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bstract

he high dimension of any dataset has become an unavoidable challenge in Data Science and Machin
arning. Reducing the number of dimensions by excluding noisy, irrelevant, or correlated information i
ten referred to as the feature selection (FS). The ultimate goal in FS is to identify an optimal set o
mensions (features) of any dataset to develop an efficient learning model, decrease the computational tim
d optimize the memory requirement with the help of some methods. Recently, optimization algorithm
ve gained popularity in different fields because of their flexibility and effectiveness. Equilibrium optimize
O) is a physics-based meta-heuristic algorithm, which is inspired from a well-mixed dynamic mass balanc
a control volume that has good exploration and exploitation capabilities. In this work, an improve

rsion of EO is proposed with the inclusion of learning based automata to find proper values of its parameter
d Adaptive β Hill Climbing (AβHC) to find a better equilibrium pool. The method is used as a featur
lector, evaluated on 18 standard UCI datasets with the help of K-nearest neighbors (KNN) classifier
d compared with eight state-of-the-art methods including classical and hybrid meta-heuristic algorithms
oreover, the proposed method is applied on high dimensional Microarray datasets which generally contai
few samples but a large number of features, and often lead to a ’curse of dimensionality’. The obtaine
sults illustrate the supremacy of the proposed method over the other state-of-the-art methods mentioned i
e literature. The source code of this work is available at https://github.com/ahmed-shameem/Feature
lection.
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Introduction

Supervised learning algorithms are extremely
pular in the sphere of machine learning, and used
a wide spectrum of fields due to their excellent
edictive nature. Generally, a model is trained
ith a fixed-length feature vector, and the feature
presentations are linked with a class denomina-
on. In real-world complex classification problems,
any times, it is very hard to come up with a set of
levant features. Therefore, many candidate fea-
res are introduced to better narrate the domain
make it useful for the learning model. Unfortu-
tely, it has been observed that many of these are

relevant and redundant to the learning model. An
relevant feature does not affect the learning model
ssibly in any way, rather a redundant feature does
t serve anything new to the learning model (John
al., 1994). In many cases, the size of a dataset or
e feature vector is so large that the learning model
uld not perform well in a real-time situation be-
re removing these unwanted features. On the con-
ary, theoretically having additional features may
ve more perceptive power, the real world provides
many examples of why this is not generally the

se.
Shrinking the number of redundant features dras-

cally reduces the running time of a learning algo-
thm (Chandrashekar and Sahin, 2014; Dash and
u, 1997), which helps in obtaining a better com-
ehension of the basal intricacies of a practical
assification problem (Kohavi and Sommerfield,
01; Koller and Sahami, 1996a). Feature selec-

on (FS) methods try to choose a subset of fea-
res that are relevant to the learning model. This
ould eventually help reduce the training time of
e learning model and storage requirement.
We can divide FS methods broadly into two cat-
ories based on the evaluation criteria of the fea-
res: Filter method and Wrapper method. Filter
ethod performs some statistical measure or intrin-
c properties of the dataset and provides a rank list
the features based on their relevance. This ap-
oach measures the relevance of features by their
rrelation with dependent variables. Few famous
ter methods for feature selection are focus (Al-
uallim and Dietterich, 1991) and relief (Kira and
endell, 1992). The focus performs an comprehen-
ve search of all possible feature subsets to decide
e least set of features which are relevant. But this
mpatible criterion makes focus very compassion-
e to noise and/or instabilities in the training set.

As the size of the power set of the features grows ex
ponentially, focus becomes impractical for domain
having larger dimension. In relief, rather than se
lecting a subset of features, each feature is given
suitable weighting which indicates its level of per
tinence to the class label. However, this metho
is profitless at removing redundant and irrelevan
features as two predictive but highly correlated fea
tures are both likely to be given high relevanc
weightings. Some other well known filter method
are chi-square (Zheng et al., 2004), mutual infor
mation (Koller and Sahami, 1996b), laplacian scor
(He et al., 2006) etc.

Wrapper method (Hall and Smith, 1999), on th
other hand, employs a search throughout the fea
ture space, and measuring the performance of th
feature subsets using a machine learning algorithm
indicating the goodness of the particular featur
subset. Hence, FS process is being wrapped aroun
a learning algorithm, so that the favoritism of th
operators that define the search and that of th
learning algorithm has been found. While thes
methods have shown desired success on several com
plex tasks, they are often excessively expensive t
run based on terms of the computational time re
quirement. An important characteristic of FS i
how well a method helps a learning algorithm i
terms of achieved classification accuracy measure
Generally, wrapper method produces better result
than filter methods (Ghosh et al., 2018).

Metaheuristics are high-level problem
independent techniques that can be applie
to a broad range of problems. A metaheuristi
knows nothing about the problem it will be applie
to, it can treat functions (fitness function) as blac
boxes. Metaheuristics are derived from not onl
the insight into the problem structure or on th
way in which an intelligent human would solve i
but from a completely different range of processes
Due to the non-derivative nature, flexibility, an
the ability to avoid local optima, meta-heuristic
algorithms are very popular and used extensively i
the field of optimization (Mirjalili et al., 2014). Th
effectiveness of every meta-heuristic algorithm i
determined by fine-tuning between its exploratio
and exploitation capabilities (Ghosh et al., 2020a)
Exploration is the ability to evaluate candidat
solutions that are not neighbor to the curren
solution(s). This operation helps the algorithm
to escape from a local optimum. Exploitation i
when a search is done in the neighborhood of th
current solution(s). It can be considered as a loca
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arch. Tuning between these two parameters is
ry difficult because of the stochastic behavior of
e optimization algorithms.
The rest of the paper is organized as follows: Sec-

on 2 discusses some past methods related to the
timization algorithms and FS methods, Section
resents the motivation and contribution of the
esent work, Section 4 provides a brief overview
EO and AβHC algorithms. Section 5 provides
comprehensive description of the proposed FS
ethod. The experimentation performed to vali-
te the proposed method is reported in Section 6.

dditionally, this section displays the achieved re-
lts obtained by our novel approach. In Section 7,
e proposed method is compared with some state-
-the-art meta-heuristic and hybrid meta-heuristic
S methods. Section 8 displays the findings of
e proposed method on high dimensional Microar-
y datasets. Finally, Section 9 draws the conclu-
ve remarks of this work, discusses its restrictions
d provides some possible future extension of this

ork.

