This article can be cited before page numbers have been issued, to do this please use: Y. Wu and H. T. Ta, J. Mater. Chem. B, 2021, DOI: 10.1039/D1TB01091C.

This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.
Different approaches to synthesise cerium oxide nanoparticles and their corresponding physical characteristics, ROS scavenging and anti-inflammatory capabilities

Yuao Wu¹, Hang T. Ta¹,²,³*

¹Queensland Micro- and Nanotechnology, Griffith University, Nathan, Queensland 4111, Australia
²School of Environment and Science, Griffith University, Nathan, Queensland 4111, Australia
³Australian Institute for Bioengineering and Nanotechnology, the University of Queensland, St Lucia, Queensland 4072, Australia

Abstract

The biological applications of cerium oxide nanoparticles (nanoceria) have received extensive attention in recent decades. The coexistence of trivalent cerium and tetravalent cerium on the surface of nanoceria allows the scavenging of reactive oxygen species (ROS). The regeneratable changes between the Ce³⁺ and Ce⁴⁺ make nanoceria a suitable treatment for ROS-related diseases and inflammatory diseases. The size, morphology and Ce³⁺/Ce⁴⁺ state of the cerium oxide nanoparticles are affected by the synthesis method. This review focuses on various synthesis methods of cerium oxide nanoparticles and discusses their corresponding physical characteristics, anti-ROS and anti-inflammatory properties.

Keywords: cerium oxide nanoparticles, synthesis methods, physical characteristics, reactive oxygen species, anti-inflammation
1 Introduction

Cerium is a lanthanide element and a rare earth metal. Its oxides can be CeO₂ and Ce₂O₃ as cerium can be either trivalent (Ce³⁺) or tetravalent (Ce⁴⁺). Cerium oxide is widely used as a polishing agent², catalyst³, preservative⁴, and sensor⁵ in industry. With the development of the nanotechnology⁶, ⁷, the biomedical applications of cerium oxide nanoparticles have been increasingly reported⁸.⁹ Studies showed that nanoceria could be used as superoxide dismutase (SOD) mimetics¹⁰, catalase (CAT) mimetics¹¹, scavenger of nitric oxide radicals¹² and hydroxyl radicals¹³.

Since the concept of reactive oxygen species (ROS) was proposed in 1947, researches on active oxidants and antioxidants have not been interrupted in these decades.¹⁴ Excess ROS has emerged as a critical factor in many chronic diseases, such as atherosclerosis¹⁵, rheumatoid arthritis¹⁶, hepatitis¹⁷ and other inflammatory diseases¹⁸. Recently, the anti-ROS and anti-inflammatory properties of cerium oxide nanoparticles have been investigated and confirmed by several studies.¹⁹-²¹ A number of novel synthesis methods of cerium oxide nanomaterials have also been reported.²² The characteristics and functions of cerium oxide nanomaterials were shown related to their synthesis methods.

Cerium oxide nanoparticles are unique due to its convertible surface. Both trivalent cerium atoms (Ce³⁺) and tetravalent cerium atoms (Ce⁴⁺) are on the surface of cerium oxide.²³ Ce³⁺ on the surface works as an analogue of superoxide dismutase. It can transform superoxide radicals into oxygen and hydrogen peroxide (Ce³⁺ + O₂⁻• + 2H⁺ → Ce⁴⁺ + H₂O₂). It was also reported that Ce³⁺ could reduce H₂O₂ to H₂O. (2Ce³⁺ + H₂O₂ + 2H⁺ → 2Ce⁴⁺ + 2H₂O). Ce⁴⁺ produced by above reactions can also scavenge hydrogen peroxide and generate oxygen and water, eventually eliminating ROS. Due to the absorption of hydrogen electrons, the Ce⁴⁺ is then converted into the original Ce³⁺ (2Ce⁴⁺ + H₂O₂ + 2OH⁻ → 2Ce³⁺ + O₂ + 2H₂O).¹⁰ (Fig 1A). Hence, this irreplaceable anti-ROS property allows cerium oxide to be utilised as a potential regenerative ROS scavenger.²⁴-²⁹

There are few reviews discussing synthesis³⁰, ³¹ and biomedical applications³², ³³ of cerium oxide nanoparticles. However, as research interest in anti-ROS and anti-inflammation properties of nanoceria increases, a review with a detailed discussion between its synthesis, surface valence, anti-ROS and anti-inflammation is urgently needed. Our review fills this gap. In this review, typical synthesis methods and also novel green synthesis methods of cerium oxide nanoparticles are comprehensively discussed (Figure 1B). The size, morphology and Ce
The $\text{Ce}^{3+}/\text{Ce}^{4+}$ state of cerium oxide nanoparticles are compared between different synthesis methods. Then the anti-ROS and anti-inflammatory ability of cerium oxides nanoparticles are reviewed. Lastly, the future expectation of cerium oxide nanoparticles are discussed.
Fig 1. Overview of cerium oxide nanoparticles. (A) Regenerative antioxidant property of cerium oxide nanoparticles. (B) Synthesis and anti-ROS, anti-inflammatory properties of cerium oxide nanoparticles.

