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Abstract

Short-term wind power prediction is challenging due to the chaotic characteristics of wind speed. Since,
for wind power industries, designing an accurate and reliable wind power forecasting model is essential,
we deployed a novel composite deep learning-based evolutionary approach for accurate forecasting of the
power output in wind-turbine farms , which is developed in three stages. At the beginning stage (pre-
processing), the k-means clustering method and an autoencoder are employed to detect and filter noise in
the SCADA measurements. In the Next step (decomposition), in order to decompose the SCADA time-series
data, we proposed a new hybrid variational mode decomposition (HVMD) method, that consists of VMD
and two heuristics: greedy Nelder-Mead search algorithm (GNM) and adaptive randomised local search
(ARLS). Both heuristics are applied to tune the hyper-parameters of VMD that results in improving the
performance of the forecasting model. In the third phase, based on prior knowledge that the underlying
wind patterns are highly non-linear and diverse, we proposed a novel alternating optimisation algorithm
that consists of self-adaptive differential evolution (SaDE) algorithm and sine cosine optimisation method
as a hyper-parameter optimizer and then combine with a recurrent neural network (RNN) called Long
Short-term memory (LSTM). This framework allows us to model the power curve of a wind turbine on a
farm. A historical dataset from supervisory control and data acquisition (SCADA) systems were applied
as input to estimate the power output from an onshore wind farm in Sweden. Two short time forecasting
horizons, including ten minutes ahead and one hour ahead, are considered in our experiments. The achieved
prediction results supported the superiority of the proposed hybrid model in terms of accurate forecasting
and computational runtime compared with earlier published hybrid models applied in this paper.

Keywords: Neuro-Evolutionary Algorithms, Alternating optimisation algorithm, Recurrent Deep
Learning, Long short-term memory neural network, Adaptive Variational mode decomposition, power
prediction model, Wind Turbine, Power curve
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Nomenclature

Table 1: All used abbreviations in this paper are listed in alphabetical order:

abbreviation full name

ADMM Alternate Direction Method of Multipliers
AOA Alternating optimisation algorithm
ARIMA Auto-regressive integrated moving average models
AI artificial intelligence
ANFIS Adaptive neuro-fuzzy inference system
ANN Artificial Neural networks
ARLS Adaptive randomised local search
ARMA Auto-regressive moving average models
Bi-LSTM Bidirectional Long short-term memory network
BP Back-propagation
BPNN Back Propagation Neural Network
CBOD Clustering Based outlier Detection
CMA-ES Covariance matrix adaptation evolution strategy
CMAES-LSTM Covariance matrix adaptation evolution strategy long short-term memory network
CSO Cuckoo Search Optimization method
DA Dragonfly algorithm
DE Differential evolution
DE-LSTM Differential evolution long short-term memory network
DNN Deep neural networks
EAs Evolutionary algorithms
EEMD Ensemble empirical mode decomposition
EFADE Enhanced fitness-adaptive differential evolution algorithm
EFADE-LSTM Enhanced fitness-adaptive differential evolution algorithm long short-term memory network
ELM Extreme learning machines
EMD Empirical mode decomposition
ENN Elman neural networks
EO Equilibrium Optimiser
ESN Echo State Network
FFNN Feed-forward neural networks
FS Feature selection
f-ARIMA fractional version of Auto-regressive integrated moving average models
GA Genetic algorithm
GNM Greedy Nelder-Mead search algorithm
HVMD Hybrid variational mode decomposition method
IMF Intrinsic mode functions
LSTM Long short-term memory network
MAE Mean absolute error
MAPE Mean absolute percentage error
MPA Marine predators algorithm
MSE Mean square error
NAR Nonlinear autoregressive neural networks
NNCT No negative constraint theory
NM Nelder-Mead simplex direct search method
NWP Numerical weather prediction method
PCA principal component analysis
PEO Population extremal optimization
PE Permutation entropy
PNN Polynomial neural networks
PSO Particle Swarm Optimisation
RLS Randomised local search
RMSE Root mean square error
RNN Recurrent neural networks
SaDE self-adaptive differential evolution algorithm
SCA Sine cosine algorithm
SCA-LSTM Sine cosine algorithm long short-term memory network
SCADA Supervisory control and data acquisition
SSA Singular spectrum analysis
SVM Support vector machines
SVR Support vector regression
WT Wavelet transforms
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Table 2: Symbols applied in the equations of this paper

Symbols Description Symbols Description

P Power output of wind turbine ρ Density of air
Rr Rotor radius w Wind speed

Ẑ Normalized wind speed fp Predicted SCADA values

fo Observed SCADA values fp Means of the predicted power measures

fo Means of the perceived power measures f(t) Original signal
t Time script K Entire number of the modes
uk signifies the kth mode δ(t) The Dirac distribution
wk The center frequency ⊗ The convolution operator
α Parameter of balancing nd Total number of decomposition iterations

f̂(w) Fourier transforms of f(t) ûi(w) Fourier transforms of u(t)

λ̂(w) Fourier transforms of λ(t) X Candidate of decomposition parameters
Y New candidate after mutation flags Number of successful mutation
τ Threshold of the average performance σ Mutation step size
UB Upper bound of the decision variables LB Lower bound of the decision variables
µ Mean of normal distribution ac− per performance accumulation
c̃t Transmission centre of LSTM cell state ft Output value of LSTM forgetting gate
b Bias value σl Activation function
� Hadamard product F Mutation rate
Pcr Probability crossover rate λ Population size
Maxiter Maximum number of iteration fb best-found values before using optimiser

f̂b best-found fitness values after using optimizer ai ith Optimiser

Ûai Accumulated contribution of optimizer ai Iai Fitness improvement
BS LSTM batch size LR LSTM learning rate
Popt Initial generated population of solutions TGMax Maximum generation number
Ns Number of successful mutation Nf Number of failed mutation
Nh Number of layers Nn Number of neurons in each layer
Op LSTM optimiser PF Penalty factor
Lm Lagrange Multiplier IMF Intrinsic mode functions

1. Introduction

Considering the accelerated expansion of the global energy demand and the boundary of the traditional
power resources, wind power technologies, as one of the popular renewable energies, have been advanced
considerably and gained global attention. [64]. And also it is carefully considered and planned as a promising
sustainable power resource for electric production, especially in terms of minimising the global warming
effect all around the world. As renewable energy systems comprised of several sub-components and each
element has considerable control parameters to enhance its performance, the application of techno-economic
analysis [25], optimisation [3] and measurement methods play a pivotal role to develop these systems such as
in wave energy systems [78], wind energy [46], hybrid energy system [73] and heating and cooling system [17].
Among various kinds of renewable energy, wind energy is a promising and popular sustainable source of power
that has a much smaller impact on the environment in comparison with burning fossil fuels. With falling
costs and large-scale production of generators, the deployment of wind energy is accelerating. For example,
gross installations of an onshore and offshore wind farm in the EU were 0.3 GW in 2008 and increased to 3.2
GW in 2017 [36]. With such large increases in the deployment of wind energy forecasting the power output
of installed wind turbines is becoming vitally important. However, as local wind environments in wind farms
are complex, and as the responses of wind turbines are non-linear and dependent on the condition of the
turbine, wind power forecasting is a challenging problem [45].

Wind power forecasting is fundamental to the effective integration of wind farms into the power grid.
For a single turbine, the following equation describes power output: P .

P =
1

2
ρπR2

rCpw
3 (1)

The terms ρ, Rr and w refer to the density of air, the rotor radius and the wind speed respectively.
Meanwhile, Cp is the power coefficient of the proportion of available power , that the turbine is able
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to extract. The theoretical estimation of wind turbine power is depicted by Equation 1. This equation
describes a smooth s-shaped power curve that resembles a logistic function with wind on the x-axis.

However, because of the variable nature of wind and complex dynamics within and between turbines,
the real power output of individual wind turbines is not precisely described by this curve [69, 53]. A more
realistic alternative model for each wind turbine in a farm can be derived by fitting observations to field
data [45].

On top of the task of modelling wind turbine power in response to current wind conditions, managers
of wind farms also need to forecast future power output based on current conditions. Recent works used
complex data-driven models such as artificial neural networks (ANNs) to forecast turbine output with some
degree of accuracy [41, 68, 55].

To analyse the primary challenges in improving the wind power forecasting models, the main research
gaps can be listed as follows:

1. First and foremost, The efficiency of deep neural networks heavily based on the hyper-parameter
tuning optimisation plan. Nevertheless, the meta-heuristics applied to improve the hyper-parameters
are, commonly incompetent, as initialising the control parameters is challenging and time-consuming.
Furthermore, most of them have been refined based on numerical benchmarks, rather than using the
hyper-parameter tuning on the target problem.

2. To obtain the high achievement of the decomposition techniques, the decomposition parameters initial-
isation operates an essential function. This initialisation process faced with some challenges, because
inadequate setting options can have a negative effect on the effectiveness of the forecasting models.
Another weakness of filter-based models is that the computational runtime needed grows significantly
as the number of parameters has progressed [23].

In this paper, we proposed an integrated approach that couples self-adaptive differential evolution with
ANNs for accurate short term wind power forecasting. The input features used in our modelling are current
wind speed, current wind direction and (in some models) current power output.

The main contributions of this paper are as follows:

1. A new hybrid deep learning-based evolutionary framework (AVMD-AOA-LSTM) is proposed for short-
term wind turbine power output forecasting.

2. An advanced data filtering technique is implemented on the training observations (from SCADA data)
using K-means clustering [2] and autoencoder neural-networks [79] to detect outliers;

3. To deal with the noise and nonlinearity of wind data characteristics, we developed a novel decom-
position algorithm consists of Variational mode decomposition (VMD) and two heuristic algorithms:
Adaptive Variational mode decomposition (AVMD) and Greedy Nelder-mead (GNM) search method.
In order to measure the complexity of the decomposed sub-signals, permutation entropy [6] (PM) is
used.

4. A comparison of the performance of the models (using raw and clean SCADA datasets) was completed,
in terms of the models’ ability to assess the impact of the outlier detection method.