Literature Survey

Due to its effectiveness and promising results in
rious fields, optimization algorithms have gained
ge popularity over the years, (Xue et al., 2016).

aturally this popularity makes more researchers
bring many such interesting algorithms in the

mily of optimization algorithms. Meta-heuristic
gorithms can be divided into several categories:
ngle solution based and population based (Gen-
eau and Potvin, 2005), metaphor based and non-
etaphor based (Abdel-Basset et al., 2018), nature
spired and non-nature inspired (Fister Jr et al.,
13) etc. Considering the ‘inspiration’ perspec-

ve, these algorithms can tentatively be divided
to six groups (Molina et al., 2020): Breeding-
sed evolution, Swarm intelligence, Physics-based,

uman inspired, Plants based and Miscellaneous.
he Swarm intelligence category can be further di-
ded into five different groups: Aquatic animals,
errestrial animals, Flying animals, Microorgan-
ms, and others.
Breeding-based evolutionary algorithms are in-
ired by the principles of natural evolution. These
gorithms try to achieve optimality at every iter-
ion based on the procedures of reproduction and
ht for survival. Some of the popular algorithms
e GA (Leardi, 1994), differential evolution (DE)
torn and Price, 1997), evolution strategies (ES)

Breeding
based

evolution

Swarm
intelligence

Physics
based

Human
inspired

Plants
based

Misce-
llaneous

Meta-
heuristics

Figure 1: Showing categorization of meta-heuristic optimiza
tion algorithms based on their source of ‘inspiration’

Aquatic
animals

Terrestrial
animals

Flying
animals

Microorga-
nisms

Others
Swarm

intelligence

Figure 2: Showing categorization of Swarm Intelligence a
gorithms
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eyer and Schwefel, 2002), coral reefs optimization
RO) (Salcedo-Sanz et al., 2014) etc. The swarm

telligence-based algorithms mimic the collective
havior of a decentralized, self-organized system

nsect colonies, bird flocks, etc.) either in nature
in artificial environments. This category can be

rther subdivided into five different groups:

• inspired from flying animals, e.g., PSO,
(Kennedy and Eberhart, 1995; Xue et al., 2019;
Zhang et al., 2017), artificial bee colony algo-
rithm (ABC) (Karaboga and Basturk, 2007),
cuckoo search algorithm (CS) (Yang and Deb,
2009) etc.

• inspired from terrestrial animals, e.g., GWO,
(Mirjalili et al., 2014), ant colony optimization
(ACO) (Dorigo et al., 1996) etc.

• inspired from aquatic animals, e.g., whale op-
timization algorithm (WOA), (Mirjalili and
Lewis, 2016), SSA (Mirjalili et al., 2017) etc.

• inspired from microorganisms, e.g., slime
mould algorithm (SMA), (Monismith and
Mayfield, 2008), bacterial colony optimization
(BCO) (Das et al., 2009) etc.

• others, e.g., weightless swarm algorithm
(WSA), (Ting et al., 2012), prey-predator al-
gorithm (PPA) (Tilahun and Ong, 2015) etc.

The next category is human-inspired algorithms.
hese algorithms are motivated by human so-
al concepts like decision making and ideas re-
ted to the expansion of ideologies or competi-
on among themselves. Some of them are soc-
r league competition algorithm (Moosavian and
oodsari, 2014), brain storm optimization algo-
thm (BSO) (Shi, 2011), imperialist competitive al-
rithm (ICA) (Atashpaz-Gargari and Lucas, 2007)
c. The plants’ based algorithms are the group of
l the algorithms whose search method for finding

optimal solution is inspired by plants. Some
the popular algorithms which belong to this

tegory are forest optimization algorithm (FOA)
haemi and Feizi-Derakhshi, 2014), artificial plant
timization algorithm (APO) (Cui and Cai, 2013)
c. The miscellaneous category contains algo-
thms that have diverse characteristics. There are
ry few such algorithms, one of them is the ying-
ng pair optimization algorithm (YYPO) (Pun-
thanam and Kotecha, 2016) which is inspired by

hinese mythology of yin and yang.

The work proposed here is based on Equilib
rium optimizer, which belongs to the category o
physics-based algorithms. Hence, we have discusse
physics-based algorithms in detail.

The algorithms which come under this categor
are inspired by the behavior of physical or chem
ical events. These events can be electric charges
electromagnetism, gravitational force, chemical re
action or it can be even the behavior of water move
ments (in the context of physics). Some of the pop
ular and widely used physics-based meta-heuristi
algorithms are given in Table 1.

SA follows a probabilistic approach for estimat
ing the global optimum of a function. It is a meta
heuristic to estimate global optimization in a larg
search space for an optimization problem. It is use
to solve unconstrained and bound-constrained op
timization problems. This method is inspired b
annealing in the field of metallurgy, which is a pro
cess involving heating and controlled cooling of
material to expand the size of its underlying crys
tals and reduce their defects.

HS is a well-known meta-heuristic algorithm tha
mimics the improvisation of a musician to creat
a perfect harmony that is pleasant to the ears
It transforms the qualitative spontaneity proces
into a quantitative optimization course with variou
well-defined mandate and thus converts the charm
and coherence of music into an answer for sev
eral optimization problems. To improve its explo
ration and exploitation phase and to create a prope
tuning between them, HS uses harmony memor
considering rate (HMCR) and pitch adjusting rat
(PAR).

GSA is inspired by the Newtonian law of grav
tation and laws of motion. This algorithm used th
law of gravity and mass interactions. In GSA, th
searching agents are considered to be an individua
entity with a certain mass while every entity in th
considered system interacts with each other wit
the help of gravitational force. The position of eac
entity presents a potential solution for the give
problem, while the entity’s mass is assigned using
fitness function. Simultaneously, the gravitationa
force among the entities causes the movement of a
objects towards the sub-optimum solutions.