2 Synthesis of cerium oxide nanoparticles

Various methods of synthesising cerium oxide nanoparticles have been reported in the last decades. Studies indicated that different synthesis methods could affect the size, morphology and surface valence of the cerium oxide nanoparticles. Conventional chemical synthesis is the major approach of synthesising nanoceria. Recently, novel bio-directed synthesis methods (green synthesis) have also been reported.

2.1 Conventional chemical synthesis

Numerous of chemical synthesis methods of cerium oxide nanoparticles were described, including precipitation34-36, hydrothermal37-39, solvothermal40, sol-gel41 and microemulsification micelle methods42.

2.1.1 Precipitation methods

Table 1 summarises precipitation methods used for synthesis of cerium oxide nanoparticles. In the precipitation reaction, nanoceria is obtained by adding reactant ligands (such as sodium hydroxide or ammonium hydroxide) to the metal ion solution (precursors). Cerium (III) nitrate hexahydrate is one of the most used precursors. In a study by Lin et al.43, the effect of reactant ligand was reported. Sodium hydroxide or ammonium hydroxide was reacted with cerium (III) nitrate hexahydrate separately. Results suggested that the nanoceria synthesised by ammonium hydroxide had smaller size compared to the ones synthesised by sodium hydroxide. Ammonium-involved nanoceria also had better stability and regular spherical shape. Large agglomeration of particles was observed in sodium hydroxide-derived nanoceria. In another study where precipitation method was applied, Yurova et al.44 sought to investigate the effect of precursors and acidic modifications on cerium oxide nanoparticles. In the reaction, ammonium cerium (IV) nitrate and cerium (III) nitrate hexahydrate were used as two different sources of nanoceria. Transmission electron microscopy (TEM) images showed cerium (III)-derived nanoceria has the bigger size (6-12nm) than cerium (IV)-derived nanoceria (2-3nm). The morphology of nanoparticles could be changed from hexagons to spherical or ellipsoidal when particles were treated with sulphate acid and phosphate acid. In addition, poly(acrylic
acid) has been reported to be the common coating of the cerium oxide nanoparticles. The resulting nanoparticles were synthesised by ammonium cerium (IV) nitrate and ammonium hydroxide and had hydrodynamic diameter of 6 nm and have both Ce$^{3+}$ and Ce$^{4+}$ on the surface.45

Table 1. Synthesis of cerium oxide nanoparticles using precipitation methods.

<table>
<thead>
<tr>
<th>Precursors</th>
<th>Reactant</th>
<th>Size (nm)</th>
<th>Surfactant/coating</th>
<th>Morphology</th>
<th>Valence states</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cerium(III) nitrate hexahydrate (mol/L)</td>
<td>0.4</td>
<td>Ammonium hydroxide (mol/L)</td>
<td>0.4</td>
<td>13-33</td>
<td>Citrate acid/EDTA</td>
<td>Nanosphere</td>
</tr>
<tr>
<td>Cerium(III) nitrate hexahydrate (mol/L)</td>
<td>0.2</td>
<td>Ammonium hydroxide (mol/L)</td>
<td>2.3</td>
<td>12</td>
<td>N/A</td>
<td>Nanohexagon</td>
</tr>
<tr>
<td>Ammonium cerium(IV) nitrate</td>
<td>0.2</td>
<td>Ammonium hydroxide (mol/L)</td>
<td>2.3</td>
<td>6</td>
<td>Monosodium phosphate</td>
<td>Nanosphere</td>
</tr>
<tr>
<td>Ammonium cerium(IV) nitrate</td>
<td>0.2</td>
<td>Ammonium hydroxide (mol/L)</td>
<td>2.3</td>
<td>7</td>
<td>Sodium bisulfate</td>
<td>Nanosphere</td>
</tr>
<tr>
<td>Ammonium cerium(IV) nitrate</td>
<td>0.11</td>
<td>Ammonium hydroxide (mol/L)</td>
<td>9.8</td>
<td>6</td>
<td>Poly(acrylic acid)</td>
<td>Nanosphere</td>
</tr>
</tbody>
</table>
Fig. 2. XPS spectrum of Ce (3d). (a) pure dextran CNPs, (b) 20 mole% lanthanum doped CNPs, (c) 20 mole% samarium doped CNPs, and (d) 20 mole% erbium doped CNPs.

