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Abstract 

Climate change affects natural systems, leading to increased acceleration of global water cycle and 

substantial impacts on the productivity of tropical rivers and the several ecosystem functions they 

provide. However, the anticipated impacts of climate change in terms of frequency and intensity 

of extreme events (e.g., droughts and floods) on hydrological systems across regions could be 

substantially different. This study therefore aims to assess the impacts of climate change on the 

streamflow of a large river basin located in central Australia (Cooper creek-Bulloo River Basin). 

Modified version of the hydrological model Hydrologiska Byråns Vattenbalansavdelning (HBV) 

was used in this study to generate daily streamflow. This model was first calibrated (2001-2010) 

and then validated for two independent periods (1993-1997 and 2011-2015). The model depicted 

a good performance in simulating observed streamflow. Climate projection data from multiple 

general circulation models, including (ACCESS1.0, CanESM2, CESM1-CAM5, CNRM-CM5, 

GFDL-ESM2M, HadGEM2-CC, MIROC5, NorESM1-M, ACCESS1-0, ACCESS1-3, CCSM4, 
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CNRM-CM5, CSIRO-Mk3.6, GFDL-CM3, GFDL-ESM2M, HadGEM2, MIROC5, MPI-ESM-

LR, and NorESM1-M) in various forms (raw, statistically downscaled, dynamically downscaled, 

and bias adjusted) were considered in this study. Results showed that three high resolution 

dynamically downscaled and bias adjusted models (ACCESS1-3, CNRM-CM5, and MPI-ESM-

LR) from Terrestrial Ecosystem Research Network (TERN) dataset v1.0.2 have better 

performance than other models considered, that is, in terms of capturing observed precipitation 

over the basin. Future climate projections of ensemble of these three models forced with RCP 4.5 

and RCP 8.5 emission scenarios were then used to generate streamflow for 2050s (2040-2069) and 

2080s (2070-2099). Results of the study indicated that mean annual precipitation was projected to 

decrease by up to -8% in 2050s and temperature was projected to increase by up to 4.66 °C in 

2080s under the average and extreme emission scenarios, respectively. Mean annual, mean 

seasonal (December-February, March-May, June-August, September-November), and mean 

monthly streamflow were projected to decrease under different emission scenarios in 2050s and 

2080s. These results indicate decreased water availability in the future as well as water cycle 

intensification. These changes in streamflow might have impacts on agriculture, natural 

ecosystem, and could lead to water restrictions. The outcome of this study can directly feed into 

frameworks for sustainable management of water resources and support adaptation strategies that 

rely on science and policy to improve water resources allocation in the region. 

Keywords; Droughts, hydrological impacts, water scarcity, water management, central 

Australia, TERN dataset version 1.0.2 

1.   Introduction 

Global climate is changing and the vulnerabilities of hydro-ecological, freshwater, and 

agricultural systems to its impacts are expected to vary across regions due to the contributions of 

several atmospheric processes and human actions (Ndehedehe et al., 2021; Zhang et al., 2008; 
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Hailey et al., 2020).  Generally, the evidence of climate change impacts on environmental systems, 

including groundwater variability, surface water, and productivity of wetland ecosystems, among 

others, is growing (Ndehedehe et al., 2021; Ward et al., 2013; van Dijk et al., 2013). But its impacts 

on water resources, including key hydrologic metrics such as intensity, frequency, and magnitude 

will vary substantially at regional and local scales (Troin et al., 2015). As with several other 

regions, Australia has different and highly variable freshwater habitats and climatic regimes, 

making it more susceptible to climate change (Head et al., 2014). For instance, the influence of 

large-scale processes such as the El-Ni˜no-Southern Oscillation on both rainfall and land water 

storage has been documented (Ndehedehe et al., 2021; Kiem et al., 2016; van Dijk et al., 2013), 

emphasizing the vulnerability of the region to changes in global climate. Furthermore, Australia 

has experience more warming from 1910-2011 (0.9°C) (CSIRO 2012) than the global average 

warming (0.7°C) (Cleugh et al., 2012) and is fast becoming a global climatic hotspot, given the 

impacts of several multi-scale climatic processes. Most parts of Australia are arid and even more 

vulnerable to small variations in precipitation, e.g., precipitation deficit in streamflow is up to 2.2 

times in east, south, and southwest Australia (Head et al., 2014; van Dijk et al., 2013). These 

factors and conditions warrant the assessment of region-specific hydrological response to climate 

change impacts. 