BH is inspired by the black hole phenomena
where in each iteration the best candidate is consid
ered to be the black hole. As we all know, a blac
hole can swallow any star if they come too clos
to it, mimicking this incident BH also applies th
swallowing process and creates another candidat
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Table 1: Few physics based meta-heuristic algorithms

Algorithm name Acronym Year Reference

Simulated annealing SA 1983 (Kirkpatrick et al., 1983)
Harmony search HS 2001 (Geem et al., 2001)

Gravitational search algorithm GSA 2009 (Rashedi et al., 2009)
Black hole optimization BH 2013 (Hatamlou, 2013)
Multi-verse optimizer MVO 2015 (Mirjalili et al., 2015)

Charged system search CSS 2016 (Kaveh, 2016)
Sine cosine algorithm SCA 2016 (Mirjalili, 2016)

lution randomly to search for an optimal solution
the search space.

MVO is inspired by three ideas of cosmology:
ack hole, white hole, and wormhole. A black-
le is a region in space-time whose gravity is so
rong that it swallows everything, even sun-rays.
hite holes are hypothetical regions in space-time
d singularity that can not be entered from out-

de, although energy and matter can escape from
. A wormhole is a sort of tunnel that joins dis-
nt points in space, even two universes using space-
me curvature. Using the concept of inflation rates,
aptive WEP, and adaptive TDR with a black
le, white hole, and wormhole, MVO tries to find
e optimal solution for any optimization problem.

CSS is inspired by Coulombian law of electro-
atics and Newtonian law of mechanics. This al-
rithm considers every agent as a charged particle
ith a pre-planned radius. The measure of charge
the particles is considered based on their stan-
rd. As a result of being charged, each particle
eates a region of influence i.e., an electric field
ound them, which exerts an attractive/repulsive
rce on other electrically charged objects. There-
re, charged particles affect each other based on
eir fitness values and the distance between their
nters. The magnitude of the resultant force is de-
rmined by using the electrostatics laws, and the
ality of the movement is determined using New-
nian mechanics laws.

SCA tries to find out the optimal solution using a
athematical model based on sine and cosine func-
ons. This algorithm also uses several random and
aptive variables to improve the exploration and
ploitation capabilities. This methods reflects bet-
r exploration ability when sine and cosine func-
ons return value > 1 and < −1. It shows better
ploitation ability when sine and cosine functions
turn a value between −1 and 1.

EO has been used to solve several real-life prob-
ms. Such as the work mentioned Özkaya et al.

(2020) utilizes EO to solve a structural design op
timization problem for a vehicle seat bracket. It i
an important industrial design problem as the in
terest in the design of light and low-cost vehicle
are increasing due to the harsh competitive con
ditions and the transition to new vehicles. EO i
used Abdel-Basset et al. (2020) for image segmen
tation purposes which are considered a crucial ste
in image analysis and research. To find the opt
mal threshold value of a grayscale image EO is em
ployed. The work proposed Agwa (2020) uses EO
for automatic generation control of interconnecte
power systems. EO is used to tune the gain o
the required proportional-integral-derivative (PID)
These works present the promising results produce
by EO in distinct fields.

Table 2 summarizes a few merits and demer
its Dutta et al. (2020) of some well-known meta
heuristic algorithm.

3. Motivation and Contributions

Due to the effectiveness of optimization algo
rithms in several real-life applications, many suc
algorithms have been introduced by researchers i
recent times. However, one may question that wh
do we need new optimization algorithms? Ca
we not solve every optimization problem using th
existing ones? Well, according to the No Fre
Lunch theorem (NFL) (Wolpert and Macready
1997), any two algorithms produce equivalent re
sults when they are evaluated on all possible op
timization problems. It has been observed tha
an algorithm may achieve superior results on som
problems, but that does not ensure the same o
other problems. In other words, this inference o
the NFL theorem is found to be true in many rea
life problems which are different from one another
and this very fact keeps the researchers’ interes
alive. As a result of this researchers are comin

5

Jo
ur

na
l P

re
-p

ro
of



Alg
rith

GA
Lea
(19

are

PSO
Ken
and
Ebe
(19

lex

HS
et a
(20

e if
ocal

GS
Ras
et a
(20

AB
Kar
and
Bas
(20

AC
Dor
et a
(19

e to

GW
Mir
et a
(20

WO
Mir
and
(20

CS
and
(20

SCA
Mir
(20

Journal Pre-proof
Table 2: Advantages and disadvantages of some state-of-the-art FS methods

o-
m

Advantages Disadvantages

rdi
94)

• Can reach global optima faster
• Random mutation helps to solve a wide
range of problems

• Slower convergence rate
• Crossover and mutation operators
fixed which reduce flexibility

nedy

rhart
95)

• Fast convergence
• Few parameters

• Can be difficult to define initial
parameter values
• Converges prematurely and gets
trapped into local minimum in comp
problems

Geem
l.

01)

• Easy to implement
• Fast convergence

• Parameters have fixed values henc
not tuned properly gets trapped in l
optima

A
hedi
l.

09)

• Good convergence rate
• Exploration capability is strong

• Not much attention is given to
exploitation

C
aboga

turk
07)

• Few Parameters
• Strong exploration capability

• Exploitation is weak

O
igo
l.

96)

• Can search population in parallel
• Positive feedback mechanism helps in
finding optimal solution faster

• Uncertain time of convergence
• Less diversity in the population du
pheromone trails feedback

O
jalili
l.