2.1.2 Hydrothermal methods

Table 2 summarises hydrothermal methods used to synthesise cerium oxide nanoparticles. The main differences between precipitation and hydrothermal methods are temperature and pressure. Trenque et al.37 suggested the morphology of the resulting nanoceria could be manipulated by different parameters in the hydrothermal methods (Fig 2A). At the same reactant concentration of cerium (III) nitrate hexahydrate and sodium hydroxide, cerium oxide nanorods could be synthesised by 6-hours heating at 100 °C, while cerium oxide nanocubes were produced by 24-hours incubation at 180 °C in teflon-lined stainless steel autoclave. When replacing sodium hydroxide with ammonium hydroxide, truncated octahedra and polyhedral nanoceria have been observed under TEM. Besides, the morphology of cerium oxide could also change from truncated octahedra to octahedra by reducing the concentration of ammonium.
hydroxide. Another study indicated that polyhedral nanoceria have a higher Ce$^{3+}$ ratio (25.3%) on the surfaces than cerium oxide nanorods (24.3%) and cerium oxide nanocubes (23.3%) (Fig 2B)47. In a study by Liu and coworkers,48 cerium oxide nanocubes at size of 5 nm were synthesised from ammonium cerium (IV) nitrate and acetic acid. Cerium oxide nanocubes (100% of Ce$^{4+}$ on the surface) were successfully encapsulated inside the reductive apoferritin (AFT–CeO$_2$), which increased the percentage of Ce$^{3+}$ on the surface of cerium oxide nanoparticles from 0% to 70%. They also investigated the ROS scavenging ability of this nanoceria. Results indicated that AFT–CeO$_2$ had better ROS scavenging efficiency (70%) than cerium oxide nanocubes (20%) in H$_2$O$_2$-treated HepG2 cells.

Table 2. Synthesis of cerium oxide nanoparticle using hydrothermal methods.

<table>
<thead>
<tr>
<th>Precursors</th>
<th>Reactant</th>
<th>Temp.</th>
<th>Time (hours)</th>
<th>Size (nm)</th>
<th>Surfactant/coating</th>
<th>Morphology</th>
<th>Valence states</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cerium (III) nitrate hexahydrate (mol/L)</td>
<td>0.05 Sodium hydroxide (mol/L)</td>
<td>6</td>
<td>180</td>
<td>24</td>
<td>5-60</td>
<td>Nanocubes</td>
<td>Nanorods</td>
<td>Ce$^{3+}$ & Ce$^{4+}$</td>
</tr>
<tr>
<td></td>
<td>0.05 Ammonium hydroxide (mol/L)</td>
<td>6</td>
<td>180</td>
<td>24</td>
<td>3-20</td>
<td>Nanocubes & Nano truncated octahedra</td>
<td>N/A</td>
<td>Ce$^{3+}$ & Ce$^{4+}$</td>
</tr>
<tr>
<td></td>
<td>0.17 Trisodium phosphate (mol/L)</td>
<td>0.00</td>
<td>180</td>
<td>10</td>
<td>150-260</td>
<td>Submicronic octahedra</td>
<td>N/A</td>
<td>Ce$^{3+}$ (24.3%)</td>
</tr>
<tr>
<td></td>
<td>0.13 Sodium hydroxide (mol/L)</td>
<td>11</td>
<td>90</td>
<td>24</td>
<td>30 × (25-200)</td>
<td>Nanorods</td>
<td>Ce$^{3+}$ (24.3%)</td>
<td>47</td>
</tr>
<tr>
<td></td>
<td>0.06 Ammonium cerium (IV) nitrate (mol/L)</td>
<td>2.2</td>
<td>220</td>
<td>12</td>
<td>5-10</td>
<td>Apoferritin</td>
<td>Nanocubes</td>
<td>Ce$^{3+}$ (70%)</td>
</tr>
</tbody>
</table>
Fig. 3. TEM images of cerium oxide nanoparticle synthesised by hydrothermal methods

(A) TEM and HRTEM images of the various morphologies of nanoceria synthesised by Trenque et al. (i and iv) nanocubes (NCs), (vii and ii) submicronic octahedra (SOs), (v and viii) nano-octahedra (NOs), (iii and vi) mixture of nanocubes and truncated nano-octahedra (NCOs) and (ix) nanorods (NRs).37 (B) TEM images and XPS data of the various morphologies of nanoceria synthesised by Lykaki et al. (i) nanorods, (ii) nano polyhedra, (iii) nanocubes.47

2.1.3 Solvothermal methods

Table 3 summarises solvothermal methods used to synthesise cerium oxide nanoparticles. Different to the hydrothermal method, solvothermal uses organic solvents as the reaction solution to produce nanomaterials of various sizes and shape under high temperature and pressure.49 Devaraju and coworkers presented a quick solvothermal method to prepare nanoceria. They investigated the effectivity of incubation time on the size of the nanoceria. Cerium (III) chloride heptahydrate and cerium (III) nitrate hexahydrate were used to synthesise the rodlike and spherelike cerium oxide respectively. The results indicated that thermal treatments of nanoceria at 400 °C for 20 min in batch reactor grew the diameter of rodlike cerium oxide to 500-1000 nm, from 10-20 nm with 5 min calcination. The size of spherelike cerium oxide was also increased from 100-200 nm to 500-600 nm. Besides, their results suggested that particle size could be affected by the solubility of the starting materials in different organic solvents. Rodlike nanoceria prepared in ethanol solution (200-500 nm) exhibited a smaller diameter than in methanol solution (500-800 nm) (Fig 3)40. In a different
study, Camacho-Ríos et al.50 sought to synthesise the nanoceria via solvothermal method with the application of ethylenediaminetetraacetate acid (EDTA), citric acid and ascorbic acid as surface capping/stabilising agents. TEM images showed that citric acid-stabilised nanoceria has the best dispersion with particle size around 7-9 nm and quasi-spherical shape. Importantly, Ce4+ (27\%) and Ce3+ (22\%) was detected on the surface of cerium oxide nanoparticles.

