium between

phases of exploration and exploitation in metaheuristic algorithms, such algorithms will perf

 in handling optimization problems. The NCHHO algorithm benefits from the advantages

tic maps to boost the exploration phase. In addition, utilizing a nonlinear control parameter to

osed method establishes a balance between the two phases of exploration and exploitation. Ba

e results achieved by the proposed method compared to other techniques, the strategy used in

HO algorithm has been shown to be efficient. 
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le 12 Results of benchmark functions (F1–F13), with 1000 dimensions. 



Func. WOA SSA MFO GWO PSO DE MVO HHO NCHHO 

F1 
Ave 6.92E-70 2.37E+05 2.72E+06 7.12E-03 2.24E+04 3.03E+06 5.57E+05 3.52E-94 0.00E+00 

+00 

F2 
-223 

+00 

F3 
+00 

+00 

F4 
-225 

+00 

F5 
-01 

-01 

F6 
-04 

-03 

F7 
-04 

-05 

F8 
E+05 

+01 

F9 
+00 

+00 

F10 
-16 

+00 

F11 
+00 

+00 

F12 
-07 

-07 

F13 
-04 

-04 

Tab

Fun HO 

F14 
-01 

-11 

F15 
-03 

-03 

F16 
E+00 

-07 

F17 
-01 

-07 

F18 
+00 

-06 

F19 
E+00 

-06 

F20 
E+00 

-02 

F21 
E+00 

+00 

F22 
E+00 
+00 

F23 
E+00 

+00 

It is e to 

their  its 

expl han 

othe ose 

algo

In co tant 

facto  To 

inve xon 

rank is a 

nonp le t-

test, test 

is th  on 

insp use 

of c tion 

relat
Std 2.71E-69 8.54E+03 5.87E+04 1.73E-03 9.08E+02 6.38E+04 2.19E+04 1.91E-93 0.00E

Ave 9.30E-47 1.19E+03 2.68E+10 8.74E-02 1.26E+03 4.58E+00 1.73E+289 1.34E-48 1.40E

Std 3.76E-46 3.17E+01 1.54E+09 4.22E-02 5.02E+01 2.83E-01 5.73E+249 3.16E-48 0.00E
Ave 1.23E+08 6.16E+06 1.93E+07 8.35E+05 1.58E+06 4.35E+07 6.70E+06 1.71E-24 0.00E

Std 3.77E+07 2.43E+06 3.13E+06 2.33E+05 3.24E+05 9.41E+06 5.00E+05 9.32E-24 0.00E

Ave 7.66E+01 4.43E+01 9.95E+01 7.26E+01 2.92E+01 9.96E+01 9.76E+01 6.58E-46 5.42E

Std 2.51E+01 2.52E+00 1.95E-01 4.49E+00 9.14E-01 5.83E-13 6.58E-01 3.60E-45 0.00E

Ave 9.94E+02 1.21E+08 1.26E+10 9.98E+02 1.56E+08 1.48E+10 1.33E+09 3.80E-01 2.02E

Std 1.02E+00 1.57E+07 4.86E+08 5.86E-01 1.06E+07 7.06E-05 1.47E+08 5.90E-01 4.88E
Ave 6.81E+01 2.34E+05 2.74E+06 1.86E+02 2.22E+04 3.02E+06 5.68E+05 5.41E-03 7.86E

Std 1.57E+01 1.26E+04 5.77E+04 2.82E+00 7.68E+02 7.60E+04 2.14E+04 5.15E-03 1.48E

Ave 4.31E-03 1.75E+03 1.99E+05 3.97E-02 2.37E+05 2.41E+05 1.68E+04 1.92E-04 1.21E

Std 5.47E-03 1.65E+02 6.26E+03 8.98E-03 5.94E+03 3.06E+03 1.19E+03 2.03E-04 9.49E

Ave -3.35E+05 -8.51E+04 -8.88E+04 -1.07E+05 -6.98E+04 -4.35E+04 -1.23E+05 -4.19E+05 -4.19

Std 6.10E+04 1.29E+04 4.54E+03 7.03E+03 1.79E+04 6.91E+03 4.19E+03 3.32E+01 1.88E
Ave 6.06E-14 7.60E+03 1.55E+04 1.20E+02 1.35E+04 1.70E+04 1.41E+04 0.00E+00 0.00E

Std 3.32E-13 1.60E+02 2.16E+02 2.75E+01 4.64E+02 3.37E+02 3.36E+02 0.00E+00 0.00E

Ave 4.44E-15 1.45E+01 2.03E+01 2.82E-03 1.42E+01 2.10E+01 2.10E+01 8.88E-16 8.88E

Std 2.64E-15 1.75E-01 1.97E-01 2.85E-04 2.76E-01 3.42E-02 2.09E-02 0.00E+00 0.00E

Ave 7.40E-18 2.10E+03 2.47E+04 3.02E-03 5.67E+01 2.72E+04 5.10E+03 0.00E+00 0.00E

Std 2.82E-17 9.23E+01 3.86E+02 1.39E-02 9.00E+00 4.18E+02 2.63E+02 0.00E+00 0.00E
Ave 1.12E-01 1.09E+07 3.04E+10 7.89E-01 2.86E+06 3.69E+10 2.22E+09 1.27E-06 6.22E