14)

• Good convergence
• Avoidance of local optima

• May fail to find optimal solution

A
jalili
Lewis

16)

• Few parameters to adjust
• Easy to implement

• Slow convergence rate
• Gets trapped in local optima in
complex problems

Yang
Deb

09)
• Few parameters to tune

• Low search efficiency for complex
problems within multiple peaks

jalili
16)

• Efficient, simple and flexible • Pre-mature convergence
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with new optimization algorithms. FS is con-
dered an optimization problem (Mafarja and Mir-
lili, 2017), so researchers are also striving to put
rward new and efficient FS methods using opti-
ization algorithms. This is our key motivation
hind proposing a new algorithm by modifying
e Equilibrium Optimizer (EO) (Faramarzi et al.,
20). EO, published recently, is inspired from a

mple well-mixed dynamic mass balance on a con-
olled volume (i.e., the mass of the system is con-
ant), which uses a mass balance equation to mea-
re the concentration of a non-reactive component
a controlled volume as a function of disparate

urce and sink mechanisms. EO is applied on var-
us benchmark functions including unimodal, mul-
modal, and composition functions. It is applied to
veral engineering optimization problems like ten-
on spring design, welded beam design, and pres-
re vessel design. The results obtained from these
periments proved EO’s utility as it outperformed
wide range of algorithms.

The present work proposes an improved version
the binary form of EO, known as AIEOU, hy-

idized with another new meta-heuristic algorithm
lled Adaptive β-hill climbing (AβHC) (Al-Betar
al., 2019). Moreover, we have also tuned the
rameters of EO with the help of Learning Au-
mata. AβHC is previously evaluated on vari-
s global optimization functions to prove its ef-

ctiveness. It has also been used for FS along with
ilfish optimizer (AβBSF) (Ghosh et al., 2020a).

ecently, some hybrid FS methods have been pro-
sed (Mafarja et al., 2019; Ghosh et al., 2020a;

hatterjee et al., 2020; Ahmed et al., 2020b), which
ve proved their effectiveness and superiority over
her methods. This has also motivated us to come
with a hybrid version of EO.

For hybridizing meta-heuristic algorithms, gener-
ly, two different approaches are followed (Talbi,
09): low-level and high-level. A low-level ap-
oach implants one algorithm in another algo-
thm. Whereas, in the high-level approach, the
gorithms are executed in succession. In this work,
e have followed the high-level version to hybridize
O and AβHC, following a pipeline model, where
e output of one meta-heuristic algorithm is con-
dered as the input for the other one. To the best

our knowledge, this is the first time EO is hy-
idized with the AβHC algorithm for solving the

S problem. In a nutshell, the main contributions
this work are as follows:

• A new FS method called AIEOU is introduce
using EO and another recently proposed meta
heuristic called AβHC algorithm.

• The parameters of EO are tuned with the hel
of learning automata.

• The proposed hybrid FS method is assesse
on 18 standard UCI datasets (Dua and Graff
2017) using K-nearest Neighbors (KNN) clas
sifier. datasets Ghosh et al. (2018) are high d
mensional datasets that contain a large numbe
of features (mostly irrelevant) and a few sam
ples. AIEOU is applied on these datasets t
prove its robustness.

• The proposed FS method is compared wit
many state-of-the-art meta-heuristic-based F
methods.

4. Preliminaries

4.1. Equilibrium Optimizer

EO is a physics-based meta-heuristic algorithm
that takes inspiration from a well-mixed dynami
mass balance where the mass of the system is con
stant. A mass balance equation is used to represen
the concentration of a non-reactive components i
a control volume as a function of various source an
sink mechanisms. A dynamic mass balance system
is defined as a system where the change in mas
w.r.t time is equal to the volume of mass enterin
the system plus the volume being generated withi
the system minus the volume that leaves the sys
tem. It is represented by Equation 1:

V
dM

dt
= Rv(Meq −M) +Rg (1

where V is the control volume, M is the concen
tration inside V, Rv is the volumetric flow rate, R
is the mass generation rate inside V, Meq is th
concentration at equilibrium state when no furthe
mass generation is involved and dM

dt is the rate o
change of mass w.r.t time. When the left hand sid
of Equation 1 becomes 0, that indicates that stead
state equilibrium is reached. We, can represent dM

dt

as f(Rv

V ), where f is a function and Rv

M represent
the inverse of residence time represented here a
α. After rearranging Equation (1), we will obtai
Equation (2):

dM

αMeq − αM +
Rg

V

= dt (2
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Integrating both sides of Equation 2 under the
it Mo ≤M ≤M and to ≤ t ≤ t we obtain:

∫ C

Co

dM

αMeq − αM +
Rg

V

=

∫ t

to

dt (3)

After solving Equation 3 we get:

= Meq+(Mo−Meq)e
−α(t−to)+

Rg
αV

(1−e−α(t−to)

(4)
We consider:

F = e−α(t−to) (5)

We initialize the population randomly keeping
mind the dimensions of the search space. The

uilibrium state is considered as the optimal state
here we have to reach. EO uses the four best
lutions so far from the population at every iter-
ion to create another potential solution which is
lculated by adding the best four potential solu-
ons. Then with these five potential solutions, an
uilibrium pool is created.

~Meqpool = { ~Meq1, ~Meq2, ~Meq3, ~Meq4, ~Mavg} (6)

where, ~Mavg is given by:

~Mavg =
~Meq1 + ~Meq2 + ~Meq3 + ~Meq4

4
(7)

ach particle in each iteration updates its position
selecting one member of the equilibrium pool

ndomly. Generally, α ∈ [0, 1]. The term F helps
O to find a proper tuning between its exploration
d exploitation phases. The term t in F is de-
eased with the number of iterations.

t = (1− Iter

MaxIter
)
(a2

Iter
maxIter )

(8)

where Iter represents the iteration number and
axIter represents the maximum number of iter-
ions. The term a2 is constant and controls the
ploitation ability. We define to as follows:

~to =
1

α
ln (−a1sign(~r − 0.5)[1− e−~αt]) + t (9)

where a1 is a constant and controls exploration
ility of EO. The term sign (~r − 0.5) effects the
rection of exploration and exploitation. ~r is a
ndom vector ∈ [0, 1]. Then updating F, we get:

~F = a1sign(~r − 0.5)[e−~αt − 1] (10)

The generation rate Rg is defined as:

~Rg = ~Rgoe
( − ~α(t− to)) (11

where Rgo is the initial value of Rg which is for
mulated as follows:

~Rgo = ~GCP ( ~Meq − ~α ~M) (12

Moreover we define ~GCP as follows:

~GCP =

{
0.5 · r1 if r2 ≥ GP
0 else

(13

where r1 and r2 are random numbers ∈ [0, 1] an
GP = 0.5. Hence, finally we obtain the formula fo
position of a particle.