 
Key methodologies used to assess hydrological implications of climate change on water 

management require the combination of hydrological models with output of General Circulation 

Models (GCMs), which are based on different climate change scenarios (Luo et al., 2019; Guo et 

al., 2020; Troin et al., 2015). Notably, hydrological modeling is dependent on accurate information 

of essential variables such as precipitation. This is because it is considered as a crucial input for 

hydrological applications (Masih et al., 2010; Price et al., 2014; Wang et al., 2015; Camici et al., 
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2018), particularly in arid river basins (Pilgrim et al., 1988). Arguably, the poor skills and large 

uncertainties of global hydrological and climate models have been linked to limited gauged 

observations of precipitation and poor representation of surface water balance, among other factors 

(Ndehedehe, 2019; van Dijk et al., 2014). Reliable information on precipitation inputs is thus 

crucial to understand streamflow regimes and for accurate estimation of future climate scenarios 

(Troin et al., 2015; Alnahit et al., 2020). 

However, the native resolution of GCMs is considerably coarse, making them more 

suitable for continental or global scale studies (Di Virgilio et al., 2020). In addition, the use of such 

models is restricted in region-specific studies or at localized scales (e.g. at a catchment scale). This 

is because information about climate processes at a finer scale is not provided by the coarse 

resolution GCMs (Duffy et al., 2003; Li et al., 2010), especially precipitation (Wood et al., 2004). 

The need for comprehensive catchment-scale assessment of the impacts of climate change on 

streamflow was recently reported by Eccles et al., (2021). They highlighted the non-linearity of 

these impacts, emphasizing the need for such assessment to increase preparedness in the advent of 

future extreme events. Furthermore, different methods have been employed to resolve this scale 

gap and to transform the climatic patterns simulated at coarser scale to local scale. Statistical 

downscaling and dynamical downscaling are two widely used approaches for this purpose. In the 

statistical downscaling, transformation of climate projections from a coarse scale to fine scale is 

achieved by means of transfer functions (trained) that play the role of connectivity between two 

spatial resolutions (Li et al., 2010). In dynamical downscaling however, a GCM is driven by a 

higher-resolution regional climate model (RCM), and the RCM is provided with boundary 

conditions of GCM gap (Hagemann et al., 2009; Maraun et al., 2010). A key advantage of 

statistical downscaling is its lower computational requirement (Li et al., 2010) and dynamical 
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downscaling is considered as an approach that is physically consistent in overcoming the scale 

gap. As a result of this, and their higher resolution, an improved simulation of climate variables 

could be achieved (Hagemann et al., 2009; Maraun et al., 2010). Importantly, these methods have 

benefits and shortcomings and have been comprehensively detailed by Fowler et al., 2007 and 

Wilby et al., 2009.  

This study aims to evaluate the impacts of climate change on the streamflow of a large 

river basin (Cooper creek-Bulloo River Basin) in Australia. To achieve this, a hydrological model 

will be calibrated and validated and then will be used for the streamflow projection. Selection of 

climate model outputs for future hydro-climatological projections is considered as one of the most 

important and critical step in climate change impact studies. Therefore, different GCMs with 

varying characteristics will be considered in this study including raw, statistically downscaled, 

dynamically downscaled, and bias adjusted. Best performing (in term of simulating observed 

precipitation) models will be selected and ensemble of best performing GCMs will then be used 

for future hydro-climatological projections. Apart from providing insight to hydrological changes, 

this study might be useful for management of river ecosystem and water resources in the region. 

An important outcome of this study is its inherent potential to support adaptation strategies that 

rely on science and policy to improve water resources allocation. 

2.   Materials and Methods 

2.1.   Study area 

We consider in this work the Cullyamurra Water Hole station as representative of the 

Cooper creek-Bulloo River Basin (one of the largest in the state of Queensland), which is located 

(140.843°E, 27.701°S). The Cooper creek-Bulloo River Basin has a drainage area of 232846 km2 

and a mean elevation of 452 m (Fig. 1). There are more than 10,000 lacustrine/palustrine wetlands 
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in the region. Climatic zones in the basin are desert, grassland, and subtropical. Different wetlands 

(aquatic ecosystem) including arid and semi-arid lakes, arid swamps, coastal and sub-coastal tree 

swamps, coastal grass-sedge wetlands, and semi-arid swamps are present in the basin. It is also a 

home to more than three thousand wildlife species including native, introduced, wetland indicator 

species, and rare or threatened species (Department of Environment and Science, Queensland, 

2016). The basin is dominated by scattered shrubs and grasses, other land cover across the basin 

consists of mines and quarries, lakes and dams, salt lakes, rain fed cropping, rain fed pasture, 

wetlands, closed tussock grassland, open hummock grassland, open tussock grassland, dense 

shrubland, open shrubland, closed forest, open forest, open woodland, woodland, and urban areas 

(Lymburner et al., 2015) (Fig. 1). Scattered shrubs and grasses are more prominent in low elevation 

areas in the basin. However, their presence is almost negligible in the northern areas of the basin 

with high elevation. Open tussock grassland, open woodland, and woodland are more dominant in 

the areas of higher elevation, and sparsely located in the low to medium elevation areas. The central 

region of the basin which presents intermediate medium elevation is dominated by open hummock 

grassland, rain fed cropping, open shrubland, and wetlands. Areas with highest elevation are 

dominated by woodlands. Six Hydrologic Soil Groups (HSGs) are present in the basin with 

moderate to high runoff potential i.e. HSG-B, HSG-C, HSG-D, HSG-B/D, HSG-C/D, and HSG-

D/D. These HSGs are comprised of different soil texture classes, i.e. sandy load, loamy sand, clay 

loam, silty clay loam, sandy clay loam, loam, silty loam, silt, clay, silty clay, and sandy clay (Ross 

et al., 2018).   