Std 5.39E-02 3.52E+06 7.05E+08 3.26E-02 5.29E+05 2.21E-04 3.16E+08 2.82E-06 8.61E
Ave 3.53E+01 1.45E+08 5.59E+10 1.03E+02 3.16E+07 6.51E+10 4.80E+09 1.14E-03 2.54E

Std 1.27E+01 2.56E+07 1.46E+09 2.63E+00 4.38E+06 1.15E-04 4.03E+08 1.75E-03 4.42E

le 13 Results of benchmark functions (F14–F23). 

c. WOA SSA MFO GWO PSO DE MVO HHO CH

Ave 3.67E+00 1.23E+00 1.02E+00 2.93E+00 1.16E+00 1.86E+00 1.46E+00 1.16E+00 9.98E

Std 4.05E+00 4.28E-01 1.28E-01 2.97E+00 4.58E-01 1.48E+00 1.26E+00 3.77E-01 1.71E
Ave 2.37E-03 7.46E-04 1.34E-03 1.06E-03 1.59E-03 2.35E-03 3.79E-04 3.30E-04 4.02E

Std 6.10E-03 2.51E-04 4.10E-03 1.34E-03 3.56E-03 4.91E-03 1.76E-04 2.67E-05 7.44E

Ave -1.03E+00 -1.03E+00 -1.03E+00 -1.03E+00 -1.03E+00 -1.03E+00 -1.03E+00 -1.03E+00 -1.03

Std 4.60E-09 6.78E-16 2.47E-02 9.35E-10 2.21E-14 6.78E-16 9.76E-10 9.32E-10 2.87E

Ave 3.98E-01 3.98E-01 3.99E-01 3.98E-01 3.98E-01 3.98E-01 3.98E-01 3.98E-01 3.98E

Std 1.02E-04 0.00E+00 6.16E-03 1.06E-05 5.65E-15 0.00E+00 1.27E-05 2.96E-04 2.91E

Ave 3.00E+00 3.00E+00 3.07E+00 3.00E+00 3.00E+00 3.00E+00 3.00E+00 3.00E+00 3.00E

Std 3.19E-06 4.81E-16 5.98E-01 1.47E-04 2.85E-13 1.53E-15 3.22E-07 3.66E-08 1.76E

Ave -3.86E+00 -3.86E+00 -3.86E+00 -3.85E+00 -3.86E+00 -3.86E+00 -3.86E+00 -3.85E+00 -3.86

Std 2.40E-03 2.68E-15 8.55E-03 1.80E-02 5.18E-09 1.44E-03 2.05E-03 2.75E-02 1.06E

Ave -3.27E+00 -3.28E+00 -3.30E+00 -3.20E+00 -3.22E+00 -3.23E+00 -3.12E+00 -3.13E+00 -3.25

Std 6.00E-02 5.83E-02 7.24E-02 1.78E-01 5.54E-02 5.65E-02 1.09E-01 1.07E-01 5.96E
Ave -9.48E+00 -7.88E+00 -9.46E+00 -8.26E+00 -7.65E+00 -6.56E+00 -5.53E+00 -1.01E+01 -8.47

Std 1.75E+00 2.68E+00 1.55E+00 2.50E+00 3.41E+00 3.33E+00 1.47E+00 7.40E-03 2.67E

Ave -1.04E+01 -9.52E+00 -9.92E+00 -7.60E+00 -8.20E+00 -6.60E+00 -5.25E+00 -1.04E+01 -8.66
Std 4.40E-04 2.00E+00 1.61E+00 3.12E+00 3.23E+00 3.65E+00 9.13E-01 8.35E-03 2.77E

Ave -9.99E+00 -9.82E+00 -1.00E+01 -7.55E+00 -9.10E+00 -7.87E+00 -5.03E+00 -1.05E+01 -8.86

Std 2.06E+00 1.85E+00 1.53E+00 3.30E+00 2.96E+00 3.39E+00 5.04E-01 1.17E-02 3.13E

very challenging for metaheuristic algorithms to solve composite mathematical functions du

 inherent challenging nature. Solving such problems requires a proper balance between

oration and exploitation phases. As per the results in Table 14, NCHHO tends to be better t

r algorithms. This demonstrates the success of using the controlling parameter in the prop

rithm has helped to balance exploration and exploitation.  

ntrast, the run-time of meta-heuristic algorithms in finding the optimal solution is an impor

r, which needs to be investigated to evaluate the proposed algorithm against such metric.

stigate the runtime of all algorithms on F1–F13 in seconds, Table 16 is provided. The Wilco

-sum test was implemented to statistically analyze the running time. Wilcoxon rank-sum 

arametric that was used in the performance analysis process as an alternative to the two-samp

 which is based solely on the order in which the observations from the two samples fall. This 

erefore used to evaluate the results of the proposed method with other techniques in pairs.

ecting Table 16, it is evident that the NCHHO has an acceptable running time. However, the 

haotic values had little effect on the time that was enquired in finding the best global solu
20 

ive to HHO. On analyzing the captured results, it is observed that the NCHHO algorithm could 



achieve a reasonable and competitive running time as compared to other optimizers in dealing with 
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F24 
+03 

+00 
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F3 
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+00 