~M = ~Meq + ( ~M − ~Ceq)~F +
~G

~αV
(1− ~F ) (14

a1, sign(r - 0.5), GP and the equilibrium pool ar
responsible for the exploration ability of EO. O
the other hand, a2, sign(r - 0.5) and equilibrium
pool are responsible for the exploitation phase o
EO. These parameters control the tuning betwee
exploration and exploitation abilities of EO. Th
pseudocode of EO is given in the Algorithm1.

4.2. Learning Automata

A learning automaton (LA) (Narendra an
Thathachar, 1974) is regarded as an epitom
decision-making unit situated in a stochastic en
vironment that determines the optimal actio
through a set of actions and by frequent interac
tions with the environment.

An automaton contains a finite number of ac
tions, where action is chosen based on a specifi
probability distribution and applied to the environ
ment. The environment evaluates the impact of th
applied action and sends back a reinforcement sig
nal to the automaton. The learning algorithm o
the automaton utilizes this response to update th
existing action probability distributions. By con
tinuing this process, the automaton increases th
chances of better actions, which generate favorabl
responses from the environment. Figure 3 depict
the basic working principle of a LA.

Learning automata are constituted by the sextu
ple (Hashemi and Meybodi, 2011) (α, γ,Φ, V,G, T )
α is a combination of output actions, γ is a comb
nation of input actions, Φ is a combination of inter
nal states, V is a probability vector regulating th
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lgorithm 1 Pseudo-code of Equilibrium Optimizer

put: Problem dependent information
utput: Best Agent

: Initialize population for i=1,...,number of particles(n)
: Assign equilibrium candidates’ fitness a large number
: Assign values to the parameters a1; a2; GP;
: while Iter < MaxIter do
:

: for i = 1, . . .,n do
: Calculate fitness of ith particle
: if fit( ~Mi) < fit( ~Meq1) then

: Replace ~Meq1 with ~Mi and fit( ~Meq1) with fit( ~Mi)

: else if fit( ~Mi) < fit( ~Meq2) then

: Replace ~Meq2 with ~Mi and fit( ~Meq2) with fit( ~Mi)

: else if fit( ~Mi) < fit( ~Meq3) then

: Replace ~Meq3 with ~Mi and fit( ~Meq3) with fit( ~Mi)

: else if fit(fit( ~Mi) < fit( ~Meq4) then

: Replace ~Meq4 with ~Mi and fit( ~Meq4) with fit( ~Mi)
: end if
: end for
: ~Mavg =

~Meq1+ ~Meq2+ ~Meq3+ ~Meq4

4

: Construct the equilibrium pool ~Meqpool = { ~Meq1, ~Meq2, ~Meq3, ~Meq4, ~Mavg}
: Assign t = (1− Iter

MaxIter )
a2·Iter
MaxIter

:

: for i = 1, . . ., number of particles (n) do
: Randomly choose one candidate from the equilibrium pool
: Generate random vectors of ~α,~r
: Construct ~F = a1 × sign(~r − 0.5)× [exp−~α·t−1]

: Construct ~GCP =

{
0.5 · r1 if r2 ≥ GP
0 else

: Construct ~G0 = ~GCP · ( ~Meq − ~α · ~M)

: Construct ~G = ~G0 · ~F
: Update concentration ~M = ~Meq + ( ~M − ~Meq) · ~F +

~Rg

~α·V · (1− ~F )
: end for
: Iter = Iter + 1
: end while

9
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Random Environment

Learning Automaton

eedback action

gure 3: Basic interaction diagram between a learning au-
maton and its environment

tput choices, G is the output mapping that maps
to appropriate values in the environment, T is
e learning algorithm used to modify (update) V

The learning algorithm T is a decisive factor
ecting the performance of LA. The linear re-

ard–penalty algorithm (LR−P ) is a unique learn-
g algorithm present in the literature (Thathachar
d Sastry, 2002). In a V-model environment,

here γ ∈ 0, 1, the learning model T for LR−P
heme to update the state probability vector V
ter receiving the reinforcement signal γ is given

Equation 15 when γ = 0 (considered favorable),
d Equation 16 when γ = 1 (considered unfavor-
le). Let, αm be the action selected at time t as
ing the distribution V (t).

Vn(t+ 1) =

{
Vn(t) + x(1− Vn(t)) if n = m

Vn(t)(1− x) if n 6= m

(15)

n(t+ 1) =

{
Vn(t)(1− y) if n = m
y
r−1 + Vn(t)(1− y) if n 6= m

(16)

where r is the number of actions defined in the
tomaton, x and y denote reward and penalty step

ngth, respectively.

3. Adaptive β-Hill Climbing

Hill climbing algorithm is considered as the sim-
est form of local search. But due to the fact
at it gets stuck at local optima and hence some-
mes fails to find the optimal solution, β-hill climb-
g algorithm (Al-Betar, 2016) (βHC) was pro-
sed to overcome the shortcomings of hill climb-
g. βHC also had some disadvantages of param-
er tuning, hence an adaptive version of βHC is
oposed recently, named adaptive β-hill climbing
l-Betar et al., 2019) (AβHC). βHC algorithm
es N and β operators for controlling the rate

of exploitation and exploration respectively. Let
S = (s1, s2, ..., sN ) be a possible solution, where N
is the dimension of the search space, AβHC itera
tively uses N and β operators to generate a bet
ter solution S ′′ = (s′′1 , s

′′
2 , ..., s

′′
N ) with the help o

a neighbor solution S ′ = (s′1, s
′
2, ..., s

′
N ), which i

found out by Equation 17.

s′i = si ± U(0, 1)×N ∃i ∈ [1, N ] (17

where i is a random number ∈ [1, N ], N is the d
mension of the search space, N denotes the distanc
bandwidth between the current solution and neigh
boring solution and hence helps the algorithm t
improve its exploitation capability. β − operator i
responsible for exploration. Then the values of new
solutions are allocated either from the present so
lution or randomly from the resembling range wit
probability value β ∈ [0, 1].

s′′i =

{
sr if rand ≤ β
s′i if rand > β

(18

where rand and sr are random numbers ∈ [0, 1] an
the range of the dimension of the search space of th
current problem respectively.