2.2.   Experimental setup 

2.2.1.   Observed and projected data 

On the one hand, observed daily precipitation, temperature, and evapotranspiration data for 

ninety eight stations in the basin for the period 1986-2015 was extracted from the high resolution  
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(∼ 5 km) SILO climate dataset (http://www.longpaddock.qld.gov.au/silo, Jeffrey et al., 2001) and 

was averaged over the basin. These high-resolution data have been interpolated from the superior 

quality measurements provided by the Australian Bureau of Meteorology. 

On the other hand, several GCMs which provide global future climate projections of 

different climate variables such as precipitation and temperature were considered for this study. 

Out of forty different Coupled Model Inter-comparison Project (CMIP5) coarse resolution GCMs, 

eight GCMs, which presented the best performance over Australia had been identified previously 

by the Australian government, details can be found in (the interested reader is referred to (CSIRO 

and BoM, 2015) and (https://www.climatechangeinaustralia.gov.au/en/support-and-

guidance/faqs/eight-climate-models-data/ for further details). Description of these eight models is 

summarized in table SI. 

Besides, the eleven CMIP5 GCMs listed in table SII (ACCESS1-0, ACCESS1-3, CCSM4, 

CNRM-CM5, CSIRO-Mk3.6, GFDL-CM3, GFDL-ESM2M, HadGEM2, MIROC5, MPI-ESM-

LR, and NorESM1-M) were selected to be used over Queensland. These models were dynamically 

downscaled using the Commonwealth Scientific and Industrial Research Organization (CSIRO) 

regional climate model Conformal Cubic Atmospheric Model (CCAM) for two representative 

concentration pathways (RCP 4.5 and RCP 8.5), representing average and extreme greenhouse gas 

emission scenarios (Syktus et al., 2020). The resulting high resolution (∼10 km) daily dataset, is 

called Terrestrial Ecosystem Research Network (TERN) version 1.0.2. In addition, another version 

of this dataset, which is bias-corrected is also available. These datasets could be accessed from the 

Queensland Future Climate Dashboard (www.longpaddock.qld.gov.au/qld-future-climate/).  

2.2.2.   Hydrological model, its setup and development 

http://www.longpaddock.qld.gov.au/silo
https://www.climatechangeinaustralia.gov.au/en/support-and-guidance/faqs/eight-climate-models-data/
https://www.climatechangeinaustralia.gov.au/en/support-and-guidance/faqs/eight-climate-models-data/
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The Hydrologiska Byråns Vattenbalansavdelning (HBV) model (Bergström 1976; 

Lindström et al. 1997) is a conceptual hydrological model. A slightly modified version of HBV 

known as HBV-light (Seibert & Vis 2012) was used in this study to simulate streamflow. It has 

snow, soil, response, and routing routines. Water flowing through a basin is represented by the 

model in following ways: Precipitation is first processed by the model with respect to threshold 

temperature and then it is simulated accordingly. In the next phase, soil routine is employed by the 

model where precipitation is processed according to the water content of soil box. Then response 

routine becomes active and groundwater recharge adds up to groundwater box (upper) and 

percolation is initiated to the groundwater box (lower). Streamflow is then simulated and in the 

routing routine, transport of generated streamflow is represented along the stream network by the 

application of a triangular weighing function. HBV-light uses temperature, precipitation, and 

potential evaporation values as driving variables. For further details on the model, interested 

readers are referred to (Bergström 1976; Lindström et al. 1997; Seibert & Vis 2012). 

In order to calibrate the model on a daily time scale, a period of ten years (2001-2010) of 

data was selected, leaving the year 2000 as spin-up. This particular period was chosen for 

calibration since it includes different (e.g. nearly normal and extreme) streamflow episodes. For 

validation, two independent time periods were considered: 1993-1997 and 2011-2015. These two 

periods were also selected for encompassing different streamflow characteristics. For 

comprehensiveness, the HBV-light model was calibrated against different objective functions 

(efficiency metrics). In particular we have used the Nash-Sutcliffe efficiency (NSE); (Nash & 

Sutcliffe 1970), Kling Gupta Efficiency (KGE) (Gupta et al., 2009), Lindström measure 

(Lindström et al. 1997) (hereafter Lm), and Coefficient of determination (R2). These objective 

functions have a perfect value of 1, i.e. if a value of 1 is achieved for any of these objective 
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functions it will refer to a perfect match between observed and modeled streamflow. The model 

was calibrated using Genetic Algorithm Protocol (GAP; Seibert 2000) and Powell correction. In 

order to achieve the best performance in simulating observed streamflow, a two-step calibration 

procedure was adopted. In the first step the model was calibrated against the four individual 

objective functions (NSE, KGE, Lm, and R2) by giving a weightage of hundred percent to each of 

them. In the second step, it was calibrated against different combinations of the four objective 

functions i.e. NSE+KGE, NSE+Lm, NSE+R2, KGE+Lm, KGE+R2, and R2+Lm by giving a fifty 

percent weightage to each objective function in each particular combination. 