F7 
+01 

+00 

F8 
+01 

+00 

F9 
+01 

+00 

F10 
+01 

+00 

F11 
+01 

+00 

F12 
+02 

+00 

F13 
+02 

+00 

In o ore 

metr
odal and multimodal functions, even with high-dimensional solution search space. T

rmance is due to the unique structure of metaheuristics in dealing with the optimiza

lems. 

ble 14 Results for composition functions (CEC2014)[70]. 

nc. GWO PSO DE MVO SSA MFO WOA HHO NCH

Ave 2.64E+03 2.61E+03 2.62E+03 2.62E+03 2.63E+03 2.67E+03 2.69E+03 2.50E+03 2.50E

Std 1.10E+01 8.66E-05 1.72E-03 5.46E+00 9.15E+00 3.93E+01 2.23E+01 1.20E-06 0.00E

Ave 2.60E+03 2.62E+03 2.63E+03 2.64E+03 2.64E+03 2.68E+03 2.61E+03 2.60E+03 2.60E

Std 1.12E-02 7.36E+00 1.70E+00 7.08E+00 6.59E+00 2.98E+01 8.25E+00 1.03E-03 5.24E

Ave 2.71E+03 2.72E+03 2.72E+03 2.71E+03 2.72E+03 2.72E+03 2.72E+03 2.70E+03 2.70E

Std 6.00E+00 4.12E+00 3.00E+00 2.26E+00 4.86E+00 1.01E+01 2.03E+01 8.03E-05 0.00E

Ave 2.74E+03 2.77E+03 2.70E+03 2.74E+03 2.70E+03 2.71E+03 2.73E+03 2.77E+03 2.77E

Std 4.96E+01 4.48E+01 7.86E-02 5.92E+01 1.38E-01 4.95E+01 6.52E+01 4.77E+01 4.38E

Ave 3.43E+03 3.59E+03 3.49E+03 3.35E+03 3.60E+03 3.63E+03 3.85E+03 2.90E+03 2.90E

Std 1.32E+02 2.72E+02 1.27E+02 1.68E+02 1.73E+02 1.84E+02 3.81E+02 9.14E-05 0.00E

Ave 4.04E+03 6.72E+03 3.73E+03 4.10E+03 4.14E+03 3.92E+03 5.43E+03 3.00E+03 3.00E

Std 3.24E+02 6.03E+02 3.65E+01 3.45E+02 3.60E+02 1.22E+02 8.53E+02 0.00E+00 0.00E

le 15 Results of Wilcoxon rank-sum test over all runs. 

c. WOA SSA MFO GWO PSO DE MVO HH

 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E
 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E

 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E

 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E
 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 4.83E

 3.02E-11 5.00E-09 3.02E-11 7.60E-07 3.52E-07 3.69E-11 3.02E-11 4.64E

 1.07E-09 3.02E-11 3.02E-11 4.08E-11 3.02E-11 3.02E-11 3.02E-11 2.84E
 4.50E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 6.52E

 3.34E-01 1.21E-12 1.21E-12 4.55E-08 1.21E-12 1.21E-12 1.21E-12 NaN

0 3.86E-09 1.21E-12 1.21E-12 4.49E-13 1.21E-12 1.21E-12 1.21E-12 NaN
1 NaN 1.21E-12 1.21E-12 1.61E-01 1.21E-12 1.21E-12 1.21E-12 NaN

2 3.02E-11 3.02E-11 3.02E-11 6.70E-11 8.56E-04 3.34E-11 3.02E-11 1.86E

3 3.02E-11 3.02E-11 3.02E-11 5.00E-09 5.46E-06 3.47E-10 3.02E-11 3.27E

le 16 Comparison of average runtime of all algorithms in seconds over 30 runs. 