5. A comparison of the performance of four forecasting models trained to act on different subsets of
SCADA inputs was performed. Figure 1 illustrates the models and their inputs; These sub-sets are
wind speed for model one; wind speed and wind direction for model two; wind speed and current
power output for model three; and, finally, wind speed, wind direction and current power output for
model four.

6. Finally, as there is no straightforward theory with regards to design and tune the hyper-parameters
of an LSTM network [28], we tuned the model structure and hyper-parameters using a novel hybrid
optimisation method that combines self-adaptive differential evolution (SaDE) [66] and Sine Cosine
Algorithm (SCA) [48] with two forecasting horizons of ten-minute and one-hour ahead; .Furthermore,
The obtained results were compared with 13 state-of-the-art hybrid models, and grid search.

The remainder of this article is organized as follows: Section 2 reviews current approaches to building
wind power forecasting models. Section 3 describes the features of the SCADA datasets employed in this
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DNN 1
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Wind Direction

Power Predicted 
Power 
output 

Figure 1: The proposed four different independent forecasting models.The applied power as an input is the current generated
power by the wind turbine.

research, collected from 42-months’ high-frequency monitoring of onshore wind turbines. Section 4 describes
the new outlier detection method used in this work. The details of proposed forecasting models and opti-
misation algorithms are presented in Section 5. Section 6 describes the experimental methodology. Next,
the power prediction results trained by datasets of both raw and clean SCADA datasets are demonstrated.
Finally, Section 7 summarises the contributions of this work. Table 1 lists whole abbreviations applied in
this work which are sorted in alphabetical order.

2. Related work

Previous work in this field combined physical models with numerical weather prediction (NWP) to fore-
cast wind turbine output [37]. While such methods are fast, they lack accuracy. More accurate predictions
can be obtained using statistical methods to model the relationship between the inputs of the system and the
corresponding outputs. Commonly applied statistical methods include time-series methods [8, 34], machine
learning methods [9, 27], the persistence method [40] and Kalman filtering [89].

One set of well-known time series forecasting methods for wind power prediction is known as autoregres-
sive modelling. Such modelling includes autoregressive moving average (ARMA), autoregressive integrated
moving average (ARIMA), and a fractional version of ARIMA (f-ARIMA) [82]. Both ARMA and ARIMA
models can capture short-range correlations between inputs and outputs, and the f-ARIMA method is well
adapted for representing the time series data with long memory characteristics [34]. In [70] Shamshirband
et al. applied a Support vector regression (SVR) model in forecasting the optimal conditions of the wind
turbine reaction torque which leads to achieving the maximum level of energy from the wind.

One of the adaptive neural models which have been widely considered to deal with the changeability and
fluctuation of wind speed is the adaptive neuro-fuzzy inference system (ANFIS) [63]. Petkovic et al. [60]
proposed the ANFIS with a back-propagation learning algorithm to predict the optimal coefficient values
of the wind turbines power output. In another investigation, with regard to optimising the average power
output of a wind turbine, a smart controller proposed [61]. This controller consists of an ANFIS, a wind
generator implemented with the continuously variable transmission (CVT), and showed robust performance.
A wind farm project management which is a combination of the function approximation and regression
(ANFIS) was adopted to maximise the produced power of a wind turbine using forecasting the wake effects
such as waking wind speed [59]. Wang et al. [43] suggested a hybrid neural forecast engine model which
consists of an improved Elman neural network and empirical mode decomposition (EMD) with a sliding
window, in order to maximise the pertinency and reduce the redundancy measure.
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In order to predict the wind speed series, Petkovic et al. [62] proposed the application of fractal inter-
polation idea and artificial intelligence method with various training algorithms including Back-propagation
(BP) and extreme learning machine (ELM). Petkovic et al. represented that the ELM performs better than
the BP training approach. Moreover, from [56], a hybridisation of the ANFIS and fractal interpolation
prediction suggested improving the performance of the forecasting wind speed model. Recently, a short-
term forecasting model for a wind-solar power system was introduced [50] which includes a feature selection
filter plus a hybrid forecast engine. The hybrid model depends on a neural network (NN) combined with an
evolutionary algorithm. Concerning to design of an accurate wind signal prediction model, Leng et al. [39]
represented a mixture of a ridgelet transform (as a decomposition model), a feature selection technique, and
finally, a neural system with a meta-heuristic algorithm.

With regard to handling the disadvantages of physical and statistical models, recently a considerable
number of estimation techniques have been produced which are mainly depend on the machine learning
models. These models are able to perform with high performance in terms of forecasting nonlinear and
non-stationary wind speed time-series data.

Another effective technique for forecasting time series data is recurrent neural networks (RNNs). Olaofe
et al. [57] applied RNNs to predict the wind turbine power output one-day ahead. However, the applied
’tanh’ activation function used in this work leads to disappearing and exploding gradients, which lead to
difficultly in training an accurate model. Long short-term memory networks (LSTMs) were introduced in
[47], partly to help avoid these issues. LSTMs can learn the correlations that exist in time series data
with some accuracy. In [88], LSTMs were employed for short-term predictions of wind power. That study
showed that LSTMs could outperform traditional ANNs and support vector machines (SVMs) in terms
of prediction accuracy. A combination of principal component analysis (PCA) and an LSTM forecasting
model was proposed in [80], and compared with a back-propagation (BP) neural network and an SVM model.
The study found that the PCA-LSTM framework results produced higher forecasting accuracy than other
methods. Recently, Erick et al. [44] defined a new architecture for wind power forecasting composed of LSTM
blocks that replaced the hidden units in the Echo State Network (ESN). The authors also used quantile
regression to produce a robust estimation of the proposed forecast target. Moreover, Yu et al. [81] used
an LSTM with an enhanced forget-gate network model (LSTM-EFG) combined with a Spectral Clustering
method to forecasting wind power. This technique resulted in considerably increased accuracy.

Recently, multi-layer forecasting models have been absorbed a considerable number of the researcher to
develop short-term wind speed prediction models. a two-layer forecasting model [12] proposed to predict the
short-term wind speed consists of extreme learning machine (ELM), Elman neural network (ENN), LSTM,
and ELM-based nonlinear aggregated technique to relieve the natural deficiency of the linear combination
model.In other work [85], to control and predict a short-term traffic flow, a combination of LSTM, population
extremal optimization (PEO) method, and no negative constraint theory (NNCT) weight integration was
introduced (EnLSTM-WPEO). Furthermore, Chen et al. [11] suggested a nonlinear-learning ensemble of
hybrid time-series estimation for wind speed forecasting which is composed of the LSTMs, SVRM (support
vector regression machine) and EO (extremal optimization algorithm). However, none of the above studies
used an automated method to tune the hyper-parameters of their ANN models. Such automatic tuning
helps with porting models to a new setting and makes it possible to more rigorously compare modelling
approaches.

One recent work that has used hyper-parameter tuning is that of Qin et al. [71] who used the Cuckoo
Search Optimization (CSO) method to improve the performance of a Back Propagation Neural Network
(BPNN) by adjusting the connection weights. They reported that the accuracy of the proposed hybrid
model was higher than that of other methods for predicting the wind speed time series. Shi et al. [72] used
the dragonfly algorithm (DA) to tune RNN hyper-parameters for wind power forecasting.

In another recent work, Peng et al. [58] used Differential Evolution (DE) to optimise LSTM parame-
ters, and the reported results indicated that the hybrid DE-LSTM model is able to outperform traditional
forecasting models in terms of prediction accuracy. More recently, Neshat et al. [54] forecasted time series
through online hyper-parameter tuning of an LSTM model using CMA-ES. This work improved on earlier
work by systematically comparing the impact of tuning strategies, model input sets, and data pre-processing
on prediction performance. These comparisons define some of the search landscape in the parameter space
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Figure 2: The Pearson’s linear correlation coefficients between all pairs of the wind turbine data (SCADA). The correlation
plot shows that wind speed, wind direction and Power are highly correlated.

of these algorithms.

3. SCADA data description and analysis

The data analysed in this research comes from six turbines of one onshore wind farm in north-western
Europe (Sweden) [30]. For each turbine, 42 months of data are available from January 2013 to June
2016, including 10-minute interval operation data and a log file. Data on faults and maintenance were
also stored. In this paper, we select and investigate the SCADA data from the sixth turbine in the wind
farm. In order to evaluate and analyse the correlation between power output and other SCADA features,
seven features are chosen including wind speed, wind direction, ambient temperature, Nacelle temperature,
Hydraulic oil temperature and Hydraulic oil pressure. These are the most recommended SCADA features
for power prediction from [41]. Pearson’s linear correlation coefficients between all pairs of the wind turbine
data features can be seen in Figure 2. The highest correlations are those between Power output and wind
speed, as well as between power output and wind direction. Therefore, we select the wind speed and wind
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Figure 3: a large view of how the wind speed and wind direction are distributed at the wind farm (Sweden) from 2013 to 2016
(June).

direction as ANN inputs designate generated power as the network output. The diagonal in Figure 2 shows
the distributions of each variable, including power. These distributions show some outliers, which might pose
stchallenging challenges for modelling. It is also of note that there are some negative values for produced
power; these values are caused by stationary turbines spinning up.

Figure 3 depicts the wind rose for the wind farm. It also shows that the dominant wind direction is
North-west, and a secondary prevailing direction is South-east. However, there are also occasional West
winds.

4. Information preprocessing

In data science, outliers are values that differ from regular observations in a dataset. Figure 4 shows
the correlation between wind turbine power output and wind speed; moreover, it represents the correlation
between wind turbine power output and wind direction during the 42 months data collection period. The
outliers can be seen clearly in the scatter plots; they are distributed on the right side of the plot. In this
study, we applied a combination of a K-means method which is one of the well-known Clustering Based
Outlier Detection (CBOD) [33] methods and an autoencoder neural network to detect and remove the
outliers from the SCADA dataset. As previous studies listed in Section 2, wind speed is the primary factor
that determines wind power among the SCADA features. In the data, wind speed is widely distributed;
we used the K-Means clustering algorithm to classify the wind power data into K sub-classes. Before the
clustering, due to the significant differences in numerical values of each type of data which has a great impact
on the training of the autoencoder’s latent model, the data is normalised between zero and one [29]. The
normalisation used in this paper is described in Equation 2.