Table 3. Synthesis of cerium oxide nanoparticle using solvothermal methods.

<table>
<thead>
<tr>
<th>Precursors</th>
<th>Reactant</th>
<th>Temp.</th>
<th>Time (min.)</th>
<th>Size (nm)</th>
<th>Surfactant/coating</th>
<th>Morphology</th>
<th>Valence states</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cerium (III) chloride heptahydrate (mol/L)</td>
<td>Ethanol</td>
<td>400</td>
<td>5</td>
<td>(10-20) × (50-100)</td>
<td>N/A</td>
<td>Nanorods</td>
<td>Ce3+ & Ce4+</td>
<td>40</td>
</tr>
<tr>
<td>Cerium (III) nitrate hexahydrate (mol/L)</td>
<td>Ethanol</td>
<td>400</td>
<td>10</td>
<td>(30-50) × (500-1000)</td>
<td>N/A</td>
<td>Nanorods</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ethanol</td>
<td>400</td>
<td>15</td>
<td>(200-500) × (1000-2000)</td>
<td>N/A</td>
<td>Nanorods</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ethanol</td>
<td>400</td>
<td>20</td>
<td>(200-500) × (1000-2000)</td>
<td>N/A</td>
<td>Nanorods</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ethanol</td>
<td>500</td>
<td>60</td>
<td>(200-500) × (1000-2000)</td>
<td>N/A</td>
<td>Nanorods</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Methanol</td>
<td>100%</td>
<td>500</td>
<td>60</td>
<td>(200-500) × (1000-2000)</td>
<td>N/A</td>
<td>Nanorods</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cerium (III) nitrate hexahydrate (mol/L)</td>
<td>Ethanol</td>
<td>400</td>
<td>5</td>
<td>100-200</td>
<td>N/A</td>
<td>Nanosphere</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ethanol</td>
<td>400</td>
<td>10</td>
<td>150-300</td>
<td>N/A</td>
<td>Nanosphere</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ethanol</td>
<td>400</td>
<td>15</td>
<td>300-500</td>
<td>N/A</td>
<td>Nanosphere</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ethanol</td>
<td>400</td>
<td>20</td>
<td>500-600</td>
<td>N/A</td>
<td>Nanosphere</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ethanol</td>
<td>500</td>
<td>60</td>
<td>300-500</td>
<td>N/A</td>
<td>Nanosphere</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Methanol</td>
<td>100%</td>
<td>500</td>
<td>60</td>
<td>400-500</td>
<td>N/A</td>
<td>Nanosphere</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cerium (III) nitrate hexahydrate (mol/L)</td>
<td>Ethanol</td>
<td>190</td>
<td>24</td>
<td>6</td>
<td>Citric acid</td>
<td>Nanosphere</td>
<td>Ce3+ (27%) & Ce4+ (22%)</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>Ethanol</td>
<td>190</td>
<td>24</td>
<td>6</td>
<td>Ascorbic acid</td>
<td>Nanosphere</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ethanol</td>
<td>190</td>
<td>24</td>
<td>6</td>
<td>EDTA</td>
<td>Nanosphere</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ethanol</td>
<td>160</td>
<td>24</td>
<td>6</td>
<td>Citric acid</td>
<td>Nanosphere</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ethanol</td>
<td>160</td>
<td>24</td>
<td>6</td>
<td>Ascorbic acid</td>
<td>Nanosphere</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ethanol</td>
<td>160</td>
<td>24</td>
<td>6</td>
<td>EDTA</td>
<td>Nanosphere</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Fig 4. Field Emission Scanning Electron Microscope images of as-prepared samples using CeCl$_3$·7H$_2$O (a–c) and Ce(NO$_3$)$_3$·6H$_2$O and (d–f) as starting materials in ethanol at 400 °C for 5 min (a and d), 10 min (b and e), and 20 min (c and f)40.

2.1.4 Micro emulsification micelle methods

Table 4 summarises micro emulsification micelle methods used to synthesise cerium oxide nanoparticles. Micro-emulsion is a balance system including aqueous phase, oil phase and surfactant. Zhang et al. employed the microemulsion technique to prepare nanoceria.51 Subsequently, the resulting nanoceria were annealed at 350 °C or 600 °C for two hours. The results indicated that increasing temperature decreases the size of the particles from 65 nm to 6 nm. Besides, X-ray absorption spectra (XAS) showed the increasing Ce$^{4+}$ on the surface of the nanoceria when the annealing at a higher temperature and changed entirely to Ce$^{4+}$ when the annealing temperature reach to 500 °C. Additionally, Sathyamurthy and coworkers prepared well-defined polyhedral nanocerias using the reverse micellar method. The findings of this study showed that the narrow size distribution with the average size of 5 nm was achieved and physical chemical properties of nanocerias was retained by using reverse micellar method.52
Table 4. Synthesis of cerium oxide nanoparticle using micro emulsification micelle methods.