As stated before, βHC has disadvantages becaus
it is difficult to find suitable values for its parame
ters. These parameters affect the capability of th
algorithm. So, AβHC expresses N and β as a func
tion of iteration number. N (j) is the value of N i
jth iteration. N (j) is defined as Equation 19 fo
lowing the work presented in (Mirjalili et al., 2015)

N (j) = 1− j
1
K

MaxIter
1
K

(19

where MaxIter represents the maximum numbe
of iterations and K is a constant. .

The value of β in jth iteration is represented a
β(j). As per (Mahdavi et al., 2007), it is adjuste
within a appointed range [βmin, βmax] and define
as Equation 20.

β(t) = βmin + (βmax − βmin)× j

MaxIter
(20

If the generated neighbor S ′′ is an excellent solu
tion compared to the present solution S, then it i
replaced with S ′′ and.

The pseudocode for AβHC is given in Algo
rithm2.

10

Jo
ur

na
l P

re
-p

ro
of



A
in

In
O
pr

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

5.

5.

ti
ti
er
w

th
tr
ex
ip
er
pr
op
m
ap
su
er
le
pa
ti

m
th
it

t
s
-
-

)

)

)

h

-
,

i.
s
s

-
f
r
-
l
-
e

-
e

)

-
,
-
,
-
e
,
-
,
s
e

Journal Pre-proof
lgorithm 2 Pseudo-code of adaptive β-hill climb-
g algorithm

put: S = (s1, s2, ..., sN )
utput: S = (s1, s2, ..., sN ) (im-
oved)

: Initialize βmin, βmax,K, tmax
: for j = 1, 2, . . . , jmax do
: S′ := S

: Nj = 1−
(

j
jmax

) 1
K

: RandIndex ∈ (1, N)
: S′RandIndex := S′RandIndex ±Nj
: S′′ := S′

: βj = βmin + t× βmax−βmin

tmax

: for i = 1, . . . , N do
: if random(0, 1) < βt then
: S′′[i] := random(LBi, UBi)
: end if
: end for
: if fitness(S′′) ≤ fitness(S) then
: S := S′′

: end if
: end for

Proposed Method

1. Solution Representation

We consider every particle of EO as a poten-
al solution for our FS approach. The posi-
on/concentration of the particles in EO is consid-
ed as the vector containing the information about
hether a particular feature is selected or not.
The performance of EO is extremely sensitive to
e values of its parameters a1, a2, and GP . a1 con-
ols the exploration ability of EO, a2 controls the
ploitation. GP controls the probability of partic-
ation of the concentration updating by the gen-
ation rate. So, tuning these parameters to their
oper value is necessary for EO to find the global
tima. The values of these parameters are deter-
ined through thorough experiments. Though this
proach might be able to produce sub-optimal re-
lts for a single problem, it would not be consid-
ed as a general way to solve optimization prob-
ms since different problems may require different
rameter settings and this would require exhaus-

ve experiments.
In this work, the parameters of EO have been
ade adaptive while keeping the model similar to
e basic EO. Here, each agent is given the capabil-

y to adjust the values of its parameters individu-

ally, which means that each agent can have differen
values for GP , a1, and a2. So, Equation 8 become
Equation formula1 for the proposed method, Equa
tion 10 becomes Equation 22 and Equation 13 be
comes Equation 23.

ti =

(
1− Iter

MaxIter

)(a2i· Iter
MaxIter )

(21

~Fi = a1isign(~r − 0.5)[e−~αt − 1] (22

−−−→
GCP i =

{
0.5 · r1 if r2 ≥ GP i
0 else

(23

where GP i, a1i, and a2i are the parameters of it

agent (solution). These parameters are updated af
ter each iteration using LA. At each iteration Iter
ith agent selects the values of GP i, a1i, and a2
Then the goodness of the parameter selection i
evaluated by comparing the fitness of the previou
and updated positions in order to update the LA
assigned for the agent. A parameter selection pro
cess is considered as ‘successful’ when the fitness o
the updated agent (solution) concentration is lowe
than the fitness of the previous agent (solution) con
centration. If the parameter selection is successfu
the assigned LA to the ith agent will be sent a favor
able response and the corresponding decision will b
rewarded otherwise will be penalized.

The new value of the parameter ε, ε ∈
{GPi, a1i, a2i} either will be the same as the cur
rent value or will be greater or smaller than th
current value by a pre-defined fixed amount δε.

ε(t+ 1) =





ε(t) + δε increase

ε(t) standby

ε(t)− δε decrease

(24

This approach is modeled by a 3-action learning au
tomata, with each action corresponding to increase
decrease, or no-change. In order to update a pa
rameter, responsible LA selects one of its actions
e.g., {increase, decrease, standby}. Then depend
ing on the selected action, the parameter will b
updated as per Equation24. To sum up, 3 LAs
LAGP , LAa1 , LAa2 , are assigned for the three pa
rameters and each LA has 3-decisions, {increase
decrease, standby}. Now, for the three parameter
GP , a1, and a2, three values δGP , δa1 , and δa2 ar
required to update the corresponding LA.
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Figure 4 shows the effect of the threshold δGP
the performance of EO. The fitness value of the

st agent obtained for different values of δGP is
otted for all the datsets. Similarly, Figure 5 and
igure 6 shows the effect of δa1 and δa2 on the pro-
sed method respectively. Observing Figures 4 -
δGP = 0.05, δa1 = 0.5, δa2 = 0.5 have been set

r further experiments.