2.2.3.   Selection of GCMs for future climate projections  

Precipitation is an essential and critical input for hydrological modeling. Since the ability 

of the different GCMs to reliably reproduce observed precipitation is highly location-dependent 

(Vaze et al., 2011; Tuo et al., 2016), it is important to select the best performing GCMs for the 

particular target region being studied. To this end, five ensembles of different GCMs were 

considered. The first ensemble consisted of eight GCMs (section 2.2.1) in their raw form (native 

coarse resolution) and was referred to as AU-GCMs Raw. The second ensemble included the same 

models but statistically downscaled through bias correction (Delta method) and was referred to as 

AU-GCMs BC. The third ensemble consisted of the same eight models, but bias corrected with 

Quantile Mapping method and was referred to as AU-GCMs QM. The fourth ensemble consisted 

of eleven dynamically downscaled GCMs (section 2.2.1) and was referred to as QLD-GCMs. 

Finally, the fifth ensemble of models included these same eleven models but was also bias adjusted 

other than being dynamically downscaled and was referred to as QLD-GCMs BA.  

Performance of these five ensembles to capture observed precipitation was evaluated using 

several efficiency metrics including, Mean Error (ME), Mean Absolute Error (MAE), Root Mean 
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Square Error (RMSE), Relative Absolute Error (RAE), Relative Volume Error (RVE), Index of 

Agreement measure (IoAd), KGE, and Percent Bias (PBIAS). Out of the five ensembles the one 

with the lowest ME, MAE, RMSE, RAE, RVE, PBIAS and highest IoAd and KGE was selected 

for further analysis. Note that previous studies suggested that GCMs with weak performance 

should not be included in the final ensemble to be used for future climate projections (see, e.g., 

Basharin et al. (2016) and Perkins et al. (2007)). Once the selection of the best performing 

ensemble was done, all the contributing GCMs were individually examined in terms of certain 

metrics (by giving them a threshold value). Only those models falling within the limits of these 

(threshold) values were finally selected to form the definitive ensemble. The limits considered for 

ME were -2 and 2, less than 1.2 for RAE, between -0.1 to 0.1 for RVE, 0.53 for IoAd, above 0.32 

for KGE, and between -10 to 10 for PBIAS. The definitive ensemble was built by simply averaging 

the selected models. Before the use of this ensemble as future climate projections dataset in this 

study, another comparison (based on mean annual, daily, monthly, 25th percentile, median, and 

75th percentile precipitation) was also made between this final ensemble and the initial one, which 

was selected out of the five ensembles considered. Climate projections from the final ensemble 

were then used as inputs to the HBV-light model in order to produce streamflow projections for 

two future periods i.e. 2050s (2040-2069) and 2080s (2070-2099). Note that the methodological 

approach adopted in this study to select the best performing climate models is subjective as there 

is no globally agreed criteria for this task (Smith and Chandler, 2010).  

3.   Results and Discussion 

3.1.   Model calibration and validation 

The sensitivity of the HBV-light’s performance during calibration and validation periods 

to different objective functions and their combinations was first assessed. The model was 
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calibrated against different objective functions in a way that maximum value (closer to 1) was 

achieved for each objective function and each combination of objective functions (Section 2.2.2). 

Values of up to 0.89 and 0.66 were achieved for these objective functions and their combinations 

during calibration and validation periods respectively. We found out that it does not necessarily 

mean that higher value of an objective function leads to better performance of the model. For 

instance, when the model was calibrated against R2 as an objective function, a value of 0.89 was 

achieved and a value of 0.78 was achieved when the model was calibrated against NSE as an 

objective function. However, the difference between mean daily observed and modeled streamflow 

was less in case of NSE, implying a better performance of model in capturing observed streamflow 

(Fig. 2). In addition it was also found that if a model is calibrated against an objective function or 

combination of objective functions e.g. R2+Lm and a low difference in observed and modeled 

streamflow was obtained during calibration period, it does not imply that it will depict the lower 

difference in observed and modeled streamflow during validation period as well (Fig. 2). Other 

than the differences in mean daily streamflow (observed vs. modeled) during the calibration 

period, model’s ability to capture extreme streamflow values is also a major factor which has to 

be considered. Finally it was found out that if a model is calibrated against NSE as an objective 

function, a good agreement between different characteristics of streamflow (observed vs. modeled) 

during calibration and both validation periods was depicted (Fig. 3). These results however are 

subjective and might be different depending on the region of study and other factors.  