c. WOA SSA MFO GWO PSO DE MVO HHO CH

Ave 5.79E+00 1.33E+02 1.28E+01 1.85E+01 6.84E+00 1.64E+02 1.74E+01 3.99E+01 4.54E

Std 2.35E-01 9.42E+00 1.14E+00 1.97E+00 3.10E-01 3.67E+00 1.43E+00 2.51E+00 3.27E

Ave 7.32E+00 1.26E+02 1.26E+01 1.74E+01 8.22E+00 1.85E+02 1.60E+01 3.99E+01 4.22E

Std 5.75E-01 5.79E+00 9.51E-01 1.04E+00 7.13E-01 2.86E+00 9.25E-01 3.27E+00 3.37E

Ave 2.85E+01 1.36E+02 3.27E+01 3.84E+01 2.85E+01 2.03E+02 3.30E+01 9.32E+01 8.63E

Std 2.24E+00 7.18E-01 2.46E+00 3.00E+00 1.90E+00 7.21E+00 5.72E-01 7.03E+00 8.44E

Ave 6.29E+00 1.16E+02 1.30E+01 1.85E+01 7.12E+00 1.62E+02 1.52E+01 4.91E+01 4.01E

Std 5.71E-01 2.08E+00 1.31E+00 1.14E+00 6.94E-01 7.82E-01 2.45E-01 1.13E+00 1.02E

Ave 8.84E+00 1.14E+02 1.54E+01 2.03E+01 8.98E+00 1.68E+02 1.76E+01 6.50E+01 6.75E

Std 2.87E-01 1.84E+00 2.22E+00 3.32E+00 2.14E-01 1.09E+00 2.94E-01 8.05E+00 7.28E

Ave 5.90E+00 1.16E+02 1.25E+01 1.77E+01 6.74E+00 1.64E+02 1.55E+01 5.35E+01 5.73E

Std 2.30E-01 6.83E-01 9.04E-01 1.19E+00 3.09E-01 1.13E+00 3.83E-01 2.32E+00 1.76E

Ave 1.61E+01 1.28E+02 2.35E+01 2.83E+01 1.66E+01 1.73E+02 2.50E+01 6.85E+01 6.95E

Std 4.54E-01 8.05E-01 1.31E+00 1.41E+00 2.35E-01 6.87E-01 2.94E-01 2.16E+00 2.14E

Ave 8.91E+00 1.19E+02 1.59E+01 2.14E+01 1.06E+01 1.68E+02 1.51E+01 6.32E+01 6.58E

Std 5.09E-01 9.40E-01 1.18E+00 1.47E+00 5.42E-01 7.60E-01 2.61E-01 1.59E+00 1.76E

Ave 6.91E+00 1.19E+02 1.35E+01 1.71E+01 8.78E+00 1.64E+02 1.73E+01 5.93E+01 6.06E

Std 6.50E-01 6.41E-01 3.72E-01 3.06E-01 6.89E-01 7.15E-01 2.95E-01 2.42E+00 3.06E

Ave 7.29E+00 1.19E+02 1.41E+01 1.75E+01 8.84E+00 1.68E+02 1.77E+01 6.02E+01 6.07E

Std 5.66E-01 1.23E+00 2.65E-01 4.17E-01 5.77E-01 4.36E-01 2.99E-01 1.46E+00 1.59E

Ave 9.28E+00 1.25E+02 1.73E+01 2.12E+01 1.06E+01 1.71E+02 2.03E+01 6.40E+01 6.53E

Std 5.78E-01 5.88E+00 6.17E-01 5.05E-01 7.18E-01 5.98E-01 1.03E+00 1.61E+00 1.96E

Ave 3.79E+01 1.45E+02 4.18E+01 4.54E+01 3.90E+01 2.18E+02 4.28E+01 1.24E+02 1.31E

Std 3.02E+00 1.47E+00 5.98E-01 4.04E-01 2.25E+00 1.26E+01 2.95E-01 4.03E+00 4.17E

Ave 3.80E+01 1.45E+02 4.18E+01 4.57E+01 3.95E+01 2.25E+02 4.45E+01 1.24E+02 1.30E

Std 1.45E+00 7.10E+00 3.62E-01 4.33E-01 1.77E+00 8.73E+00 1.88E+00 1.22E+01 4.45E

rder to analyze the convergence behavior of the proposed NCHHO algorithm, the best sc
21 

ic obtained so far was defined and measured as the obtained optimal value. This score was 



calculated and captured for each particular iteration of all utilized test functions. This value was 
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lated using each implemented and benchmarked method and cross-checked along with 

osed algorithm’s average performance that captured the course of 30 simulation runs with 

tions for each. In the convergence debate, as shown in Fig. 7, the proposed method has, in m

s, an acceptable convergence rate compared to other methods. The reported results h

onstrated and proved the efficiency of using chaos values, which has dramatically improved

rmance and the convergence rate of the optimization algorithm that is specifically represented

roposed method. In some of the functions, however, NCHHO achieved the optimum values 

 almost followed by the HHO standard, which can be observed in sub-figures of results of F7

F10. The NCHHO algorithm not only outperformed the other algorithms in the converge

e, but also has achieved an optimum value in early iterations, and showed a very remarka

ergence speed compared to other algorithms, as can be seen from results visualized in Fig. 

6, F11 and F12. While it is evident with other benchmarked algorithms, have been stacked w

ocal optimal solutions from the early stage of the experiments, which can be observed by res

1-F7 as well as some of the other test functions. 

HHO NCHHO MVO MFO SSA GWO PSO DE 
22 



Fig.7. Convergence analysis of the NCHHO algorithm compared with other techniques. 
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e above paragraphs, we discussed the performance of the proposed method in details. In 

wing paragraphs, other comparative algorithms are discussed and analyzed, including HH

, MFO, SSA, GWO, PSO, and DE. Considering the convergence curves in Fig. 7 and tables,

 algorithm tends to be the second best on the majority of test functions. The converge

vior is quite similar to that of NCHHO, but it tends to flatten as the optimization proc

resses. This shows that such a pattern has been improved using the proposed mechanism

HO.  

PSO algorithm is usually the third best algorithm on the majority of case studies. The P

rithm uses GBEST and PBESTs to update the position of particles, so there are several “guid

articles, which resulted in showing competitive performance by this algorithm. PSO is one of

algorithms in the literature and its superiority is evident in the results. However, our res

ently show that the proposed NCHHO provides better performance compared to this algorit

performance of the DE algorithm is quite similar to PSO as can be seen in Fig. 7 and Tables 

Despite similarities, DE uses several mutation operators that leads to sudden changes in 

tions. This is a good mechanism for exploration but negatively impacts exploitation. The res

 that DE’s performance is quite consistent and rarely show accelerated or decelera

ergence. This is because the lack of adaptive mechanism in this algorithm.