<table>
<thead>
<tr>
<th>Precursors</th>
<th>Reactant</th>
<th>Temp. (°C)</th>
<th>Time (hours)</th>
<th>Size (nm)</th>
<th>Surfactant/coating</th>
<th>Morphology</th>
<th>Valence states</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cerium(III) nitrate hexahydrate</td>
<td>Ammonium hydroxide</td>
<td>350</td>
<td>2</td>
<td>65</td>
<td>Cetyltrimethyl ammonium bromide (CTAB)</td>
<td>Nanosphere</td>
<td>Ce³⁺ & Ce⁴⁺</td>
<td>51</td>
</tr>
<tr>
<td></td>
<td>(mol/L)</td>
<td>600</td>
<td>2</td>
<td>6-8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sodium hydroxide (mol/L)</td>
<td>Room temperature</td>
<td>1</td>
<td>1</td>
<td>3-5</td>
<td>n-octane, CTAB, 1-butanol</td>
<td>Nano polyhedra</td>
<td>N/A</td>
<td>52</td>
</tr>
</tbody>
</table>

2.2 Green synthesis methods

Table 5 summarises different green methods used to synthesise cerium oxide nanoparticles. High dosage of cerium oxide nanoparticles synthesised by conventional chemical method showed cytotoxicity to many cell lines such as human bronchial epithelium cells⁵³, macrophages⁵⁴, human fibroblast⁵⁵ and some other cancer cells⁵⁶, ⁵⁷. Some studies showed that ceria nanorod exhibited stronger cytotoxicity than other shape of the nanoceria.⁵⁸, ⁵⁹ In a study by Forest et al.⁵⁰, nanoceria at around 5 to 8 nm was synthesised by hydrothermal methods. The resulting nanoceria at the concentration of 30 µg/ml increased the production of TNF-α and caused cytotoxicity to RAW264.7. Besides, Cheng et al.⁶⁰ developed nanoceria (around 20-30 nm) by hydrothermal methods. The resulting nanoceria displayed a significant cytotoxicity on human hepatoma SMMC-7721 cells at the concentration of 50 µg/ml. Moreover, Franchi et al.⁵⁵ showed that commercial nanoceria at concentration of 10 µg/ml (25 nm, Sigma-Aldrich) caused oxidative DNA damage to human fibroblast.

To improve the biocompatibility of nanoceria at high dosage, the green synthesis of cerium oxide nanoparticles has received extensive attention.⁶¹ These eco-friendly bio-directed methods employed nature matrices as stabilising agents to improve the biocompatibility of the nanoceria. (Table 6) Many plant extracts, nutrient and fungus products have been reported used in the green synthesis of nanoceria.⁶² In a study by Nourmohammadi et al.,⁶³ a nanoceria mixture with spherical and cylindrical particle sizes of 34 nm was synthesised via carrageenan hydrogelation. In this method, 50 ml of cerium nitrate (0.5 g/ml) solution was gradually added in 50 ml of carrageenan solution (20 mg/ml) and stirred vigorously for 8 h at 60 °C followed by calcined for 2 h at 600 °C. Carrageenan as a green material extracted from red seaweeds. It contains vinyl sulfonic acid groups that can help capture cerium ions in the solution. The cell
viability studies showed that the carrageenan hydrogel capped cerium oxide nanoparticles have no toxicity to WEHI 164 cells at the concentration below 250 µg/ml. Another study investigated the antibacterial properties of chitosan-coated nanoceria synthesised from the extract of *Sida acuta* Brum.f. leaves. Extract solution of *Sida acuta* Brum.f. leaves (20 ml) was dropwise added in 80 ml of cerium nitrate solution (43.3 mg/ml) and stirred for 3 h. The particles were then washed and dried for 3 h at 200 °C followed by coating with chitosan. The results showed that the spherical hybrid nanoceria (23-90 nm) could disrupt the structure of the bacterial membrane and caused the death of bacteria. However, the biocompatibility of hybrid chitosan-CeO$_2$ on mammalian cells has not been investigated in this study. Fresh egg white was also used as the capping agent in the green synthesis of spherical cerium oxide nanoparticles. 25 ml of fresh egg white was gently added in equal volume of cerium nitrate (0.5 g/ml) solution. The mixture solution was stirred for 8 h at 60 °C followed by calcined for 2 h at 600 °C. The resulting nanoparticles (25 nm) showed excellent biocompatibility in fibroblast cells with concentration up to 800 µg/ml.

Table 5. Synthesis of cerium oxide nanoparticle using green synthesis methods.