3.2.   Selection of future climate projections of GCMs 

From the results obtained based on the methodology described in section 2.2.3, it was found 

that AU-GCMs Raw and QLD-GCMs considerably overestimated the mean annual precipitation 

by up to 41% and 53%, respectively. On the contrary, AU-GCMs BC and AU-GCMs QM 
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substantially underestimated mean annual precipitation by up to 59% and 18%. Finally, QLD-

GCMs BA provided the best results with an overestimation of mean annual precipitation by only 

up to 8%. However, besides PBIAS, several other metrics were employed to further assess the 

performance of the different ensemble GCMs. Results for all the other metrics, including MAE, 

ME, RMSE, RAE, RVE, IoAd, and KGE also suggested a better performance of QLD-GCMs BA. 

At this point, the eleven GCMs conforming the QLD-GCMs BA ensemble were individually 

evaluated in terms of capturing the historic precipitation based on different threshold values 

assigned to different metrics (see section 2.2.3). Based on these criteria, three GCMs ACCESS 1-

3, CNRM-CM5, and MPI-ESM-LR were selected for the final ensemble, which is referred to as 

3QLD-GCMs BA hereafter. Fig. 5 shows that mean monthly precipitation simulated by these three 

models captures observed precipitation fairly well. Moreover, as shown by Fig. 6, as compared 

with the total ensemble of eleven GCMs, these three GCMs also exhibit lower difference with 

respect to observed precipitation beyond mean monthly values.  

To the best of our knowledge this is the first time that Queensland climate projection data 

of 11 GCMs have been evaluated for hydrological applications in comparison with 8 GCMs 

selected by Australian Government.  This approach could be used in future for the whole state of 

Queensland and would be beneficial for better understanding of climate change impacts on the 

streamflow characteristics and water resources management of Queensland’s catchments. 

3.3.   Projected changes in precipitation, temperature, and streamflow 

For the assessment of climate change and its associated effects in the hydrology, a baseline 

period of 1986-2015 was used, and the future changes in precipitation, temperature, and 

streamflow over CCCWH were computed for 2050s (2040-2069) and (2070-2099) 2080s under 
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the RCP 4.5 and the RCP 8.5 emission scenarios. For simplicity, the period 2050s (2080s) was 

referred to as the P1 (P2) in the following.  

Mean annual precipitation was projected to decrease in P1 by -8% and to decrease only 

slightly in P2 under the RCP 4.5 emission scenario. Under the RCP 8.5, mean annual precipitation 

was projected to decrease slightly in P1 and to increase by 6% in P2. Mean annual temperature 

was projected to increase by 1.95 °C and 2.42 °C in P1and P2 respectively under the RCP 4.5 

emission scenario. For the RCP 8.5 emission scenario, mean annual temperature was projected to 

increase by 2.67 °C and 4.66 °C in P1 and P2, respectively. Mean annual streamflow was projected 

to decrease by up to -32% in P1 and up to -28% in P2 under the RCP 4.5 emission scenario. Under 

the RCP 8.5 emission scenario, mean annual streamflow was projected to decrease by up to -31% 

in P1 and -20% in P2. Overall projected changes in mean annual streamflow were in line with 

decreasing (increasing) precipitation (temperature) variability under both emission scenarios.  

At a seasonal scale, streamflow was projected to decrease by -33% and -27% for DJF in 

P1 under the RCP 4.5 and RCP 8.5 emission scenarios respectively. A decrease of -24% and -13% 

was projected for December-January-February (DJF) of P2 under the RCP 4.5 and RCP 8.5 

emission scenarios respectively. A decrease of -33% and -43% in streamflow was projected for 

MAM in P1 under the RCP 4.5 and RCP 8.5 emission scenarios respectively, while streamflow 

was projected to reduce by -52% and -46% for the same season in P2 under the RCP 4.5 and RCP 

8.5 emission scenarios respectively. For June-July-August (JJA) in P1, streamflow was projected 

to decrease by -16% and -31% under the RCP 4.5 and RCP 8.5 emission scenarios respectively, 

and a decrease of -26% and -19% was projected for the same season in P1 under the respective 

emission scenarios. Streamflow was projected to decrease by -29% for September-October-

November (SON) in P1 under the RCP 4.5 and RCP 8.5 emission scenarios, and the decrease of -
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7% and 8% was projected for SON in P2 under the RCP 4.5 and RCP 8.5 emission scenarios 

respectively. 