O’s average performance comes after PSO. This algorithm shows quick convergence and 

ovement as the iteration counter increases (See Fig. 7). The reason for this is because GWO u

 three best solutions obtained so far (alpha, beta, and delta) to update the position of other wol

 leads to lower exploration but higher exploitation than PSO. The GWO algorithm uses

tive mechanism so it shows better results than DE. The SSA algorithm provides very competi

lts compared to GWO. This algorithm also uses one leader to update the position of all soluti

g the optimization process, which leads to less exploratory behavior compared to GWO. Thi

 this algorithm shows low convergence and less accurate results than the GWO algorit

rall, it is evident that the GWO algorithm is also outperformed by the proposed NCH

rithm. 

 and MFO algorithms ranked the lowest on most case studies. The main reason for thi

ntially due to the small number of adaptive parameters in both algorithms to effectively t

oration and exploitation. This can be supported by looking at the results in the above tables 

7. It is quite obvious that the convergence behavior of both algorithms is monotonous, whic

esired when an algorithm requires to accelerate or decelerate the pace of changes in solution

d locally optimal solutions and achieve a good estimation of the global optimum.  

Sensitivity Analysis 

ny other new algorithm, NCHHO has several controlling parameters. The analysis of such k

nal parameters such as the number of search agents, the maximum number of iterations, and

rol parameter specified in Eq. (15) is essential to ensure maximum performance. In this s

on, a sensitivity analysis is conducted to investigate the impact of the main controlling parame

e proposed method on its performance. The following values are used:  

Number of search agents (N): 10, 30, 50, 80

Maximum iteration number (T): 50, 100, 500, or 1000

Nonlinear control parameter c: Nonlinearly decreases from 1 to 0, 2 to 0, 3 to 0, or 4 to 0

rder to demonstrate the effect of these parameters on the performance of NCHHO, th

pendent experiments were carried out by simultaneously changing the values of the th
23 

meters listed above. To be able to visualize the performance surface in each experiment, one of 



the parameters is considered fixed while the other two keep changing. NCHHO is run 30 times on 
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 test functions (F1, F2, F12, and F13), and the average of the best solution in the last iteration

 to visualize the average performance surface in Fig. 8.  

ig. 8. Sensitivity analysis experiment. Each surface shows the average performance surface of

NCHHO.  

8 shows that the increase in the average performance of NCHHO (low objective values du

mization) is proportional to the number of iterations and solutions. However, there is

ificant performance improvement when t>500 and n>50. A similar observation can be made

arameter c, in which the performance increases proportional to the value of c. 

olving Internet of Vehicles Routing Problem 

der to evaluate the performance of NCHHO, an IoV related optimization problem was formula

implemented. Fig. 9 shows the IoV scenario with two highlighted vehicles, where one acts as

ce of the network traffic, and the other is the destination where the traffic must be delivered. F

oint view of the source vehicle, there are multiple options available to form the optimal rout

estination vehicle, which could involve multiple intersections. Each route offers different Qua

ervice (QoS) value, which is highly correlated to several performance measures. The objectiv

problem is to maximize the probability of connectivity and link QoS of the available routes f

ce to destination as illustrated in Fig. 9. 

Fig. 9. Internet of Vehicles (IoV) Scenario: Finding the optimal network route problem. 

maximization method is subject to the probabilities of route connectivity (Pc) and pac

ption (Pr) of each route, taking into the consideration the constraint of route delay (D). Fig

onstrates the correlation between the probabilities of route connectivity and packet reception

 as their impact on the obtained objective function values when a liner increment is applied

 metric; the higher the Pc and Pr, the maximum the objective function value is. We can obse

when a route segment is offering high probabilities of P  and P  the objective function value 
24 

c r,

lose to 1 (Maximum value) and vice versa. In real life scenario, each communicating vehicle 



offers different probability of connectivity and packet reception. Taking into the consideration of the 
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rent delay values offered by each available route from source to destination, (which we note

 delay D), selecting the best combination of these parameters among all available delay va

ed by vehicles in a road segment as an optimal route with maximum objective value, it tendin

 non- polynomial (NP) problem.  

Fig. 10. Objective function’s behavior of IoV optimization problem with respect to Pc and Pr. 

efore, NCHHO, along with the other benchmark optimization algorithms, is used in orde

e the optimization problem of finding the more reliable and connected route in urban softw

ed network (SDN) based vehicular communication to enable IoV application.   

city road networks in vehicular scenario was denoted as graph model G(i,s) where i is

section and e is the road segment between two intersections. Hence, each optimal route α cons

set of intersections (i1; i2; i3; i4; i5; i6;…; im) and a set of streets (s1; s2; s3; s4; s5; s6;….; sn), wh

-1. According to the aforementioned assumptions, the objective function of the optimiza

lem can be written as:  

𝑀𝑎𝑥(𝛼) = 𝐹(𝛼) =  𝛾1 × 𝑃𝑐(𝛼) + 𝛾2 × 𝑃𝑟(𝛼) + 𝛾3 × 𝐷(𝛼) ×
1

1 + 𝑇𝑣

 (22) 