Ẑ =
Z − Zmin

Zmax − Zmin
(2)
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(a)

(b) (c) (d)

Figure 4: The correlation between wind turbine power output and wind speed over the 42 months of data collection.(a) Outliers
can be seen clearly in the data. (b) 3D figure of power curves, wind speed and wind direction. (c) the correlation between
wind speed and direction. (d) power curves and wind direction.

Figure 5: Clustering the data into 10 groups by K-means and then detecting and removing the outliers using an autodecoder
NN. The purified data (after removing outliers) is shown in the dark blue region.
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For this work, the number of the clusters is set to 10 [29] for wind speed and power output of SCADA
data. These clusters indicate the different operation states of the main subsystems, such as the drive train
and the control system [15]. Figure 5 shows ten clusters of data from Turbine 6. It can be observed that
the distribution in each cluster is a horizontal band. Within these bands, outliers are more easily discerned
as being relatively far from the main body of the cluster. In order to remove the outliers in each cluster, an
autoencoder neural network is used that shows better performance compared with other traditional outliers
detection methods [4, 51]. An autoencoder is a particular type of unsupervised feedforward neural network.
This network is trained to reconstruct output in such a way that it becomes similar to each input. In this
work, the autoencoder consists of an input layer and one hidden layer which are fully connected [7]. For
training an autoencoder, the input data are mapped to the hidden layer where the encoding of input data
takes place, which typically comprises fewer nodes than the input layer and consequently compresses the
data. Next, from the hidden layer, the reconstructed data flows through the output layer, which is re-
transformed in a process called ‘decoding’, and the squared restoration error between the network’s output
and its input is calculated. For detecting the outliers, It is noticed that outliers have higher reconstruction
error than the norm of the dataset. Therefore we remove the observations which have higher RMSE than
the average of all data RMSE. Figure 5 presents the outliers detection and removal process, with the dark
blue sections showing the clean data.

4.1. Performance criteria of forecasting models

To evaluate and compare the performance of the applied forecasting models, four broad performance
indices are used: the mean square error (MSE), the root mean square error (RMSE), mean absolute error
(MAE), and the Pearson correlation coefficient (R) [84]. The equations for MAE, RMSE and R are described
as follows :

MAE =
1

N

N∑
i=1

|fp(i)− fo(i)| (3)

RMSE =

√√√√ 1

N

N∑
i=1

(fp(i)− fo(i))2 (4)

R =
1
N

∑N
i=1(fp(i)− fp)(fo(i)− fo)√

1
N

∑N
i=1(fp(i)− fp)2 ×

√
1
N

∑N
i=1(fo(i)− fo)2

(5)

where fp(i) and fo(i) denote the predicted and observed SCADA values at the ith data point. The total
number of observed data points is N . The variables fp and fo are the means of the predicted and perceived
power measures, respectively. In order to develop the effectiveness of the predicted model, MSE, RMSE and
MAE should be minimised, while R should be maximised.

5. Methodology

In this section, we introduce the proposed methodologies and related concepts for short-term wind turbine
power output forecasting, including LSTM network details, self-adaptive differential evolution (SaDE) and
the hybrid LSTM network and the SaDE algorithm.

5.1. Wind time-series data decomposition

5.1.1. Variational mode decomposition (VMD)

VMD is a modern, fully-intrinsic, quasi-orthogonal decomposition signal processing algorithm, where
it can decompose a signal into a series of modes with particular bandwidth in spectral-domain non-
recursively [19]. Each mode is packed down a core pulsation defined through the decomposition process. In
order to achieve the bandwidth of each mode, three steps are performed [42]: (1) Hibert transform is adopted
to arrange a one-sided frequency spectrum for each mode. (2) The transfer frequency spectrum of mode
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to base-band through incorporating the exponential tune to the corresponding estimated centre frequency.
(3) For each mode, determine the bandwidth through using the Gaussian smoothness of the demodulated
signal. Next, the constrained variational problem can be addressed as follows [14]

min
uk,wk

{
K∑
k=1

∣∣∣∣∣∣∣∣∂t [(δ(t) +
j

πt

)
⊗ uk(t)

]
e−jwkt

∣∣∣∣∣∣∣∣2
2

}
(6)

s.t.

K∑
k=1

uk = f(t) (7)

where f(t) involves the original signal, t denotes the time script, K is the entire number of the modes, uk
signifies the kth mode, δ(t) depicts the Dirac distribution, wk is the center frequency and ⊗ is the convolution
operator. Furthermore, the mode with high-order represents the low-frequency sub-layers. To transform
the mentioned optimization problem to an unconstrained one, both the penalty function and Lagrangian
multipliers are operated, which can be indicated in Equation 8.

L(uk, wk, λ) =α

K∑
k=1

∣∣∣∣∣∣∣∣∂t [(δ(t) +
j

πt

)
⊗ uk(t)

]
e−jwkt

∣∣∣∣∣∣∣∣2
2

(8)

+

∣∣∣∣∣∣∣∣f(t)−
K∑
k=1

uk(t)

∣∣∣∣∣∣∣∣2
2

+

〈
λ(t).f(t)−

K∑
k=1

uk(t)

〉

where α denotes the parameter of balancing that is related to the needed data fidelity constraint. The
identical unconstrained problem in Equation refeq-LVMD can be figured out using the ADMM (Alternate
Direction Method of Multipliers). ADMM is able to obtain the saddle point of the augmented Lagrangian.
Both uk and wk can be updated in two inclinations to perform the analysis of the VMD based on the
ADMM.

In order to solve the optimization problem for uk, Equation 9 can be defined as:

ûnd+1
k =

f̂(w)−
∑
i 6=k ûi(w) + λ̂(w)

2

1 + 2α(w − wk)2
(9)

where nd is the total number of iterations, f̂(w), ûi(w), λ̂(w) and ûn+1
k are the Fourier transforms of f(t),

u(t), λ(t), and und+1
k (t) , respectively.

5.1.2. Permutation Entropy (PE)

Measuring the complexity of perceived time series data enables us to have a better comprehension of
the characteristics of the dynamical system [83]. However, there is a shortage of consent on the complexity
representation [20]. Entropy can be one of the best metrics to estimate the signal complexity [5]. Therefore,
complexity expresses the level of randomness and unpredictability. Many entropy methods are recently
introduced, and some of the popular ones are including permutation entropy (PE) [6], fuzzy entropy [13]
and sample entropy [67]. In comparison with other entropy methods, PE is recognised for its benefits of
being computationally cheap and conceptually uncomplicated. Additionally, it is identified to apply for all
types of signals, such as deterministic, stationary, noisy, chaotic, and stochastic [31].

PE was firstly proposed by Bandt and Pompe [6] in order to measure the complexity rate of time series
based on a correlation of neighbouring states. According to the experimental results, PE performance can
overcome other similar methods like Lyapunov exponents especially, in several well-known chaotic dynamical
systems [6]. Moreover, PE is particularly beneficial in the behaviour of dynamical or observational noise.
Some of the PE advantages reported including simplicity, remarkably fast computation, robustness, and
invariance concerning nonlinear monotonous transformations.

11



Onshore Wind Farm

Initialise the VMD 
hyper-parameters

iter < Maxiter

No

Number 
IMF

Penalty 
factor

Lagrange 
multiplier

Method to 
initialize

VMD

IMF1 IMF2 IMFn

PE PE PE

(෍
𝑖=1

𝑁

𝑃𝐸𝑖)/𝑁

GNM
Greedy Nelder-

mead search 
algorithm

Optimal VMD
hyper-

parameters

Yes

Figure 6: The structure of the proposed Adaptive Variational mode decomposition (AVMD), N is the number of IMF.

5.1.3. Adaptive Variational mode decomposition (AVMD)

Although Variational Mode Decomposition (VMD) has advantages such as suppression noise, fast com-
putation, strong mathematical background and non-recursive sifting process, the decomposition performance
of VMD is strongly depends on the number of intrinsic mode functions (IMFs), penalty factor, the method
to initialise the central frequencies and the update rate for the Lagrange multiplier which need to be deter-
mined in advance. To deal with the issue of VMD hyper-parameter tuning, we propose two fast heuristic
algorithms: Greedy Nelder-mead (GNM) search and a randomised local search (RLS) with an adaptive
mutation step size. Furthermore, to evaluate the generated solutions using the proposed method, we use the
permutation entropy (PE). Indeed, PE indicates the degree of signal randomness, that should be minimised.
As illustrated in Figure 6 detailing the applied strategy in the Adaptive Variational mode decomposition
(AVMD).

Greedy Nelder-mead (GNM) search method. GNM is a combination of a Nelder-Mead simplex direct search
algorithm (NM) and a greedy algorithm. NM is a fast downhill search algorithm especially in the low
dimensions and derivative-free method [10] To speed up the convergence rate of the NM, we propose a
greedy search algorithm to concentrate the NM exploitation ability on a variable instead of optimising
all-in-one.

Adaptive randomised local search (ARLS) . ARLS is a modified version of RLS that is a simple single-based
solution evolutionary algorithm (EA) [32]. According to the practical optimisation results, RLS can be more
efficient than complicated EA approaches. RLS begins with a solution X and produces a new candidate Y in
each iteration by mutating one determined variable of X randomly. In the RLS, the mutation is performed
using a uniform distribution which results in a non-curved and noisy local search. Therefore, to handle
this issue, we apply a normally distributed mutation. Furthermore, to get a great balance between the
exploration and exploitation ability of RLS, we propose an adaptive mutation step size. In order to update
the mutation step size, we keep a historical achievement of the last 10 iterations. if more than one-fifth

12



of the mutations in this search phase has been thriving (flags) and the average performance satisfies the
threshold (τ), the mutation step size σ is extended, otherwise, σ has dwindled.