On a monthly scale, maximum decrease of -76% in July streamflow and a maximum 

increase of 35% in October streamflow was projected for P1 under the extreme emission scenario 

i.e. RCP 8.5 (Fig. 7). July streamflow was projected to undergo a maximum decrease of -81% 

under the RCP 4.5 emission scenario in P2 and an increase of 48% was projected in October 

streamflow in the same period under the RCP 8.5 emission scenario. Overall mean monthly 

streamflow was projected to decrease by -29% and -36% in P1 under the RCP 4.5 and RCP 8.5 

emission scenarios respectively and mean monthly streamflow was projected to decrease by -33% 

and -29% in P2 under the RCP 4.5 and RCP 8.5 emission scenarios respectively.  

3.4.   Discussion 

Different sources of uncertainties are attributed to the process of assessing climate change 

impacts on streamflow characteristics. Large sources of uncertainties are related to the 

hydrological models and General Circulation Models (GCMs) among others (Vettter et al., 2017). 

To reduce hydrological model related uncertainties, the hydrological model setup and development 

was considered. It is crucial for a hydrological model that is being used for assessing changes in 

future streamflow, to represent observed streamflow with an acceptable accuracy. The goal here 

was to calibrate and validate the HBV-light model in such a way that modeled streamflow could 

show sensitivity to both mean and extreme observed events. To achieve this, we have considered 

a range of objective functions and their combinations i.e. NSE, KGE, Lm, R2, NSE+KGE, 

NSE+Lm, NSE+R2, KGE+Lm, KGE+R2, and R2+Lm. The sensitivity of model’s performance 

during calibration and validation periods to these objective functions and their combinations was 

assessed. Results showed that it does not necessarily mean that if the model is calibrated against 
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an objective function with a higher value, it will be a better representative of observed streamflow. 

For example, when the model was calibrated against R2 as an objective function, a high value of 

0.89 was achieved during the calibration period and a value of 0.78 was achieved for the same 

period when the model was calibrated against NSE as an objective function. However, the 

difference between mean daily observed and modeled streamflow was less in case of NSE, 

implying a better performance of model in capturing observed streamflow (Fig. 2). Additionally,, 

it was also observed that if a model was calibrated against an objective function or a combination 

of objective functions e.g., R2+Lm and a low difference in observed and modeled streamflow was 

obtained during calibration period, it does not imply that it will depict the lower difference in 

observed and modeled streamflow during all validation periods as well (Fig. 2). For instance, the 

difference between observed and modeled mean daily streamflow was less when the model was 

calibrated against R2+Lm during calibration and second validation period, however the difference 

in observed and modeled streamflow was substantial during first validation period (Fig. 2). Our 

results also point out the importance of considering two independent periods for validation. Our 

aim was to achieve the performance of the model, which was fairly acceptable during calibration 

and both validation periods. Along with the differences in mean daily streamflow (observed and 

modeled) during calibration and validation periods, model’s ability in capturing other 

characteristics of observed streamflow e.g. high and low streamflow was also considered. Finally, 

it was found out that if a model was calibrated against NSE as an objective function, a good 

agreement between different characteristics of streamflow (observed and modeled) during 

calibration and both validation periods was achieved (Figs. 3 and 4).  

To reduce the uncertainties related to the choice of GCM, this study used 19 different 

GCMs, namely ACCESS1.0, CanESM2, CESM1-CAM5, CNRM-CM5, GFDL-ESM2M, 
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HadGEM2-CC, MIROC5, NorESM1-M, ACCESS1-0, ACCESS1-3, CCSM4, CNRM-CM5, 

CSIRO-Mk3.6, GFDL-CM3, GFDL-ESM2M, HadGEM2, MIROC5, MPI-ESM-LR, and 

NorESM1-M. Climate projections from the first eight models were considered in their different 

forms including raw, as well as statistically downscaled through Delta and Quantile Mapping bias 

correction methods. The rest of the models were considered in their two forms; dynamically 

downscaled and dynamically downscaled with bias adjustments. To use the projections of a 

climate model for projecting future streamflow, it is imperative to see how that model replicates 

the observed precipitation over a recent historical period, since this variable  plays a key role in 

climate change impacts on streamflow studies. After employing multiple statistics, we found that 

three GCMs (ACCESS1-3, CNRM-CM5, and MPI-ESM-LR), which were dynamically 

downscaled and subsequently bias adjusted, exhibited a better performance in capturing observed 

precipitation patterns over our target region (Figs. 4 and 5).  

Our study reflects multiple sources of uncertainty that could arise in selection of future 

climate projections. We have considered raw GCMs, statistically downscaled GCMs, dynamically 

downscaled GCMs, bias adjusted GCMs. Other than this we have employed extensive statistical 

metrics (Mean Error (ME), Mean Absolute Error (MAE), Root Mean Square Error (RMSE), 

Relative Absolute Error (RAE), Relative Volume Error (RVE), Index of Agreement measure 

(IoAd), KGE, and Percent Bias (PBIAS), mean annual, daily, monthly, 25th percentile, median, 

and 75th percentile modeled and observed precipitation) to measure the models’ performance 

against observed climate data. The methodology used in our study is not only improved but is 

comprehensive too in the sense that we have considered a range of uncertainties and after going 

through strict assessment, we have finally selected the best performing models that are able to 
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capture observed variability for precipitation, the key variable to reliable project streamflow in a 

hydrological impact study. 