𝑊ℎ𝑒𝑟𝑒 𝑃𝑐(𝛼) =  ∏ 𝑃𝑐(𝑒𝑖)

𝑛

𝑖=1

𝑊ℎ𝑒𝑟𝑒 𝑃𝑟(𝛼) =  ∏ 𝑃𝑟(𝑒𝑖)

𝑛

𝑖=1

𝑊ℎ𝑒𝑟𝑒 𝐷(𝛼) =  
∑ 𝐷𝑡ℎ(𝑒𝑖) −  ∑ 𝐷(𝑒𝑖) 𝑛

𝑖=1
𝑛
𝑖=1

∑ 𝐷𝑡ℎ(𝑒𝑖) 𝑛
𝑖=1

, 

𝑊ℎ𝑒𝑟𝑒 𝐷𝑡ℎ(𝑒𝑖), 𝑡ℎ𝑒 𝐷𝑒𝑙𝑎𝑦 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝑣𝑎𝑙𝑢𝑒

𝐷𝑡ℎ(𝑒𝑖) =
∑ 𝐷(𝑒𝑖) 𝑛

𝑖=1

2

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝐷(𝑒𝑖) ≤ 𝐷𝑡ℎ(𝑒𝑖)

𝑇𝑣 𝑖𝑠 𝑡ℎ𝑒 𝑡𝑖𝑚𝑒 𝑣𝑎𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑒𝑛𝑡𝑖𝑟𝑒 𝑔𝑟𝑎𝑝ℎ 𝑚𝑜𝑑𝑒𝑙 𝑜𝑓 𝑎 𝑛𝑒𝑡𝑤𝑜𝑟𝑘 𝑚𝑎𝑝 𝐺(𝑖, 𝑠)

𝑖𝑓 𝑠𝑖𝑧𝑒 𝑜𝑓 𝐺(𝑖, 𝑠) = 1000, 𝑡ℎ𝑒𝑛 

 𝑇𝑣 =  
∑ 𝐷(𝑒𝑖) 𝑛

𝑖=1  
1000

⁄  

IoV problem was addressed by applying a set of heuristic algorithms. The proposed algorithm

 applied along with the other benchmark algorithms to find the optimal route from source
25 

nation vehicles. It is important to mention that for each created IoV problem, initial random 

es were created for the selected dimensions (Pc, Pr, D, and Tv). For each route solution, these 



values will be captured, and each algorithm will search the optimal route that could offer the 
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imum value of the objective function 𝐹(𝛼).  The probability of connectivity for each availa

 of a road segment to the destination vehicle 𝑃𝑐(𝑒𝑖) is calculated and integrated with probab

acket reception 𝑃𝑟(𝑒𝑖) and route delay, as presented by Eq. 22. In order to have a more relia

sion, the delay metric was captured and compared with a threshold of each defined road segm

𝑒𝑖), where this threshold is the average delay experienced by a particular route set 𝑒𝑖. A t

nce 𝑇𝑣 was introduced also to increase the reliability of the chosen optimal route.

ther experiment was set and the NCHHO algorithm was implemented along with the o

hmark algorithms WOA, PSO, DE, SSA, MVO, GWO, MFO, and HHO, to solve the formula

optimization problem. Table 15 has listed the captured convergence rates of the best va

eved out of the objective function (Eq. 22) over the course of 500 iterations. It is essentia

light that the obtained results were an average of 50 simulation runs for each optimiza

rithm. We have investigated the ability of each algorithm in optimizing different dimension

oV problem.  

second column in Table 17 lists the graphs of the obtained convergence rates using only 

nsions of the problem, which are Pc and Pr. This experiment was implemented with four diffe

of graph models (100×100, 200×200, 500×500 and 1000×1000). We have observed that 

HO algorithm could manage a good convergance compared with the other implemen

rithms, though in terms ofSTD over an average of 50 runs; DE and HHO have maintaine

tly higher STD value when the graph size was set to N=100 and 200; while MFO could achie

tly better STD value with N=500 and 1000 (as listed by Table 17 accordingly).  

le 17 Convergence analysis of the NCHHO algorithm compared with other techniques obtai

 50 runs by 2 and 4 dimensions IoV problems with four different N sizes. 

N/Dim Values 
ph model Size 

(N) 
IoV with 2 Problem Dimensions (Pc and Pr) IoV with 4 Problem Dimensions (Pc ,Pr , D an

100×100 

200×200 

500×500 
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 also reflects the fact that having only Pc and Pr parameters could not reflect the cost of

ctive value to achieve its optimal maximum value perfectly. Hence, we have included in 

nd experiment four dimensions of the IoV problem (Pc, Pr , D, and Tv). This slightly better S

sures of the perfromance of DE, HHO, and MFO were obtained when the IoV problem was w

 two dimensions (Pc and Pr), whereas the proposed NCHHO algorithm performed the best w

 STD, when the problem dimension was set to four (Pc, Pr , D, and Tv). From this observation

d interpret that NCHHO performs better with an optimization problem that has high dimensi

mparison with other benchmarked algorithms, as can also be seen from the given STD value

e 17. The reason behind this could be the nonlinearity and chaotic behaviors that the algori

ained from the proposed improvement to the standard HHO algorithm.  

le 17 Results obtained over 50 runs by different IoV problem’s dimensions and variables of gr

sizes. 