In the following, the pseudo-code of ARLS can be seen by the Algorithm 1 where UB and LB are the
upper and lower bound of the decision variables, and also N is the number of variables.

Algorithm 1 Adaptive Randomized Local Search

1: procedure ARLS
2: Initialization
3: V ar = VMDhyper−parameters . decision variables
4: f = Permutation Entropy . fitness function
5: LB=Min(V ar);UB= Max(V ar) . Upper and Lower bounds
6: Xiter ∈ {LBi, UBi}i∈N uniformly at random . Generate first feasible VMD configuration
7: σi = 0.5 ∗ (UBi − LBi) . initial mutation step
8: ρ = 10 . size of pool to keep the ARLS performance
9: while Stopping Criteria do

10: Mutation
11: Create Y iiter = Xi

iter independently for each i ∈ {1, 2, ..., N}
12: Yiter = N(µ, σ) . Mutate one random variable of Yiterby normally distributed random
13: periter= ∆f(Yiter) . Record the performance of ARLS

14: ac-per =
∑iter−10

iter periter
ρ . performance accumulation

15: Selection
16: if (f(Yiter) ≤ f(Xiter)) then
17: Xiter+1 = Yiter, flags = flags + 1
18: else
19: Xiter+1 = Xiter, flags = flags − 1
20: end if
21: Update mutation step size
22: if (ac−per > τ & flags

ρ > 0.2)) then
23: σ = σ × 1.5 . Extend the step area of mutation
24: else
25: σ = σ × 0.5 . Shorten the mutation step size
26: end if
27: end while
28: end procedure

5.2. Long short-term memory deep neural network (LSTM)

The LSTM network [47] is a special kind of recurrent neural network (RNN) with three thresholds: the
input gate, the output gate and the forgetting gate. The unit structure of the LSTM network can be seen
in Figure 7. The forgetting gate defines the permissible rise or drop of the data flow [86] by setting the
threshold, which indicates reservation and forgetting. Considering that an RNN hidden layer has only one
state, there are severe difficulties with gradient fading and gradient explosion. Augmenting the RNN, the
LSTM adds the structure of the cell state, which can recognise the long-term preservation of the state and
emphasises the active memory function of the LSTM network. In the case of massive wind power time
series data, the network can significantly enhance the accuracy of wind power prediction. In the forward
propagation method of the LSTM network, the output value of the forgetting gate ft can prepare the
information trade-off of the unit state and the functional relationship encoded by Equation 10.

ft = σl(wfht−1 + ufxt + bf ) (10)
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Figure 7: The internal structure of LSTM network from [86].

Both it and c̃t are generated by the input gate, which are related to the previous moment. The expressions
are as shown as Equation 11 and 12.

it = σl(wiht−1 + uixt + bi) (11)

c̃t = tanh(wcht−1 + ucxt + bc) (12)

Cell state ct is the transmission centre of the cell state before and later LSTM, which has the following
functional relationship:

ct = ct−1 � ft + it � c̃t (13)

The output ht of the output gate derives from two components. The first part is the output of the previous
moment that is the input of the current moment, and the second part is the information of the current cell
state and the particular expression model is delivered as Equation 14 and 15.

ot = σ(woht−1 + uoxt + bo) (14)

ht = ot � tanh(ct) (15)

where both u and w are the weight values; b and σl are the bias values and activation function respectively,
and � is the Hadamard product. For the LSTM network training settings, the Adam algorithm [35] is
employed to optimise the loss function, and Dropout [24] is used to prevent model overfitting.

5.3. Optimisation algorithms

In this research, we developed a novel alternating optimisation algorithm (AOA) and propose also a
comprehensive optimisation framework to improve LSTM architecture and hyper-parameters tuning. In
order to compare the performance of the proposed method with the state-of-the-art optimisation algorithms,
eight meta-heuristics are performed including Sine Cosine Algorithm (SCA) [49] , Equilibrium optimizer
(EO) [1], Marine predators algorithm (MPA) [21], covariance matrix adaptation evolution strategy [26]
(CMA-ES), Differential Evolution (DE) [28], Self-adaptive Differential Evolution (SaDE) [66], and Enhanced
Fitness-adaptive Differential Evolution Algorithm (EFADE) [52]. The details of the algorithms evaluated
for each strategy are summarised in Table 3.
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Table 3: The details of the optimisation methods parameters. All methods are restricted to the same evaluation number.

Methods Settings

CMA-ES [26] with the default settings and λ = 12;

DE [74] with λ = 24, F = 0.5, Pcr = 0.8;

EFADE [52] with λ = 24, Enhanced Fitness-adaptive Differential Evolution Al-
gorithm: F and Pcr;

SaDE [66] with λ = 24, two adaptation schemes are applied to update the
control parameters: F and Pcr, µ = 0.5, σ = 0.3, CRm = 25;

SCA [49] with λ = 24, α = 2; r1 = α decreases linearly from α to 0

EO [1] λ = 24, and applied the default settings;

MPA [21] λ = 24, and applied the default settings;

SCA-SaDE The same population size, λ = 24, and applied the default settings;

5.3.1. Self-adaptive Differential Evolution (SaDE)

SaDE [66] is proposed by Qin et al. to concurrently perform two popular mutation strategies
“DE/rand/1” and “DE/current-to-best/1”. SaDE adjusts the probability that offspring solutions will be
generated using each strategy, depending on the success rates (improved solutions) in the past Nf gener-
ations of the algorithm. This adaptation scheme aims to evolve the best mutation strategy as the search
progresses. This methodology is similar to the ideas proposed in [77], where striving heuristics (including di-
verse DE variants, simplex methods and evolution strategies) are adopted simultaneously, and probabilities
for offspring generation are adjusted dynamically.

In SaDE, the vectors of the mutation factors are generated independently at each iteration based on
a normal distribution (µ = 0.5, σ = 0.3), and trimmed to the interval (0, 2]. This scheme can retain
both local (with small Fi values) and global search capability, so as to create potentially suitable mutation
vectors during the evolution process. In addition, the crossover probabilities are randomly generated based
on independent normal distribution, with µ = CRm and σ = 0.1. This is in contrast to the Fi and CRi
values, which remain fixed for the last five generations before the next regeneration. The CRm is initially
set to 0.5. in order to tune CR to suitable values, the authors renew CRm every 25 generations using the
best CR values from the last CRm update.

To speed up the SaDE convergence rate, a further local search procedure (quasi-Newton method) is used
on some competent solutions after Ns generations. The benefits of Self-adaptive parameter control make
the SaDE as one of the most successful evolutionary algorithms, especially in the context of real engineering
optimisation problems that have multi-modal search spaces with many local optima [87].

5.3.2. Sine Cosine Algorithm (SCA)

Sine-cosine algorithm (SCA) is a modern meta-heuristic algorithm proposed by Mirjalili in 2016 [49].
This algorithm has been applied and studied by many researchers because of simple structure, a few control
parameter, fast convergence rate and strong exploration ability [48]. Whole benefits can be accomplished
through a creative combine idea of the simple variation of sine and cosine functions performance. It has
been successfully applied to solving the parameter optimization of neural networks, multiple hydropower
reservoirs operation optimization [22], hydrothermal scheduling (HTS) problem in order to optimise fuel
cost [16] and different real-world engineering problems at present [48].

SCA optimisation algorithm is population-based, in which a collection of candidates is generated and
then tried to improve the average fitness of the population utilising two principal mathematical formulas:
sine and cosine functions. The equations are as follows:

Xt+1
i = Xt

i + r1 × sin(r2)|r3× P ti −Xt
i | if r4 < 0.5 (16)

Xt+1
i = Xt

i + r1 × cos(r2)|r3× P ti −Xt
i | if r4 ≥ 0.5 (17)
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where Xt
i is a vector that outlines the current solution, r1 and r2 are a random vector representing the

magnitude and domain of sin and cos functions. r3 shows the destination contribution magnitude of the
new state of the solution. Finally, r4 is a random number in [0, 1] to provide the same probability for
both operators. The mentioned search operators are designed to fit a balance between the exploratory and
exploitative behaviours for the SCA algorithm.

In order to converge to an optimum at the end of the optimisation process, exploration ability should be
decreased in population-based algorithms. Therefore, In SCA, the random variable r1 is linearly decreased
as follows:

r1 = α− iter × α

Maxiter
(18)

where iter is the current iteration, α is a constant, and Maxiter determines the maximum number of
iteration.

5.3.3. Alternating optimisation algorithm (AOA= SCA+SaDE)

In this work, we develop an alternating optimisation (AOA) framework in order to optimise the hyper-
parameters of the applied deep learning model using two popular meta-heuristics Self-adaptive Differential
Evolution (SaDE) and Sine Cosine Algorithm (SCA). In this framework, there is a competition between both
optimisation methods to achieve the computational budget based on their performance. In the first cycle,
both candidate optimisers are assigned with an equal computational budget to solve the problem, and their
performances are compared. In the remaining iterations, the candidate optimiser that delivers the greatest
contribution to the fitness development will be chosen (allocates computational resources) for optimising.
To provide a fair balance between both optimisers, an accumulated contribution to fitness improvement is
proposed [75] as following:

Iai =
(f̂b − fb)

f̂b
(19)

where fb and f̂b are the best-found fitness values before and after using optimizer ai in one iteration.
Equation 20 shows the overall contribution of optimizer ai during the optimisation process.

Uai =
(Ûai + Iai)

2
(20)

where Ûai is the most advanced accumulated contribution of optimizer ai before starting this iteration. The
initial value of Ûai is 0.

Moreover, to evaluate the AOA algorithm (SCA+SaDE) thoroughly, we compared AOA’s performance
against the performances of each optimiser: SCA and SaDE. This hybridisation technique has been suggested
a great biased algorithm selection to enjoy the high exploration capability of SaDE, and considerable SCA
exploitation ability to generate promising results. Another benefit of this adaptive alternating strategy is
prohibiting the premature convergence and the stagnation issue. The pseudo-code of the proposed AOA
algorithm for solving the hyper-parameter optimisation problem is explained in Algorithm 2.