<table>
<thead>
<tr>
<th>Precursors</th>
<th>Reactant</th>
<th>Surfactant/coating</th>
<th>Size (nm)</th>
<th>Morphology</th>
<th>Valence states</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cerium nitrate hexahydrate</td>
<td>Carrageenan</td>
<td>Carrageenan</td>
<td>18-60</td>
<td>Mixture of spherical, cylindrical</td>
<td>N/A</td>
<td>63</td>
</tr>
<tr>
<td>Cerium nitrate hexahydrate</td>
<td>Extract of Sida acuta Brum.f. leaves</td>
<td>Phytoconstituents from Sida acuta Brum.f. and chitosan</td>
<td>23-90</td>
<td>Spherical</td>
<td>N/A</td>
<td>64</td>
</tr>
<tr>
<td>Cerium nitrate hexahydrate</td>
<td>Fresh egg white</td>
<td>Egg white</td>
<td>25</td>
<td>Spherical</td>
<td>N/A</td>
<td>65</td>
</tr>
</tbody>
</table>
Table 6. Advantage and disadvantages of conventional chemical synthesis method and green synthesis method of nanoceria

<table>
<thead>
<tr>
<th>Synthesis method</th>
<th>Advantage</th>
<th>Disadvantage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conventional chemical synthesis</td>
<td>● Easy to operate and scale-up</td>
<td>● Organic solvent residue</td>
</tr>
<tr>
<td></td>
<td>● Size and shape can be tuned</td>
<td>● Energy and capital intensive;</td>
</tr>
<tr>
<td></td>
<td>● Nanoceria with high crystallinity</td>
<td>● Toxic chemicals involved in the synthesis</td>
</tr>
<tr>
<td></td>
<td>● More suitable for the preparation of small size nanoceria</td>
<td>procedure</td>
</tr>
<tr>
<td>Green synthesis</td>
<td>● Eco-friendly</td>
<td>● Mechanisms not clearly understood</td>
</tr>
<tr>
<td></td>
<td>● Consume much less energy</td>
<td>● Nanoceria size is variable</td>
</tr>
<tr>
<td></td>
<td>● Good biocompatibility</td>
<td>● Lower yield</td>
</tr>
</tbody>
</table>

3 Anti-ROS and anti-inflammatory properties of cerium oxide nanoparticles

The coexistence of tervalent and tetravalent cerium on the surface of nanoceria contribute to its unique regenerative anti-ROS properties and its anti-inflammation ability. Some theories of regeneration properties have been discussed in this part. Besides, in vitro and in vivo experiments also showed anti-ROS and anti-inflammatory effects of cerium oxide nanoparticles.

3.1 Regenerative anti-ROS properties

Different studies have reported the anti-ROS and anti-inflammatory properties of the cerium oxide nanoparticles.\(^{19}\) Basically, the anti-ROS ability of nanoceria is related to the oxygen vacancies on its surface (Ce\(^{3+}\)/Ce\(^{4+}\) state). Tervalent cerium, as an SOD-mimetic, is able to react with superoxide radicals (O\(_2^−\)) to produce the hydrogen peroxide (Ce\(^{3+}\) + O\(_2^−\) + 2H\(^+\) \rightarrow Ce^{4+} + H_2O_2). In a study by Korsvik and coworkers,\(^{10}\) the generation of H\(_2O_2\) were measured from the nanoceria-treated O\(_2^−\) solution. Results showed nanoceria with a higher level of Ce\(^{3+}\) (40%) have better scavenging ability of O\(_2^−\) than the particles with lower Ce\(^{3+}\) (22%). In another study, Heckert et al. found that reducing the Ce\(^{3+}\)/Ce\(^{4+}\) ratio of nanoceria could block their SOD-mimetic activity.\(^{66}\) These studies showed that the SOD-mimetic activity is mainly related to the Ce\(^{3+}\) on the surface of nanoparticles.

In addition, like catalase (CAT), tetravalent cerium can decompose H\(_2O_2\) to water and oxygen (2Ce\(^{4+}\) + H\(_2O_2\) + 2OH\(^−\) \rightarrow 2Ce^{3+} + O\(_2\) + 2H\(_2O\)). Pirmohamed et al.\(^{67}\) reported that the concentration of H\(_2O_2\) was rapidly decreased by the treatment of nanoceria with 23% of Ce\(^{4+}\)
on the surface. However, no CAT mimetic activity was observed on Ce\(^{3+}\) (96\%) rich nanoceria. Moreover, effective production of dissolved oxygen has been detected in H\(_2\)O\(_2\) solution when treated with high Ce\(^{4+}\) ratio of nanoceria. However, nanoceria with higher Ce\(^{3+}\) (96\%) on the surface did not show effective production of dissolved oxygen. Results suggested the CAT-mimetic activity of nanoceria is related to the percentage of Ce\(^{4+}\) on their particle surface. On the other hand, research showed the H\(_2\)O\(_2\) scavenging might also be related to Ce\(^{3+}\) on the surface of the particles (2Ce\(^{3+}\) + H\(_2\)O\(_2\) + 2H\(^+\) → 2Ce\(^{4+}\) + 2H\(_2\)O). After incubated with H\(_2\)O\(_2\) solution, the results indicated that an increasing number of Ce\(^{4+}\) was present on nanoceria's surface. In this case, Ce\(^{3+}\) level was reduced by the oxidation of H\(_2\)O\(_2\), result in the rise of Ce\(^{4+}\) level and deoxidation of H\(_2\)O\(_2\) to H\(_2\)O\(_6\).