Our results indicated an overall decrease in annual precipitation in the P1 and P2 under the 

RCP 4.5 and RCP 8.5 emission scenarios. However, there was an exception that mean annual 

precipitation was projected to increase in P2 under the RCP 8.5 emission scenario. Results of this 

study also indicated an increase in mean annual temperature in P1 and P2 under RCP 4.5 and RCP 

8.5 emission scenarios. Mean annual streamflow was also projected to decrease, which is in line 

with decreasing precipitation and rising temperature. However, streamflow was also projected to 

decrease in P2 under the RCP 8.5 emission scenario, in which the precipitation was projected to 

increase. This relationship between climate variables and streamflow might be attributed to 

different factors. For the said scenario and period an exceptional increase in temperature was also 

projected. For instance, an increase of 2.42 °C was projected for the same period under the RCP 

4.5 emission scenario, however, it was 4.66 °C under the extreme emission scenario. High 

temperature may lead to more evapotranspiration, resulting in reduced streamflow and net 

precipitation (water availability). Furthermore, changes in climatic variables such as precipitation 

have a strong impact on streamflow and are typically amplified in streamflow by few times, and 

even an insignificant variation of climate variables could lead to substantial changes in streamflow 

(Chiew et al., 2009; Hattermann et al., 2011; Reshmidevi et al., 2018). Response of streamflow to 

meteorological conditions, however, is highly nonlinear (Van Dijk et al., 2013) because different 

climate variables e.g. temperature and precipitation might have opposite impacts on streamflow. 

In different regions of Australia, a change of 1% in mean annual precipitation might amplify 

streamflow by up to 3.5% (Chiew, 2006) and in some instances by up to 4.1% (van Dijk et al., 

2013). Depending on some regions within Australia (e.g. southwest Western Australia), changes 
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between 0-40% in precipitation could lead to changes in streamflow in the range of 10-80% (Barria 

et al., 2015). Streamflow is also sensitive to changes in temperature e.g. an increase of up to 1.0 

°C in maximum temperature could lead to a change of up to 5% in annual streamflow and this 

change could be even higher in different seasons in a range of -10 to 50% (Zhang et al., 2019) and 

a temperature changes between 0 to 3 °C could lead to a change of up to 80% in streamflow (Barria 

et al., 2015).  

Our results indicated an overall decrease in mean annual, seasonal, and monthly 

streamflow. Different studies (Charles et al., 2010; Al-Safi & Sarukkalige, 2018) reported 

decreasing future streamflow trends in different regions of Australia. Our results are in line with 

these previous findings. Reduced streamflow might trigger drought-like conditions in future and 

could have adverse environmental and ecological implications. A considerable reduction in 

projected streamflow e.g. in the (dry period) autumn and winter might result in the loss of resilience 

as well as the hydrological connectivity (Petrone et al., 2010) and depletion of groundwater 

resources. Droughts are key constraints to flow connectivity and disruption of the physical 

processes that sustains aquatic biodiversity (Ndehedehe et al., 2020; Ward et al., 2013). Projected 

decrease in streamflow of Cooper Creek-Bulloo River Basin is also an indication towards water 

scarcity, which might have substantial impacts on agriculture (ABS, 2011), restricted water use, 

and bushfires (van Dijk et al., 2013). The variability in flow regimes (magnitude, duration, 

frequency) as well as the timing and rates of change of flow have important implication on the 

productivity of wetland ecosystems (Ndehedehe et al., 2020). In articulating how this underpin 

ecosystem services, fish populations, for instance, benefit from increased sustained flows, which 

helps in facilitating fish migration to more extensive productive floodplain areas (e.g., (Ndehedehe 

et al., 2021b; Thompson et al., 2016). This comes with apparent benefits to the ecological 
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communities supported by freshwater habitats and who rely on wetlands that persist from 

floodplain inundation to generate numerous cultural, recreational and economic values through 

commercial fisheries and other human uses of these habitats (Ndehedehe et al., 2020). With 

projected decrease in river flows as shown in this study for the Cooper creek-Bulloo River Basin, 

declines in the productivity of freshwater habitats and the higher order organisms that depend on 

them as well as reductions in the opportunities for local communities is likely. Furthermore, while 

changes in stream flow regimes could be climate driven through frequent droughts caused by large-

scale climate variability indices like the ENSO, increasing human water needs for agriculture and 

domestic use are increasingly exacerbating stream flow reduction and depletion of hydrological 

stores such as groundwater (Ndehedehe et al., 2021). This is the case in the Murray Darlin Basin 

(MDB) in Australia where the expansion of irrigated agriculture has been particularly rapid, and 

the need for surface water is increasing due to both climate change and increasing human needs. 