5.4. Hybrid Neuro-Evolutionary Deep Learning method

Multiple parameters can influence the precision and performance of LSTM networks. The selected hyper-
parameters include the maximum training number of LSTM (Epoch), hidden layer size, batch size, initial
learning rate and the optimiser type. If the maximum training number is too small, then it will be difficult
for the training data to converge; if we set the number to a large value, then the training process might
overfit. The hidden layer size can influence the impact of the fitting [58]. Batch size is also an important
hyper-parameter. If the batch size is set too low, then the training data will struggle to converge, resulting
in under-fitting. If the batch size is too large, then the necessary memory will rise significantly. There are
also complex interactions between hyper-parameters. Therefore, a reliable optimisation technique should be
utilised to tune the optimal combination of hyper-parameters and to balance forecasting performance and
computational efficiency.
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Algorithm 2 Alternating optimisation algorithm (SCA + SaDE )

1: procedure SCA+SaDE (hyper − parameters )
2: Initialization
3: A = 2 . Number of optimiser
4: Uai = 0 . Initialise the contribution of each optimiser
5: D = size(H) . D is the dimension of the Deep learning model hyper-parameters
6: N= population size; UB, LB= upper and lower bounds
7: t= current iteration, TGMax = maximum generation number
8: Popt= LBj + (UBj − LBj) ∗ rand . Initialise population randomly
9: fitness=Eval(x) . Evaluate the population

10: for t in [1, .., TGMax] do
11: if i==1 then . Run both optimiser, In the first iteration
12: fSCAt =SCA(Popt)
13: fSaDEt =SaDE(Popt)
14: Compute Iai and Uai for both Optimizer
15: else
16: < ai >= arg max{Uai → 1 ≤ j ≤ |A|}
17: Applying optimiser ai → if i = 1 SCA else SaDE

18: Iai = (f̂b−fb)
f̂b

. Compute contribution

19: Uai =
(Ûai

+Iai
)

2 . Accumulate historical contribution
20: end if
21: end for
22: return hyper − parameters
23: end procedure

There are three main methods for tuning hyper-parameters, including 1) manual trial and error, 2)
systematic grid search, and 3) meta-heuristic approaches. In this paper, we propose nine meta-heuristic
approaches and grid search that can be used to adjust the optimal configuration of settings for the LSTM.
The performance of this hybrid forecasting model (AVMD-AOA-LSTM) is compared with that of grid
search; eight hybrid neuro-evolutionary methods: CMAES-LSTM [54], and DE-LSTM [58], and also six
new composed models including SaDE-LSTM, EFADE-LSTM, SCA-LSTM, EO-LSTM, MPA-LSTM, AOA-
LSTM. and ANFIS [65].

In the grid search method, we evaluate and tune only two hyper-parameters of the LSTM: the batch size
and the learning rate. Other settings assign a fixed value for the optimizer type, the number of LSTM hidden
layers, the hidden layer size, maximum number of epochs by (’adam’ [35]) one, 100 and 100 respectively.
These values are chosen in order to provide a baseline for the LSTM model evaluation. The ranges of batch
size and learning rate are, respectively, selected from 128 ≤ BS ≤ 2048 and 10−5 ≤ LR ≤ 10−1.

The procedures of the proposed hybrid forecasting model are as follows:

• Step 1. Data preprocessing. Detecting and removing the outliers using a combination of K-means
and Autoencoder. Next, the dataset is divided into three subsets: training, validation, and test sets.

• Step 2. Decomposition: a new Adaptive Variational mode decomposition (AVMD) is developed that
consists of a Variational mode decomposition, a permutation entropy method, and two optimisation
algorithms. These optimisers are applied to explore the search space of the VMD’s hyper-parameters
and converge to the best VMD configuration.

• Step 3. Initialization. The following parameters are set: maximum iteration number of AOA (SCA-
SaDE), population size (NP ), minimum and maximum crossover rate (CR), mutation rate (F ), and
the upper and lower bounds of decision variables, the iteration numbers for updating the control
parameters ( Nf and Ns) are set.
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• Step 4. Hyper-parameters tuning of parallel LSTMs: The new hybrid evolutionary algorithm (AOA)
is applied to optimise the performance of LSTMs. The fitness values of the offspring population are
computed by applying the proposed hyper-parameters in the LSTM. The fitness is the root of the mean
square error (RMSE) of the validation set; other performance indices are also computed and recorded.
The RMSE should be minimized, and the corresponding individual is the current best solution that
achieves this.

• Step 6. Training deep learning-based model: using the new generated hyper-parameters, and next,
evaluating the trained forecasting models.

• Step 7. Stopping criteria: if the maximum iteration is achieved, then SaDE is terminated and the
optimum configuration is taken; otherwise, the procedure returns to Step 3.

The combined procedures of the proposed multi-step hybrid short-term power output forecasting strategy
can be depicted in Figure 8.

The fitness function of the optimisation process is defined as follows:

Argmin→ f = fitness(Nh1
, Nh2

, ..., NhD
, Nn1h1

, Nn2h2
, ...NnDhD

, LR, BS , Op),

Subject− to :

LNh ≤ Nh ≤ UNh,
LNn ≤ Nn ≤ UNn,
10−5 ≤ LR ≤ 10−1,

128 ≤ BS ≤ 2048

1 ≤ Op ≤ 3.

(21)

where Nhi
, {i = 1, . . . , D} is the number of hidden layers for the i−th LSTM network and Nni,hj

, {j =
1, . . . , Dl} is the number of neurons in the ith hidden layer of this network. The lower and upper bounds of
Nh are presented by LNh and UNh , while LNn and UNn are the lower and upper bounds of neuron number.
The Op is the selected optimizer for optimising the LSTM weights (’sqdm’ [38], ’adam’ [35], ’rmsprop’ [76]).

6. Experimentation designs

6.1. Performance comparison of four proposed models

In the first step of the forecasting power output of the wind turbine, we proposed four recurrent DNN
models with different inputs and the same output. The main aim of proposing these forecasting models is
to analyse the impact of three SCADA features, wind speed, wind direction and the currently generated
power on the predicting accuracy of the power output both ten-minute and one-hour ahead.

To evaluate the performance of four models using raw SCADA data which are randomly categorised
into three training (80%), testing (10%) and validating (10%) sets, the LSTM deep network is used. This
network is composed of one sequence input layer, one LSTM layer, a fully-connected layer and a regression
layer. A grid search method is used to tune the hyper-parameters, batch size and learning rate. Figure 9
presents the performance of the LSTM framework with tuned batch size and learning rate parameters for
three forecasting models in the interval of ten-minute. The best performance of model 1 (one input) is
obtained where the values of batch size are greater than 512 and the learning rate placed between the range
of 10−2 and 10−4. The forecasting behaviours of both models 2 and 3 are similar, and the best accuracy
occurs for batch sizes greater than 256 and a learning rate between 10−3 and 10−5.

Figure 10 shows an average performance (MSE and R) comparison between two forecasting models (1
and 2 and) shows that using the currently generated power as an input plays a significant role in producing
an accurate prediction.
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Figure 8: The landscape of the proposed hybrid deep learning-based evolutionary model (AVMD-AOA-LSTM) with adaptive
decomposition method.

6.2. The results of outliers detection techniques

In the second step, we compare the performance of the proposed models before and after removing the
outliers from the SCADA dataset to illustrate the effectiveness of the outlier detection technique (K-means
+ Autoencoder).

After removing the outliers, we compare the performance of the LSTM framework as a predictor of
the power produced by the 6th wind turbine in two models (model 1 with one input and model 3 with
two inputs including wind speed and direction) with different ranges of the batch size and learning rate.
Figure 11 illustrates the 3D forecasting landscape of the correlation between the batch size, learning rates
and forecasting accuracy for model 1 (within ten-minute) and model 3 (one-hour interval) .

The applied method for tuning the hyper-parameters is the grid search in this experiment. In model 1,
the best prediction results happen where the batch size is more than 1024 and the learning rate value is
between 10−3 and 10−4.

In order to highlight the benefit of using the outlier detection & removal technique (K-means + Au-
toencoder), a comprehensive comparison for four prediction models is applied (the time interval considered
within these models is ten minutes), and the results of this experiment can be seen in Figure 12. Meanwhile,
it is noticed that removing the noise from the SCADA data results in a significant enhancement in the ac-
curacy of the prediction except two inappropriate configurations (Batch size=128 and Learning rate=10−3,
10−1).

The same experiment was completed in order to compare the performance of four models in forecasting
the wind turbine power output in the one-hour ahead. The comparative outcomes are presented in Figure
13. In the first and second models, the highest accuracy was observed when batch sizes were large; however,
the best-found configurations of the hyper-parameters in model 3 and 4 occurred where the batch size and
learning rate of 256 and 10−4 respectively.

We performed a statistical analysis of the forecasting results above using a Friedman test (non-parametric
and multiple comparisons). The statistical analysis results by implementing the Friedman test are shown in
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Figure 9: Hyper-parameter tuning of the applied LSTM network for forecasting the short-term power output of the wind
turbine without removing the outliers(Layer number=1, neuron number=100, Optimizer=’Adam’). (a) the average of MSE
test-set (ten-minute ahead) with one input (wind speed) (b) the average of R-value test-set (ten-minutes ahead) with one input
(wind speed). (c) and (d) the average of MSE and R-value test-set with two inputs (wind speed, Power), respectively. (e) and
(f)the average of MSE and R-value test-set with two inputs (wind speed, wind direction and Power), respectively
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Figure 11: Hyper-parameter tuning of the applied LSTM network applied to the forecasting of the wind turbine’s short-term
power output after removing outliers(Layer number=1, neuron number=100, Optimizer=’Adam’). (a) the average of MSE
test-set (ten-minute ahead) with one input (wind speed) (b) the average of R-value test-set (one-hour ahead) with two inputs
(wind speed and direction).
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Figure 12: A comparison of the LSTM network Hyper-parameter tuning performance training on the raw SCADA data
(R) and training after removing the outliers (C) for ten-minute ahead forecasting (Layer number=1, neuron number=100,
Optimizer=’Adam’). (a) the RMSE test-set with one input (wind speed). (b) the RMSE test-set with two inputs (wind speed
and current power).