2. Fitness Function

The main target of any FS method is to minimize
e number of features and maximize the classifica-
on accuracy of a classification problem when this
ature subset is used (Pudil et al., 1994). Here we
ply AIEOU to find the best feature subset and
lculate the accuracy of this subset with KNN,
assifier. Let Ac be the accuracy of the model
lculated using a classifier, ds be the number of
lected features, and Dt be the total number of
atures. Hence, (1 - Ac) represents the classifica-
on error and ds

Dt
represents the fraction of features

lected from the original feature set. We define the
ness function as:

↓ Fitness = ω ∗ (1−Ac) + (1− ω) ∗ dsDt
(25)

here ω ∈ [0, 1] denotes weightage given to the clas-
fication error.
As our main goal is to minimize the fitness func-

on, we try to reduce the classification error as well
the number of selected features. For each feature
bset, we calculate the fitness value and decide
hich is better depending on whose fitness value is
wer. Here, we have used ω = 0.99.

3. Improved Equilibrium Pool

After creating the equilibrium pool with the four
st agents in the present population and the one
eated by taking the average of these four agents,
e are applying AβHC on the pool to find if a bet-
r solution is available. If we find a better solution,
en we replace the previous solution with the bet-
r one. After obtaining a better equilibrium pool
terms that the agents have been updated, rather
an taking one of the members of the pool ran-
mly we are choosing the best agent in the equi-
rium pool. This measure has been taken to avoid
e fact that when chosen randomly, we are ignoring
e best agent with a probability of 0.8 and basi-
lly harming exploration. With these changes, we
opose the AIEOU.

5.4. Transfer Function

As FS is a binary optimization problem (Ghos
et al., 2020b), its output ∈ {0, 1}. Where 0 rep
resents that the feature is not chosen as it is re
dundant whereas 1 represents that the feature i
useful and hence chosen. But the possibility of th
obtained result going out of the output range i
immense. To ensure that the output always stay
within the expected range we have to perform b
narization on each agent. This task is performe
by the U-shaped transfer function (Mirjalili et al
2020). The U-shaped transfer function, depicted i
Figure 7, is given by -

U(x) = δ ·|x|ε (26

γ =

{
1, if U(x) ≥ rnd
0, if U(x) ≤ rnd (27

Where δ and ε are the two controlling parame
ters. δ defines the slope and ε defines the width o
the basin of the transfer function. The range of thi
function ∈ [0,1]. If the transfer function produce
output > rnd, where rnd is a random number wit
uniform distribution in the range (0, 1), we set th
value to be 1 i.e., we consider that attribute is use
ful and if it is ≤ rnd, we set the value to be 0 i.e
the attribute is redundant, hence it will not be con
sidered Mirjalili and Lewis (2013), Mafarja et a
(2019).

5.5. Computational Complexity

The computational complexity depends on th
input size of the problem, the maximum numbe
of iterations, and some other operations that w
perform. It is usually given by O notation. Th
computational complexity of AIEOU is O(Miter ×
Psize × Ds × tfitness), where Miter represents th
maximum number of iterations, Psize represents th
plurality of potential solutions, Ds represents th
dimension of the search space, and tfitness indicate
the required time for calculating the fitness of
particular solution using a classifier. The usage o
AβHC is to find a better solution if available in th
vicinity of the current solution and LA to tune th
parameters. They do not affect the computationa
cost in terms of O-notation.

Figure 8 depicts the workflow of the propose
method.
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gure 4: Effect of δGP on the fitness value of the best agent (attained optima) by the proposed method for all the 18 UC
tasets in consideration
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gure 5: Effect of δa1 on the fitness value of the best agent (attained optima) by the proposed method for all the 18 UC
tasets in consideration
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gure 6: Effect of δa2 on the fitness value of the best agent (attained optima) by the proposed method for all the 18 UC
tasets in consideration
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Figure 7: U shaped transfer function

Experiments

1. Dataset Details

In order to investigate the performances of EO
d AIEOU, 18 standard UCI datasets (Dua and
raff, 2017) are used. The datasets are hand-picked
om diverse domains. A primary idea of these
tasets is provided in Table 3. As the datasets
ed here are assorted in terms of the number of
atures and instances, so it helps us to understand
e robustness of the proposed FS method.

2. Software

The conducted experiments are executed on a
stem with 7th Gen, i3 processor having 8 GB
AM.

6.3. Parameter Settings

For any meta-heuristic algorithm, its parameter
play a very important role in finding the optima
solutions. So we perform experiments by changin
one parameter w.r.t other. Here, we have show
the effect of different population sizes on finding th
optimal solution. Our experiments show the class
fication accuracy obtained by varying the popula
tion size as 5,10,20,30,40 and 50. Figure 9 shows th
findings of this experiment. These graphs also show
us a comprehensive comparison between EO an
AIEOU based on different population sizes. Figur
10 shows the convergence of the best solution afte
every iteration.

6.4. Result and Discussion

To check the effectiveness and superiority o
AIEOU over EO, we have applied it on 18 stan
dard UCI datasets, whose descriptions are provide
in Table 3. These datasets are widely used for th
evaluation of FS methods.