Dimension = 2 , N = 100×100 Dimension = 2 , N = 200×200 

Algorithm Best AVG STD Algorithm Best AVG STD 

HHO 1 0.9963 2.08E-03 HHO 1 0.9970 1.17E-03 

NCHHO 1 0.9971 1.94E-03 NCHHO 1 0.9981 1.10E-03 

WOA 1 0.9969 2.33E-03 WOA 1 0.9976 1.19E-03 

SSA 0.9994 0.9951 2.68E-03 SSA 1 0.9956 2.27E-03 

MVO 1 0.9966 2.41E-03 MVO 1 0.9974 2.21E-03 

MFO 1 0.9971 1.69E-03 MFO 1 0.9980 1.11E-03 

GWO 1 0.9947 3.34E-03 GWO 0.9996 0.9971 1.12E-03 

DE 0.9995 0.9968 1.68E-03 DE 0.9996 0.9972 1.59E-03 

Dimension = 2 , N = 500×500 Dimension = 2 , N = 1000×1000 

Algorithm Best AVG STD Algorithm Best AVG STD 
HHO 1 0.9987 9.36E-04 HHO 1 0.9994 5.84E-04 
NCHHO 1 0.9992 8.13E-04 NCHHO 1 0.9995 6.33E-04 
WOA 1 0.9989 9.23E-04 WOA 1 0.9993 6.45E-03 
SSA 1 0.9983 1.39E-03 SSA 1 0.9991 8.63E-04 
MVO 1 0.9983 1.19E-03 MVO 1 0.9991 9.26E-04 
MFO 1 0.9992 7.55E-04 MFO 1 0.9995 5.33E-04 
GWO 1 0.9983 1.29E-03 GWO 1 0.9989 8.66E-04 
DE 1 0.9989 9.14E-04 DE 1 0.9997 5.46E-04 
Dimension = 4 , N = 100×100 Dimension = 4 , N = 200×200 

Algorithm Best AVG STD Algorithm Best AVG STD 
HHO 1 0.9991 7.50E-04 HHO 1 0.9994 9.18E-04 
NCHHO 1 0.9992 7.41E-04 NCHHO 1 0.9996 5.39E-04 
WOA 1 0.9985 1.19E-03 WOA 1 0.9993 6.33E-04 
SSA 1 0.9982 1.54E-03 SSA 1 0.9989 1.14E-03 
MVO 1 0.9984 1.19E-03 MVO 1 0.9989 8.95E-04 
MFO 1 0.9991 8.17E-04 MFO 1 0.9994 6.36E-04 
GWO 1 0.9980 1.49E-03 GWO 1 0.9984 1.09E-03 
DE 1 0.9991 8.13E-04 DE 1 0.9994 6.44E-04 
Dimension = 4 , N = 500×500 Dimension = 4 , N = 1000×1000 

Algorithm Best AVG STD Algorithm Best AVG STD 
HHO 1 0.9998 5.76E-04 HHO 1 0.9999 4.42E-04 
NCHHO 1 1 4.33E-04 NCHHO 1 1 2.31E-04 

HHO NCHHO WOA SSA MVO MFO GWO DE 
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WOA 1 0.9999 4.63E-04 WOA 1 1 2.82E-04 



SSA 1 0.9996 5.41E-04 SSA 1 0.9999 4.32E-04 
MVO 1 0.9996 4.63E-04 MVO 1 0.9998 5.28E-04 
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MFO 1 0.9999 4.53E-04 MFO 1 1 2.57E-04 
GWO 1 0.9994 6.13E-04 GWO 1 0.9999 4.01E-04 
DE 1 0.9999 3.89E-04 DE 1 1 2.38E-04 

s clear that the proposed NCHHO algorithm could obtain the best among the other benchmar

rithms, in terms of convergence ability as listed in the AVG column in Table 17. On the o

, for reliability analysis, as STD values were listed in Table 17; the proposed NCHHO algori

managed better STD values as compared to other algorithms. This reflects the ability of 

HO algorithm to handle optimization problems with relatively high dimensions and graph siz

routing problem. 

er these results and discussions, we would like to discuss the contributions of this work o

n. The use of chaotic map in HHO instead of random components to improve its exploration 

onstrated by the comparative experiments on the rest functions. The results showed that 

tic maps improve the exploratory behavior of HHO without increasing its computational c

le the use of chaotic values is successful in improving the algorithm’s exploration process, it m

te a disruption between the exploration phase and the algorithm’s exploitation. The res

ed that the integration of the non-linear mechanism to HHO is a remedy for this. Finally, the 

ribution was the use of the proposed NCHHO algorithm in solving one of the challeng

ization problems in the area of wireless communication for IoV as a seminal attempt to tac

challenging problem using metaheuristics.    

esults analysis and discussion 

sum up, the results showed that the original version of the HHO algorithm shows p

rmance on challenging test problems and real-world case studies with a wide range

culties. This observation can be made in other metaheuristics too, which is due to the fact 

 techniques are designed general-purpose enough to solve different classes of optimiza

lems. This makes them applicable to many problems, however, solving a particular se

lems requires algorithm modification and tuning. Looking at the results in the preceding sectio

evident that the standard HHO and the compared bunch of recent optimization methods are

ble algorithms for large-scale problems with such dynamic number of variables. The case st

idered in this work is in the area of IoV Application, and therefore, algorithm modifications w

ntial. 