Figure 14. We ranked the four forecasting LSTM models corresponding to their mean value. As shown in
Figure 14, Model 3 and 4 obtained the first and second ranking (i.e., the lowest value goes the first rank).
This was in a comparison featuring all models over the 25 configurations of the hyper-parameters, under the
ten-minute ahead forecasting conditions.

The overall comparison of four LSTM models at intervals of ten-minute and one-hour ahead can be
seen in Figure 15. Each box represents the average RMSE forecasting of all 25 configurations per model.
These statistical results show that the 4th model with three inputs, including wind speed, wind direction
and the current power output of the wind turbine found a configuration with the minimum validation error.
However, model 3 outperforms other models on average. According to the statistical results, model 3 with
two inputs (wind speed and the current produced power) perform better than other models. Therefore, we
then applied this model to developing hybrid neuro-evolutionary methods.

6.3. Experimental results of hybrid decomposition algorithm

According to the technical details of the adaptive VMD (AVMD) method proposed in Section 5.1.1, the
standard VMD requires the initial number of decomposition mode (K) through the decomposition process.
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Figure 13: A comparison of four forecasting LSTM network models performance with various Hyper-parameters for forecasting
the power output in one-hour ahead (Layer number=1, neuron number=100, Optimizer=’Adam’). (a) the RMSE test-set with
one input (wind speed). (b) the RMSE test-set with two inputs (wind speed and direction), (c) the RMSE test-set with two
inputs (wind speed and current power), (d) the RMSE test-set with three inputs (wind speed, direction and current power).

This parameter has a great impact on decomposition performance. Furthermore, the value of the penalty
factor (PF ) plays a significant role in determining the reconstruction fidelity. A smaller PF value leads to
achieving stricter data fidelity. The third important VMD argument is the update rate for the Lagrange
multiplier (Lm). A higher degree conducts in faster convergence speed; however, it raises the probability
of the optimization process converging to a local optimum. The last VMD hyper-parameter considered in
this paper is the type of Method (MI) applied in initialising the central frequencies. We consider three
different methods including uniform random, grid and peaks [18]. In order to adjust the VMD hyper-
parameters, we propose two fast and effective algorithms: Greedy Nelder-mead (GNM) search method and
Adaptive randomised local search (ARLS). The Permutation Entropy is applied to evaluate the performance
of both optimisers. Figure 18 shows the convergence rate of optimisers to find the best configuration of the
VMD method, and we can see that GNM can overcome another method in terms of convergence rate and
quality of proposed configuration on average. The best-found configuration values are K = 5, PF = 1900,
Lm = 1.34× 10−6, and MI = grid.

As shown in Figure 18, the developing IMFs decomposed using adaptive VMD of the case study in the
field of wind speed from IMF1 to IMF5. It can be remarked that the number of IMF has been significantly
diminished compared with the primary decomposed IMFs, due to significantly reducing the computational
expenditure of the whole model. Furthermore, we can observe that the first IMF consists of the highest
frequency components, and the last IMF holds more considerable magnitudes and characteristic biases of
the original SCADA time-series data compared with the other IMFs.
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Figure 14: A comparison of four proposed forecasting models with 25 different configurations of hyper-parameters. (a)
comparison of various LSTM settings based on RMSE. (b) Average ranking of the Friedman test for four applied models.
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Figure 15: The total performance comparison of four LSTM forecasting models with ten-minute and one-hour ahead prediction.
two-input(1) is the wind speed and direction, two-input(2) mentions the wind speed and current power of wind turbine.
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Figure 16: The best estimated power output values from the proposed hybrid models and the corresponding measured values
in SCADA system. The initial values of the weights are kept the same.
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Figure 17: A comparison of both optimisers GNM and ARLS applied to improve the performance of VMD by hyper-parameters
tuning. a) convergence rate b) a summary of statistical optimisation results with box plot.
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Figure 18: The decomposition results of wind speed obtained by proposed adaptive variational mode decomposition method.

26



6.4. Overall hybrid neuro-evolutionary model performance

Finally, the proposed hybrid model (AVMD-AOA-LSTM) is compared with some of the state-of-the-art
forecasting frameworks. To evaluate the performance of the proposed hybrid model, we compare 13 different
forecasting methods, including the best LSTM model which is tuned by the grid search, an adaptive neuro-
fuzzy inference system (ANFIS) (its hyper-parameters are assigned based on the study in [65]), Feed-forward
neural networks (FFNN), Polynomial neural networks (PNN), a developed LSTM called Bi-directional LSTM
(Bi-LSTM), two existing hybrid neuro-evolutionary methods (CMAES-LSTM [54], and DE-LSTM [58],
and also six new composed models including SaDE-LSTM, EFADE-LSTM, SCA-LSTM, EO-LSTM, MPA-
LSTM, and AOA-LSTM. Table 4 and 5 summarise the outcomes of the performance indices produced to
determine the optimal structure and hyper-parameters of the applied forecasters. It is evident that the
AVMD-AOA-LSTM hybrid model outperforms other hybrid models and provides more accurate forecasting
results.

In addition, The actual and forecasting values generated by the hybrid models and the LSTM networks
for the one-hour ahead forecasting are shown in Figure 16. In the zoomed versions of Figure 16(b, c and d),
it can be seen that a self-adaptive DE with LSTM estimates the power output with a considerable accuracy
compared with other models.

Figure 19 and 20 show the statistical results of the RMSE performance indices applied in this work for
short-term wind turbine power forecasting (ten-minute and one-hour ahead) received by 13 other models
and the proposed AVMD-AOA-LSTM hybrid model. Concerning this experiment, the AVMD-AOA-LSTM
hybrid evolutionary model can outperform its 13 competitors for short-term wind speed forecasting with
the minimum RMSE value as well as the highest rate of R-value.

6.5. Training runtime analysis

In order to evaluate the computational complexity of the applied model in this paper, we trained the
LSTM as the core of the proposed hybrid model for different ranges of learning rate and batch size for
one epoch. Figure 21 shows (a) the LSTM runtime landscape with various values of both batch sizes and
learning rates. It is noted that the size of the applied batch is meaningful and plays a significant role in the
computational cost of training. Furthermore, this figure represents (b) the performance landscape of the
LSTM when the number of epoch for training is just one. According to the observations, small batch sizes
with a learning rate between 10−1 and 10−4 can achieve better forecasting results.

To compare the computational complexity of the proposed hybrid frameworks, the average runtime of
one iteration for nine hybrid models are compared. It is noted that the population size of evolutionary
algorithms is the same. Table 6 shows the average runtime of one iteration that consists of LSTM training
runtime, the computational time for applying evolutionary operators like mutation and crossover and hyper-
parameters tuning, and finally the required decomposition process runtime. In terms of runtime, the best
performance is related to AVMD-AOA-LSTM due to having a decomposition technique and applying the
parallel training setup. This parallel training setup is able to save considerably the computational runtime;
however, it is involving some overheads of computation mainly because of data transfers, synchronisation,
thread creation, and removal.

7. Conclusions

Due to multiple systems and meteorological factors, wind power time series data exhibit chaotic be-
haviours which are hard to predict. In this paper, a combination of autoencoder and clustering was adopted
to reduce the stochastic noise inherent in raw data series. In the second phase, we propose a novel hy-
brid decomposition method consists of Variational Mode Decomposition (VMD) and two fast and effective
search methods to optimise the hyper-parameters of VMD including the Greedy Nelder-mead (GNM) search
method and Adaptive randomised local search (ARLS). Subsequently, a hybrid neuro-evolutionary approach
(AVMD-AOA-LSTM) consisting of the self-adaptive differential evolution (SaDE), Sine Cosine Algorithm
(SCA) and LSTM network was used for modelling the wind behavior. We then conducted extensive ex-
periments and compared our proposed approach with ten alternative hybrid models. As our experiments
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Table 4: Performance indices of forecasting wind turbine power output achieved by different models for ten-minutes ahead.
MSE RMSE MAE R

Model Train Test Train Test Train Test Train Test
FFNN Mean 1.740E-03 1.733E-03 4.172E-02 4.163E-02 2.558E-02 2.554E-02 8.929E-01 8.931E-01

Min 1.722E-03 1.677E-03 4.150E-02 4.095E-02 2.548E-02 2.535E-02 8.913E-01 8.901E-01
Max 1.764E-03 1.775E-03 4.201E-02 4.213E-02 2.570E-02 2.572E-02 8.942E-01 8.968E-01
Std 1.679E-05 3.894E-05 2.011E-04 4.686E-04 7.451E-05 1.346E-04 9.998E-04 2.339E-03

PNN Mean 2.853E-03 2.860E-03 5.255E-02 5.263E-02 4.156E-02 4.159E-02 9.467E-01 9.466E-01
Min 1.794E-03 1.873E-03 4.236E-02 4.328E-02 3.239E-02 3.270E-02 9.330E-01 9.330E-01
Max 6.075E-03 6.058E-03 7.794E-02 7.783E-02 6.489E-02 6.483E-02 9.558E-01 9.553E-01
Std 1.230E-03 1.217E-03 1.013E-02 1.001E-02 8.925E-03 8.872E-03 8.377E-03 8.286E-03

ANFIS Mean 6.981E-03 6.949E-03 8.324E-02 8.343E-02 5.287E-02 5.282E-02 9.615E-01 9.618E-01
Min 5.657E-03 5.725E-03 7.566E-02 7.521E-02 4.795E-02 4.809E-02 9.593E-01 9.584E-01
Max 7.648E-03 7.673E-03 8.760E-02 8.745E-02 5.546E-02 5.544E-02 9.665E-01 9.664E-01
Std 7.860E-04 7.614E-04 4.662E-03 4.834E-03 2.999E-03 2.979E-03 2.825E-03 2.858E-03