Although the regeneration mechanism of cerium oxide has not been fully revealed, the regenerable ROS removal mechanism of cerium oxide can still be explained by its characteristics of SOD-mimetic and the catalase-mimetic. Firstly, O\(_2\)•− or H\(_2\)O\(_2\) has been scavenged by Ce\(^{3+}\) with the production of Ce\(^{4+}\) and H\(_2\)O or H\(_2\)O. Subsequently, H\(_2\)O\(_2\) reacts with Ce\(^{4+}\) to form O\(_2\) and Ce\(^{3+}\). This cycle achieves the regeneration and ROS scavenging ability of nanoceria.

3.2 Pre-clinical anti-ROS and anti-inflammatory properties

Current studies also showed the anti-ROS ability of nanoceria in cells and animals. In a study by Xia et al.\(^5^4\), the team sought to investigate the anti-ROS ability of nanoceria in diesel exhaust particles (DEP) treated macrophage. Nanoceia around 50 nm was synthesised by hydrothermal method. The ROS level in the macrophages was reduced 40\% by the treatment of 25 \(\mu\)g/ml of nanoceria. In another study, Hirst et al.\(^1^9\) indicated that 1.4 \(\mu\)g/ml of cerium oxide nanoparticles (5 nm) synthesised by precipitation method could scavenge almost 100\% of ROS in LPS-stimulated macrophage cells. Meanwhile, nanoceria didn’t induce the damage of macrophage up to 1.4 \(\mu\)g/ml of cerium oxide. In vivo studies showed administration of 500 \(\mu\)g/kg of cerium oxide nanoparticles reduced malonaldehyde (MDA) level in CCl\(_4\)-induced CD1 mice. Moreover, the administration of 500 \(\mu\)g/kg of cerium oxide nanoparticles reduced malonaldehyde (MDA) level in CCl\(_4\)-induced CD1 mice. In this study, nanoceria showed promising anti-ROS and anti-inflammation ability in LPS-stimulated macrophages without causing any damage to cells and major organs of mice. However, the relationship between Ce\(^{3+/4+}\) of ceria and its anti-ROS and anti-inflammatory properties haven’t been investigated in this study.
Additionally, Gupta et al.46 investigated the anti-ROS ability of nanoceria (synthesised via precipitation method) in H\textsubscript{2}O\textsubscript{2} treated human umbilical vein endothelial cell (HUVEC). Results indicated that higher Ce3+-containing (63\%) nanoceria (0.17 µg/ml) exhibited around 2-fold higher efficiency of the ROS scavenging in HUVEC than the nanoceria (0.17 µg/ml) with lower percentage of Ce3+ on the surface (49\%) (Fig 5A). Nanoceria (8.5 µg/ml) showed no toxicity on HUVECs and changing of surface valence state did not affect its biocompatibility. Similarly, in a study by Liu et al48, cerium oxide nanocubes was synthesised by hydrothermal method and then coated with apoferritin (Aft-CeO\textsubscript{2}). X-ray photoelectron spectroscopy showed that Aft-CeO\textsubscript{2} had 70\% of Ce3+ on the surface of the nanoceria, while the non-coated nanoceria had no Ce3+ on its surface. The anti-ROS study suggested Aft-CeO\textsubscript{2} (4.25 µg/ml) have more than three-time higher ROS scavenging efficiency than the non-coated nanoceria (4.25 µg/ml). These two studies suggest that nanoceria with high Ce3+/Ce4+ could have enhanced anti-ROS ability.

In 2018, Chen et al.68 synthesised nanoceria at size of 285 nm via green synthesis method. \textit{camellia sinensis} filtrate was mix with ceric ammonium nitrate at 50 °C followed by calcinating at 600 °C for 1 h to form the spherical nanoceria. These nanoceria was able to reduce the relative ROS level (25\%) at the concentration of 100 µg/ml. ROS is a critical factor in many inflammatory responses.69 Hence, nanoceria in the regulation of ROS in the body may also affect the signalling-pathway of some inflammatory cytokines. Chen et al. also investigated the anti-inflammation property of nanoceria in LPS-stimulated macrophages. Results indicated nanoceria reduce the expression of COX-2, iNOX at the concentration of 5 µg/ml. Consistently, \textit{in vivo} studies showed that rat serum cytokines such as TNF-α, IL-1α, IL-1β were decreased in nanoceria-treated rats. Besides, Selvaraj et al.70 indicated that 8.6 µg/ml of nanoceria (purchased from the NanoScale corporation) reduced the overexpression of TNF-α, COX-2, iNOX, IL-1β and COX-2 in LPS-stimulated RAW264.7. Interestingly, nanoceria at this concentration increased the viability of the LPS-treated macrophages from 60\% to 80\%. This may be due to the lower ROS and lower inflammatory protein level, which caused less damage to the cells. Apart from that, results from MTT-based viability assay showed no significant effect on the survivability of macrophage with the concentration of ceria less than 17.2 µg/ml.