Recently, the eco-hydrological impacts of water infrastructure development in the MDB shows 

pronounced impacts during dry climatic phases (Karimi et al., 2021). Under a drying climate 

scenario accompanied by substantial flow alteration, the impact on aquatic ecosystems, including 

water holes is ultimately inevitable. 

4.   Conclusions 

This study evaluated the impacts of climate change on the streamflow of the Cooper creek-

Bulloo River Basin under the two greenhouse gas emission scenarios, namely RCP 4.5 and RCP 

8.5. The hydrological model HBV-light was calibrated and validated at a daily time scale in order 

to accurately project future streamflow. In order to reduce the uncertainties related to the choice 

of climate model in future streamflow projections, the performance of nineteen different GCMs 

from the fifth phase of the Global Model Inter-comparison Project (CMIP5) to reproduce 



20 
 

precipitation over the target region was assessed. The three-best performing GCMs namely 

ACCESS1-3, CNRM-CM5, and MPI-ESM-LR were selected to build an ensemble of future 

precipitation and temperature projections which were used to feed the HBV-light model. Other 

main findings of this study are detailed in what follows. 

Mean annual precipitation (temperature) is projected to decrease (increase) in 2050s and 

2080s under both RCP 4.5 and RCP 8.5 emission scenarios. As a result, mean annual streamflow 

is projected to decrease in both future periods under the two RCPs. More in detail, the highest 

decrease in streamflow is expected to occur in MAM, with a reduction of up to -44%. Moreover, 

streamflow peak is expected to shift from February to January in the future.  

Reduction in streamflow is an indication for a depletion in water reserves and a decreased 

water availability in future, which ultimately impacts agricultural activities, reservoir operations, 

and ecosystem. From a water management perspective, findings from this study (reduction in 

future streamflow) might help decision and policy makers in proactive and sustainable water 

resources management. 
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Figure 1. (Left) Hydro-meteorological stations considered along the target basin. (Right): Land 

cover. 

 

 

 

Figure 2. Differences between mean daily streamflow in mm (observed and simulated) with 
hydrological model being calibrated and validated against different objective functions and their 
combinations. Calibration period is from 2001-2010, Validation 1 period is from 1993-1997, and 
validation 2 period is from 2011-2015. 
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Figure 3. Observed and simulated mean daily streamflow during (a) calibration period (b) 
validation 1 period (c) validation 2 period. 



29 
 

 

Figure 4. Long term mean monthly precipitation (mm/month), observed (x-axis) and modeled with 
ensemble of 3 best-perfroming GCMs (y-axis). 
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Figure 5. Performance of finally selected ensemble of 3 GCMs as compared to the ensemble of 
eleven GCMs in capturing different characteristics of observed precipitation (unit is mm). 

 

Figure 6. Projected mean monthly streamflow under the RCP 4.5 and RCP 8.5 emission scenarios 
for 2040-2069 and 2070-2099 (P1 and P2 respectively), as compared to the historical observed 
values for the period (1986-2015). 
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Table SI. Eight CMIP5 GCMs for climate projections for Australia. 

Model Institute, Country Atmosphere resolution (°) 
ACCESS1.0 CSIRO-BOM, Australia 1.9×1.2 
CanESM2 CCCMA, Canada 2.8×2.8 
CESM1-CAM5 NSF-DOE-NCAR, USA 1.2×0. 
CNRM-CM5 CNRM-CERFACS, France 1.4×1.4 
GFDL-ESM2M NOAA, GFDL, USA 2.5×2.0 
HadGEM2-CC MOHC, UK 1.9×1.2 
MIROC5 JAMSTEC, Japan 1.4×1.4 
NorESM1-M NCC, Norway 2.5×1.9 

 

Table SII. Eleven CMIP5 GCMs for climate projections for Queensland. 

Model Institute, Country Atmosphere resolution (°) 
ACCESS1-0 CSIRO & BoM, Australia 1.9×1.2 
ACCESS1-3 CSIRO & BoM, Australia 1.9×1.2 
CCSM4 NCAR, USA 1.25×0.9424 
CNRM-CM5 CNRM & CERFACS, France 1.4×1.4 
CSIRO-Mk3.6 CSIRO & Qld Govt, Australia 1.875×1.8653 
GFDL-CM3 GFDL NOAA, USA 2.5×2.0 
GFDL-ESM2M GFDL NOAA, USA 2.5×2.0 
HadGEM2 MOHC, UK 1.9×1.2 
MIROC5 AORI Japan, Japan 1.4×1.4 
MPI-ESM-LR Max Planck Institute, Germany 1.875×1.8653 
NorESM1-M NCC, Norway 2.5×1.9 

 

 