LSTM-grid Mean 1.427E-03 1.407E-03 3.778E-02 3.751E-02 2.834E-02 2.819E-02 9.826E-01 9.829E-01
Min 1.411E-03 1.382E-03 3.756E-02 3.718E-02 2.822E-02 2.804E-02 9.826E-01 9.826E-01
Max 1.452E-03 1.450E-03 3.810E-02 3.808E-02 2.867E-02 2.836E-02 9.827E-01 9.830E-01
Std 1.520E-04 2.552E-04 1.233E-02 1.598E-02 1.908E-03 1.216E-04 4.968E-05 1.606E-04

Bi-LSTM Mean 1.559E-03 1.565E-03 3.949E-02 3.956E-02 3.039E-02 3.034E-02 9.762E-01 9.761E-01
Min 1.551E-03 1.509E-03 3.939E-02 3.885E-02 3.034E-02 3.008E-02 9.730E-01 9.726E-01
Max 1.568E-03 1.604E-03 3.960E-02 4.006E-02 3.044E-02 3.056E-02 9.786E-01 9.788E-01
Std 5.094E-06 3.039E-05 6.450E-05 3.848E-04 3.355E-05 1.712E-04 1.884E-03 2.043E-03

CMAES-LSTM Mean 1.236E-03 1.193E-03 3.515E-02 3.454E-02 2.643E-02 2.615E-02 9.926E-01 9.928E-01
Min 1.227E-03 1.171E-03 3.503E-02 3.422E-02 2.631E-02 2.594E-02 9.926E-01 9.927E-01
Max 1.256E-03 1.206E-03 3.544E-02 3.473E-02 2.679E-02 2.638E-02 9.927E-01 9.930E-01
Std 7.280E-06 1.161E-05 1.033E-04 1.682E-04 1.206E-04 1.393E-04 2.597E-05 9.001E-05

DE-LSTM Mean 1.241E-03 1.163E-03 3.522E-02 3.411E-02 2.648E-02 2.583E-02 9.926E-01 9.930E-01
Min 1.235E-03 1.159E-03 3.515E-02 3.404E-02 2.639E-02 2.569E-02 9.925E-01 9.929E-01
Max 1.248E-03 1.180E-03 3.533E-02 3.436E-02 2.667E-02 2.609E-02 9.926E-01 9.932E-01
Std 4.002E-06 5.727E-06 5.680E-05 8.376E-05 7.153E-05 1.087E-04 2.693E-05 6.738E-05

SaDE-LSTM Mean 1.238E-03 1.164E-03 3.519E-02 3.412E-02 2.642E-02 2.580E-02 9.926E-01 9.930E-01
Min 1.233E-03 1.155E-03 3.511E-02 3.398E-02 2.634E-02 2.571E-02 9.925E-01 9.929E-01
Max 1.247E-03 1.171E-03 3.531E-02 3.422E-02 2.652E-02 2.592E-02 9.926E-01 9.931E-01
Std 4.227E-06 5.470E-06 6.003E-05 8.020E-05 6.600E-05 7.349E-05 2.258E-05 6.997E-05

EFADE-LSTM Mean 1.238E-03 1.202E-03 3.519E-02 3.467E-02 2.648E-02 2.623E-02 9.926E-01 9.928E-01
Min 1.224E-03 1.169E-03 3.499E-02 3.419E-02 2.629E-02 2.586E-02 9.924E-01 9.927E-01
Max 1.273E-03 1.222E-03 3.568E-02 3.496E-02 2.693E-02 2.651E-02 9.926E-01 9.929E-01
Std 1.502E-05 1.796E-05 2.126E-04 2.595E-04 1.942E-04 2.132E-04 8.773E-05 1.069E-04

SCA-LSTM Mean 1.238E-03 1.163E-03 3.519E-02 3.411E-02 2.643E-02 2.581E-02 9.926E-01 9.930E-01
Min 1.233E-03 1.155E-03 3.511E-02 3.398E-02 2.637E-02 2.572E-02 9.925E-01 9.929E-01
Max 1.244E-03 1.172E-03 3.527E-02 3.423E-02 2.652E-02 2.591E-02 9.926E-01 9.931E-01
Std 3.458E-06 5.903E-06 4.913E-05 8.657E-05 5.261E-05 6.799E-05 2.895E-05 6.926E-05

EO-LSTM Mean 1.235E-03 1.166E-03 3.515E-02 3.414E-02 2.639E-02 2.582E-02 9.926E-01 9.930E-01
Min 1.229E-03 1.151E-03 3.506E-02 3.392E-02 2.630E-02 2.564E-02 9.926E-01 9.929E-01
Max 1.243E-03 1.182E-03 3.525E-02 3.438E-02 2.661E-02 2.606E-02 9.926E-01 9.931E-01
Std 4.989E-06 8.645E-06 7.096E-05 1.266E-04 1.055E-04 1.213E-04 2.380E-05 6.940E-05

MPA-LSTM Mean 1.237E-03 1.171E-03 3.517E-02 3.422E-02 2.643E-02 2.589E-02 9.926E-01 9.930E-01
Min 1.231E-03 1.158E-03 3.509E-02 3.403E-02 2.634E-02 2.572E-02 9.925E-01 9.929E-01
Max 1.245E-03 1.180E-03 3.529E-02 3.435E-02 2.654E-02 2.604E-02 9.926E-01 9.931E-01
Std 4.816E-06 6.158E-06 6.842E-05 9.008E-05 6.868E-05 1.124E-04 2.426E-05 6.394E-05

AOA-LSTM Mean 1.238E-03 1.162E-03 3.519E-02 3.409E-02 2.643E-02 2.581E-02 9.926E-01 9.930E-01
Min 1.232E-03 1.156E-03 3.510E-02 3.399E-02 2.634E-02 2.572E-02 9.925E-01 9.929E-01
Max 1.243E-03 1.168E-03 3.526E-02 3.417E-02 2.653E-02 2.590E-02 9.926E-01 9.931E-01
Std 3.355E-06 5.164E-06 4.768E-05 7.576E-05 5.154E-05 5.537E-05 2.966E-05 8.395E-05

AVMD-AOA-LSTM Mean 1.097E-03 1.103E-03 3.312E-02 3.322E-02 2.330E-02 2.337E-02 9.935E-01 9.935E-01
Min 1.078E-03 1.091E-03 3.283E-02 3.303E-02 2.309E-02 2.310E-02 9.934E-01 9.934E-01
Max 1.138E-03 1.134E-03 3.373E-02 3.367E-02 2.370E-02 2.387E-02 9.935E-01 9.935E-01
Std 2.559E-05 1.734E-05 3.846E-04 2.598E-04 2.721E-04 3.074E-04 7.234E-05 4.087E-05
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Table 5: Performance indices of forecasting wind turbine power output achieved by different models for one-hour ahead.
MSE RMSE MAE R

Model Train Test Train Test Train Test Train Test
FFNN Mean 1.973E-03 1.960E-03 4.442E-02 4.427E-02 2.723E-02 2.717E-02 8.777E-01 8.786E-01

Min 1.959E-03 1.916E-03 4.426E-02 4.377E-02 2.710E-02 2.696E-02 8.766E-01 8.764E-01
Max 1.992E-03 1.993E-03 4.463E-02 4.465E-02 2.731E-02 2.732E-02 8.786E-01 8.810E-01
Std 1.192E-05 2.775E-05 1.341E-04 3.138E-04 6.541E-05 1.119E-04 6.441E-04 1.486E-03

PNN Mean 3.551E-03 3.560E-03 5.854E-02 5.859E-02 4.667E-02 4.676E-02 9.379E-01 9.379E-01
Min 1.879E-03 1.900E-03 4.335E-02 4.359E-02 3.316E-02 3.326E-02 9.294E-01 9.295E-01
Max 7.702E-03 7.745E-03 8.776E-02 8.801E-02 7.642E-02 7.685E-02 9.589E-01 9.589E-01
Std 1.586E-03 1.605E-03 1.176E-02 1.188E-02 1.132E-02 1.143E-02 8.900E-03 8.871E-03

ANFIS Mean 6.875E-03 6.789E-03 8.284E-02 8.229E-02 5.319E-02 5.289E-02 9.608E-01 9.610E-01
Min 6.208E-03 6.013E-03 7.879E-02 7.754E-02 5.071E-02 4.986E-02 9.585E-01 9.575E-01
Max 7.617E-03 7.905E-03 8.728E-02 8.891E-02 5.620E-02 5.711E-02 9.634E-01 9.636E-01
Std 6.226E-04 7.344E-04 3.758E-03 4.421E-03 2.348E-03 2.851E-03 2.318E-03 2.314E-03

LSTM-grid Mean 1.906E-03 1.909E-03 4.366E-02 3.966E-02 3.046E-02 3.053E-02 9.903E-01 9.905E-01
Min 1.880E-03 1.827E-03 4.336E-02 3.886E-02 3.036E-02 3.024E-02 9.902E-01 9.899E-01
Max 1.923E-03 2.004E-03 4.386E-02 4.051E-02 3.055E-02 3.083E-02 9.905E-01 9.909E-01
Std 1.968E-05 8.082E-05 2.458E-04 5.861E-04 6.857E-05 2.415E-04 1.238E-04 4.684E-04

Bi-LSTM Mean 1.773E-03 1.788E-03 4.211E-02 4.228E-02 3.230E-02 3.222E-02 9.754E-01 9.752E-01
Min 1.750E-03 1.720E-03 4.183E-02 4.147E-02 3.207E-02 3.212E-02 9.713E-01 9.710E-01
Max 1.790E-03 1.860E-03 4.231E-02 4.313E-02 3.259E-02 3.231E-02 9.792E-01 9.790E-01
Std 1.146E-05 4.012E-05 1.362E-04 4.744E-04 1.990E-04 7.218E-05 2.852E-03 2.923E-03