In the studies of Oró et al.71 they also suggested that TNF-α, IL-1β, COX-2 and iNOS expression level in CCl\textsubscript{4}-induced rat can be reduced by nanoceria (0.1 mg/kg) synthesised by precipitation method (Fig 4). These results suggested that nanoceria from different synthesis methods have a great potential to be a therapeutic agent for ROS-related and inflammatory
diseases. (Fig 5B) In addition, the progression of hepatic steatosis and liver fibrosis was inhibited by nanoceria. (Fig 5C). Nanoceria was found accumulated in the rat’s spleen, liver, lungs, and kidneys after 90 minutes of the IV injection. Moreover, it was interesting that nanoceria could exist in these organs for more than eight weeks.

The studies mentioned above showed that nanoceria from different synthesis methods possesses promising anti-ROS and anti-inflammatory ability in both in vitro and in vivo studies. It also showed good biocompatibility in cells and animal organs. Overall, it is suggested that nanoceria has a great potential to be a therapeutic agent for ROS-related and inflammatory diseases.

Fig 5. Anti-ROS and anti-inflammatory capabilities of nanoceria. (A) Intracellular ROS scavenging properties of CNPs evaluated by confocal microscopy. HUVEC cells treated with...
1 μM of CNPs with (Ce$^{3+}$ 40%) or without (Ce$^{3+}$ 64%) doping exhibited decreased intracellular ROS. 10 μM of H$_2$O$_2$ was used to stimulate the ROS level. Scale bar 100 μm46. (B) Effect of CeO$_2$NPs on hepatic inflammation in CCl$_4$-treated rats. Barcharts show the densitometric analysis of all the inflammatory protein level normalised to GAPDH. Results are given as means ± SE; a, p <0.05; b, p <0.01 vs. control; *p <0.05 vs. CCl$_4$ + vehicle71. (C) Hepatic steatosis and liver fibrosis of representative liver sections obtained from CCl$_4$-treated rats receiving vehicle or CeO$_2$ NPs. The quantitative measurement showed at the right of the figure71.

4 Conclusions and perspectives

The anti-ROS activity and their self-regeneration ability of cerium oxide nanoparticles make them excellent candidates for ROS scavengers. Besides, they are considered as alternative therapeutic agents for various chronic disease.$^{72-74}$ Nanoceria synthesised by precipitation, hydrothermal and solvothermal method has controlled size and morphology. Green synthesis method provides nanoceria a better biocompatibility. Importantly, studies indicated that more Ce$^{3+}$ on the surface of nanoceria helps it work as an SOD-mimetic, while Ce$^{4+}$ is responsible for the CAT-mimetic activity of the nanoceria. Moreover, results suggested that higher Ce$^{3+}$ on the surface of nanoceria could result in a better ROS scavenging efficiency of the cerium oxide nanoparticles.

The concentration of reactants and temperature of reaction affect the physical and chemical properties of cerium oxide nanoparticles. Hence, the optimisation of their synthesis methods according to the requirements of biological applications is essential. Especially, surface percentage of Ce$^{3+}$ and Ce$^{4+}$ should be evaluated and reported in the future research. Heretofore, there is no detailed study on the relationship between Ce$^{3+}$ / Ce$^{4+}$ ratio and anti-ROS and anti-inflammatory in vitro and in vivo. Current studies have been very inconsistent in recording the Ce$^{3+}$/Ce$^{4+}$ ratio, thus it is difficult to compare the anti-ROS and anti-inflammatory capability of cerium oxide from different synthesis methods. It is recommended to record the ratio by using ‘percentage of Ce$^{3+}$ or Ce$^{4+}$. In this way, the relationship between synthesis methods, Ce$^{3+}$/Ce$^{4+}$ ratio, anti-ROS and anti-inflammatory abilities of nanoceria will be better studied and compared in the future. Besides, the toxicity of cerium oxide nanoparticles of different shapes, sizes and Ce$^{3+}$/Ce$^{4+}$ ratio needs to be evaluated. The long-term effects of cerium oxide nanoparticles in the animals also need to be explored. In addition, the in vivo regeneration
ability of cerium oxide nanoparticles needs to be addressed. In the future, the targeted drug-delivery approaches of cerium oxide nanoparticles to inflammatory diseases needs to be further explored. Overall, the existing researches suggested that cerium oxide has the potential for various biomedical applications in the future.

Acknowledgement

This work is funded by National Health and Medical Research Council (HTT: APP1037310, APP1182347, APP2002827) and Heart Foundation (HTT: 102761).

Fig 2 and Fig 5A are reproduced from Ref. A. Gupta, S. Das, C. J. Neal and S. Seal, J Mater Chem B, 2016, 4, 3195-3202 with permission from the Royal Society of Chemistry.

Fig 3 is reproduced from Ref. I. Trenque, G. C. Magnano, M. A. Bolzinger, L. Roiban, F. Chaput, I. Pitault, S. Briançon, T. Devers, K. Masenelli-Varlot and M. Bugnet, Phys Chem Chem Phys, 2019, 21, 5455-5465 with permission from the Royal Society of Chemistry.

References