purposely considered problems with a larger number of variables to stress test the H

rithm, and it was observed that the performance of this algorithm substantially decreased

ortion to the scale of the problem. This is due to the exponential growth of the search spac

-scale optimization problems, that require intensive exploration in a metaheuristic. There 

y methods in the literature to improve exploratory behavior of metaheuristics, however, majo

em increase the computation cost of the algorithm too. This makes them less practical 

putationally expensive optimization problems, including the one investigated in this w

efore, we used chaotic map as one of the most computationally cheap techniques to impr

oration.  

he other hand, improving the exploration of an algorithm tends to disrupt its accuracy. Thi

use when an algorithm explores a search space, it discovers new regions without using any lo

h mechanism. Our initial investigations and results showed that using only chaotic maps in H

ld lead to this issue. Therefore, we proposed the use of a non-linear parameter too, which ass

 with improving its accuracy.  

results on test functions demonstrated that chaotic map and non-linear mechanism can pla

ificant role in improving the performance of HHO. In the majority of test functions, the propo

HO algorithm outperformed HHO. The discrepancy of the results was higher and more evid

arge-scale test functions, which was the main intention of this paper, for improving HHO. 
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riority of NCHHO is due to it high exploratory mechanism using chaotic maps, and the smooth 



transition to exploitation using the non-linear mechanism. The results on the IoV demonstrated that 
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proposed NCHHO algorithm is capable of solving this problem with high accuracy, 

erform HHO as well as other recent optimization algorithms significantly.  

ould be noted that most of the HHO’s operators have been maintained in NCHHO, so 

osed method is still general-purpose enough to solve a wide range of problems. What ma

HO different is its ability to better solve large-scale problems. Therefore, we offer this algori

searchers and practitioner to be used in such problems when HHO shows poor performance.   

onclusion and Future Work

 work proposed a chaotic and non-linear version of the HHO algorithm. The article started wi

prehensive review of chaotic metaheuristics and related works in the literature. The gap 

tified as the inefficiency of HHO when applied to large-scale problems, despite being a gene

ose, black-box optimizer. Several initial experiments were conducted to find the reason

aded accuracy in HHO when solving large-scale problems. It was observed that the exploratio

 is its main weaknesses for such problems.  

r identifying the issue, several chaotic maps were integrated into the HHO algorithm in

pt to find the best one for maximizing the exploration. The best chaotic map was fou

ever, it was observed that the accuracy of the chaotic HHO was negatively impacted. To com

 a non-linear parameter was proposed and integrated into this algorithm. The algorithm was ca

-linear Chaotic Harris Hawk Optimizer (NCHHO) and compared to a wide range of technique

iterature on a set of test functions. The advantage of this method is the use of a control param

eate a proper balance between the exploration and exploitation phases. In addition, it impro

xploration phase of the HHO algorithm by using chaotic values instead of random values. 

HO was tested on a wide range of unimodal, multimodal, and composite test functions wi

rse number of parameters. The results demonstrated the superiority of NCHHO as compare

 and other comparative algorithms on most test cases. The use of the controlling param

lted in having a good balance between exploration and exploitation. The paper also conside

meter-setting analysis of NCHHO to observe the impact of the main controlling parameters o

rmance. In the end, the proposed method was also employed, and its performance was measu

nd optimal solutions for a challenging problem in the area of IoV routing problem. NCH

ed promising results in finding the optimal route for Internet of Vehicles application. 

osed algorithm provided substantially better results as compared to the state-of-the-art algorit

h is a strong indication of its merits. 

 the proposed mechanisms, the work contributed to the literature by using chaotic maps in H

ad of random components, to improve its exploration. Then, we leveraged chaotic map

ove the exploratory behavior of HHO without increasing its computational cost, which 

tified as one of the shortcomings of the existing chaotic metaheuristics. While the use of cha

es was successful in improving the algorithm’s exploration process, it also led to a disrup

een the exploration phase and the algorithm’s exploitation, which motivated our attemp

ose a nonlinear parameter for the first time in the literature for the HHO algorithm. The 

ribution was the use of NCHHO to solve one of the challenging optimization problems in the a

ireless communication for IoV as a seminal attempt to tackle this challenging problem us

heuristics. This contribution allowed obtaining a cost-effective robust solution for the field

nomous vehicles to improve data dissemination over a reliable optimal route. 

 worth noting that there are also some limitations in the proposed method. First, the NCH

rithm requires special mechanism to cope with constraints in heavily constrained proble

nd, there should be modification in this algorithm at the algorithmic level to solve mixed-inte

ization problems. Third, to handle multiple objectives, we need to either aggregate them 

objective and solve it using NCHHO or develop a multi-objective version of NCHHO. Finall

r-heuristic mechanism might be required to find optimal controlling parameters for the propo
29 

rithm. 



For future work, it is recommended to test the impact of chaotic map on the multi-objective 
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 Proposing an improved Harris Hawk Optimizer
 Chaotic map and nonlinear control parameters are used

 Several benchmark functions in a comprehensive comparative study

 Solving a case study in autonomous vehicles using the proposed algorithm
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