CMAES-LSTM Mean 1.634E-03 1.547E-03 4.042E-02 3.933E-02 3.061E-02 3.033E-02 9.902E-01 9.907E-01
Min 1.608E-03 1.520E-03 4.010E-02 3.898E-02 3.041E-02 3.000E-02 9.901E-01 9.905E-01
Max 1.652E-03 1.589E-03 4.065E-02 3.987E-02 3.084E-02 3.066E-02 9.903E-01 9.910E-01
Std 1.208E-05 2.141E-05 1.495E-04 2.717E-04 1.180E-04 1.854E-04 6.810E-05 1.496E-04

DE-LSTM Mean 1.645E-03 1.483E-03 4.056E-02 3.851E-02 3.064E-02 3.005E-02 9.901E-01 9.911E-01
Min 1.636E-03 1.467E-03 4.045E-02 3.830E-02 3.050E-02 2.963E-02 9.901E-01 9.909E-01
Max 1.655E-03 1.519E-03 4.068E-02 3.897E-02 3.085E-02 3.026E-02 9.902E-01 9.913E-01
Std 6.622E-06 1.504E-05 8.163E-05 1.948E-04 1.043E-04 1.679E-04 3.803E-05 1.328E-04

SaDE-LSTM Mean 1.641E-03 1.488E-03 4.050E-02 3.858E-02 3.063E-02 2.998E-02 9.901E-01 9.911E-01
Min 1.627E-03 1.469E-03 4.034E-02 3.833E-02 3.049E-02 2.980E-02 9.900E-01 9.909E-01
Max 1.658E-03 1.498E-03 4.072E-02 3.870E-02 3.083E-02 3.014E-02 9.902E-01 9.913E-01
Std 1.017E-05 9.844E-06 1.255E-04 1.277E-04 1.066E-04 1.217E-04 7.218E-05 1.095E-04

EFADE-LSTM Mean 1.637E-03 1.544E-03 4.047E-02 3.929E-02 3.062E-02 3.036E-02 9.902E-01 9.907E-01
Min 1.612E-03 1.482E-03 4.015E-02 3.850E-02 3.044E-02 2.998E-02 9.899E-01 9.903E-01
Max 1.686E-03 1.603E-03 4.106E-02 4.003E-02 3.110E-02 3.072E-02 9.903E-01 9.911E-01
Std 2.001E-05 4.337E-05 2.463E-04 5.527E-04 1.950E-04 2.380E-04 1.216E-04 2.669E-04

SCA-LSTM Mean 1.641E-03 1.483E-03 4.051E-02 3.850E-02 3.061E-02 2.997E-02 9.902E-01 9.911E-01
Min 1.630E-03 1.468E-03 4.037E-02 3.831E-02 3.052E-02 2.979E-02 9.901E-01 9.909E-01
Max 1.661E-03 1.499E-03 4.075E-02 3.872E-02 3.073E-02 3.025E-02 9.902E-01 9.913E-01
Std 8.274E-06 9.258E-06 1.020E-04 1.203E-04 6.092E-05 1.764E-04 4.033E-05 1.329E-04

EO-LSTM Mean 1.645E-03 1.494E-03 4.056E-02 3.865E-02 3.066E-02 3.003E-02 9.901E-01 9.910E-01
Min 1.633E-03 1.478E-03 4.041E-02 3.844E-02 3.054E-02 2.985E-02 9.900E-01 9.908E-01
Max 1.663E-03 1.523E-03 4.078E-02 3.902E-02 3.082E-02 3.016E-02 9.902E-01 9.911E-01
Std 1.003E-05 1.319E-05 1.235E-04 1.702E-04 9.821E-05 1.031E-04 6.182E-05 9.960E-05

MPA-LSTM Mean 1.632E-03 1.506E-03 4.040E-02 3.880E-02 3.053E-02 3.012E-02 9.902E-01 9.909E-01
Min 1.619E-03 1.482E-03 4.024E-02 3.849E-02 3.044E-02 2.990E-02 9.901E-01 9.906E-01
Max 1.642E-03 1.523E-03 4.052E-02 3.903E-02 3.060E-02 3.030E-02 9.903E-01 9.911E-01
Std 7.413E-06 1.087E-05 9.179E-05 1.403E-04 5.915E-05 1.262E-04 5.386E-05 1.370E-04

AOA-LSTM Mean 1.640E-03 1.481E-03 4.050E-02 3.848E-02 3.058E-02 2.997E-02 9.901E-01 9.911E-01
Min 1.635E-03 1.471E-03 4.044E-02 3.835E-02 3.054E-02 2.973E-02 9.901E-01 9.910E-01
Max 1.649E-03 1.488E-03 4.061E-02 3.857E-02 3.069E-02 3.006E-02 9.902E-01 9.912E-01
Std 3.841E-06 5.860E-06 4.737E-05 7.616E-05 5.271E-05 1.067E-04 2.825E-05 6.077E-05

AVMD-AOA-LSTM Mean 1.467E-03 1.447E-03 3.830E-02 3.804E-02 2.723E-02 2.722E-02 9.913E-01 9.914E-01
Min 1.442E-03 1.405E-03 3.797E-02 3.748E-02 2.703E-02 2.690E-02 9.911E-01 9.911E-01
Max 1.525E-03 1.504E-03 3.906E-02 3.878E-02 2.770E-02 2.755E-02 9.914E-01 9.917E-01
Std 3.362E-05 3.719E-05 4.361E-04 4.874E-04 2.713E-04 2.791E-04 1.241E-04 2.308E-04

29



0.03

0.035

0.04

0.045

0.05

0.055

0.06

R
M

S
E

T
es

t (
m

/s
)

0.033

0.0335

0.034

0.0345

0.035

R
M

S
E

T
es

t (
m

/s
)

Figure 19: The performance indices comparison of the all proposed forecasting models from the case study in terms of the best
achievement per each experiment. With regard to the median performance, AVMD-AOA-LSTM can overwhelm other hybrid
forecasting models.forecasting results with regard to ten-minute ahead

30



0.035

0.04

0.045

0.05

0.055

0.06

0.065

R
M

S
E

T
es

t (
m

/s
)

0.0375

0.038

0.0385

0.039

0.0395

0.04

R
M

S
E

T
es

t (
m

/s
)

Figure 20: The comparison of the proposed forecasting models from the case study in terms of the best achievement per each
experiment. AVMD-AOA-LSTM performs best compared with other models. forecasting results with regard to one-hour ahead
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Figure 21: Runtime analysis of the LSTM training for one epoch with different range of learning rates and batch sizes. a)
training runtime analysis b) RMSE test of LSTM

Table 6: Computational complexity analysis of the applied hybrid forecasting models for one iteration

Methods Computational
time (s)

CMAES-LSTM 4.633E+03

DE-LSTM 5.108E+03

SaDE-LSTM 4.970E+03

EFADE-LSTM 4.743E+03

SCA-LSTM 4.672E+03

EO-LSTM 4.716E+03

MPA-LSTM 4.707E+03

AOA-LSTM 4.733E+03

AVMD-AOA-LSTM 3.233E+03

suggest, the proposed hybrid model outperforms its counterparts in terms of four performance criteria, in
both ten-minute and one-hour intervals.

In the future, a greater variety of power curve datasets derived from different kinds of wind turbines from
different regions will be evaluated to further enhance our model. Ultimately, another investigation of this
study is to employ various outlier detection with decomposition and optimization approaches to improve
the forecasting results.
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[20] Fadlallah, B., Chen, B., Keil, A., Pŕıncipe, J.: Weighted-permutation entropy: A complexity measure for time series
incorporating amplitude information. Physical Review E 87(2), 022911 (2013)

[21] Faramarzi, A., Heidarinejad, M., Mirjalili, S., Gandomi, A.H.: Marine predators algorithm: A nature-inspired metaheuris-
tic. Expert Systems with Applications p. 113377 (2020)

[22] Feng, Z.k., Niu, W.j., Liu, S., Luo, B., Miao, S.m., Liu, K.: Multiple hydropower reservoirs operation optimization by
adaptive mutation sine cosine algorithm based on neighborhood search and simplex search strategies. Journal of Hydrology
590, 125223 (2020)

[23] Fu, W., Wang, K., Tan, J., Zhang, K.: A composite framework coupling multiple feature selection, compound prediction
models and novel hybrid swarm optimizer-based synchronization optimization strategy for multi-step ahead short-term
wind speed forecasting. Energy Conversion and Management 205, 112461 (2020)

[24] Gal, Y., Ghahramani, Z.: A theoretically grounded application of dropout in recurrent neural networks. In: Advances in
neural information processing systems. pp. 1019–1027 (2016)

[25] Hamian, M., Darvishan, A., Hosseinzadeh, M., Lariche, M.J., Ghadimi, N., Nouri, A.: A framework to expedite joint
energy-reserve payment cost minimization using a custom-designed method based on mixed integer genetic algorithm.
Engineering Applications of Artificial Intelligence 72, 203–212 (2018)

[26] Hansen, N., Kern, S.: Evaluating the cma evolution strategy on multimodal test functions. In: International Conference
on Parallel Problem Solving from Nature. pp. 282–291. Springer (2004)

[27] He, Y., Li, H.: Probability density forecasting of wind power using quantile regression neural network and kernel density
estimation. Energy conversion and management 164, 374–384 (2018)

[28] Hu, Y.L., Chen, L.: A nonlinear hybrid wind speed forecasting model using lstm network, hysteretic elm and differential
evolution algorithm. Energy conversion and management 173, 123–142 (2018)

[29] Huang, Q., Cui, Y., Bertling Tjernberg, L., Bangalore, P.: Wind turbine health assessment framework based on power
analysis using machine learning method. pp. 1–5 (09 2019). https://doi.org/10.1109/ISGTEurope.2019.8905495

[30] Huang, Q., Cui, Y., Tjernberg, L.B., Bangalore, P.: Wind turbine health assessment framework based on power analysis
using machine learning method. In: 2019 IEEE PES Innovative Smart Grid Technologies Europe (ISGT-Europe). pp. 1–5.
IEEE

[31] Humeau-Heurtier, A., Wu, C.W., Wu, S.D.: Refined composite multiscale permutation entropy to overcome multiscale
permutation entropy length dependence. IEEE signal processing letters 22(12), 2364–2367 (2015)
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