It is pretty clear from Table 4, that AIEOU ha
better tuning between its exploration and exploita
tion phase. Out of the 18 datasets, EO coul
not beat AIEOU in any of them. Only in th
case of PenglungEW both produce the same ac
curacy (100%). AIEOU produces 100% accurac
in 10 datasets (55.55%): Breastcancer, WineEW
Exactly, M-of-n, Zoo, Vote, CongressEW, Iono
sphereEW, SonarEW, and PenglungEW. In th
case of Tic-tac-toe, AIEOU beats EO with a mar
gin of 15%. EO is lagging behing AIEOU by 13%
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Figure 8: Flowchart of the proposed AIEOU
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gure 9: Graphs for achieved classification accuracy using different population size for 18 UCI datasets using EO and AIEOU
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Figure 10: Graphs showing the convergence of solution at every iteration for 18 UCI datasets using EO and AIEOU
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Table 3: Brief description of the datasets utilized to assess the proposed FS method

Sl. No. Dataset #Attributes #Samples #Classes Dataset Domain

1 Breastcancer 9 699 2 Biology
2 Tic-tac-toe 9 958 2 Game
3 WineEW 13 178 3 Chemistry
4 HeartEW 13 270 2 Biology
5 Exactly 13 1000 2 Biology
6 Exactly2 13 1000 2 Biology
7 M-of-n 13 1000 2 Biology
8 Zoo 16 101 6 Artificial
9 Vote 16 300 2 Politics
10 CongressEW 16 435 2 Politics
11 Lymphography 18 148 2 Biology
12 SpectEW 22 267 2 Biology
13 BreastEW 30 569 2 Biology
14 IonosphereEW 34 351 2 Electromagnetic
15 KrvskpEW 36 3196 2 Game
16 WaveformEW 40 5000 3 Physics
17 SonarEW 60 208 2 Biology
18 PenglungEW 325 73 2 Biology

the case of HeartEW. Considering Exactly, the
fference is 3̃0%. In the case of M-of-n, the margin
15%. For SpectEW, it is 10%. AIEOU produces
uch better result by achieving 99.53% accuracy.
the rest datasets, AIEOU beats EO with slight

argin. Considering the number of selected fea-
res, EO has competed well against AIEOU.
As Table 4 indicates, in case of Breastcancer,

ic-tac-toe, Exactly2, CongressEW, Lymphogra-
y and WaveformEW, EO beats AIEOU. They
th selects the same number of features in Exactly
d M-of-n. In the rest 10 datasets, AIEOU has
e upper hand. The difference between EO and
IEOU is quite evident in the case of PenglungEW
the number of features selected ratio is 160:29.

om all these observations, we can say for sure that
IEOU has a fine-tuning between exploration and
ploitation, which is helping it find better solution
an EO. Hence, the proposed method is capable of
oducing better results.

Comparison

This section presents the comparison of AIEOU
ith other 8 state-of-the-art methods to establish
s supremacy over them. These methods comprise
most popular meta-heuristics algorithms namely,

A and PSO. It is also compared with adaptive
itching grey-whale optimizer (ASGW), hybrid
rial grey-whale optimizer (HSGW), and random
itching grey-whale optimizer (RSGW), which are

the results of hybridization of GWO and WOA
(Mafarja et al., 2019). Then AIEOU is compare
with three recently proposed meta-heuristic meth
ods name: Late Acceptance Hill Climbing Base
Social Ski Driver Algorithm for Feature Selectio
(SSDs+LAHC) (Chatterjee et al., 2020), ring the
ory based harmony search (RTHS) (Ahmed et al
2020b) and AβBSF. A brief description is given i
Table 5.

Table 6 shows the comparison table of AIEOU
and the 8 state-of-the-art methods based o
achieved classification accuracy. It is pretty clea
that AIEOU stands at the top over the othe
methods. AIEOU produces 100% accuracy i
10 datasets (55.55%), namely: Breastcancer, W
neEW, Exactly, M-of-n, Zoo, Vote, CongressEW
IonosphereEW, SonarEW and PenglungEW. I
grabs the first position in 15 datasets (83.33%).

AIEOU beats SSDs+LAHC in 9 datasets (50%)
In the rest 9 datsasets it produces equivalent re
sult. RTHS also could not beat AIEOU in any case
AIEOU outperforms RTHS in 5 datasets (27.77%)
However, it achieves same classification accuracy i
the rest 13 datasets. AIEOU produces equivalen
results in 9 datasets with AβBSF. It beats AβBSF
in 6 datasets (33.33%). In the rest 3 dataset
AβBSF has the upper hand. HSGW achieve
same classification accuracy as AIEOU achieve
in 5 datasets, produces less classification in 1
datasets (72.22%). RSGW prdoduces same classifi
cation accuracy as AIEOU produces in 4 datasets
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ble 4: Performance of EO and AIEOU in terms of achieved classification accuracy and number of selected features usin
NN-classifier (highest classification accuracies and lowest no. of selected features are in bold)

Sl. No. Dataset
Original EO AIEOU

#Accuracy #Features #Accuracy #Features #Accuracy #Features

1 Breastcancer 96 9 98.57 4 100 8
2 Tic-tac-toe 81.1 9 72.92 3 88.02 9
3 WineEW 66.67 13 94.44 4 100 3
4 HeartEW 68.15 13 81.48 1 94.44 3
5 Exatly 72.3 13 70.5 6 100 6
6 Exactly2 73.3 13 76 1 81.5 8
7 M-of-n 87.4 13 84.5 6 100 6
8 Zoo 87 16 95 5 100 4
9 Vote 92.33 16 98.33 2 100 1
10 CongressEW 92.18 16 97.70 1 100 6
11 Lymphography 81.33 18 90 4 96.67 6
12 SpectEW 82.22 22 87.03 9 98.15 6
13 BreastEW 92.63 30 95.61 7 98.25 3
14 IonosphereEW 83.43 34 95.71 6 100 4
15 KrvskpEW 96.1 36 84.35 17 99.53 11
16 WaveformEW 81.44 40 78.8 18 87.2 19
17 SonarEW 80.95 60 90.48 15 100 14
18 PenglungEW 81.33 325 100 160 100 29

Table 5: The state-of-the-art methods used to validate the proposed method

. No. Method Acronym Year Reference

1 Social ski-driver algorithm with late acceptance hill climbing SSDs+LAHC 2020 (Chatterjee et al., 2020)
2 Ring theory based harmony search RTHS 2020 (Ahmed et al., 2020b)
3 Adaptive β binary sailfish optimzer AβBSF 2020 (Ghosh et al., 2020a)
4 Hybrid serial grey-whale optimizer HSGW 2019 (Mafarja et al., 2019)
5 Random switching serial grey-whale optimizer RSGW 2019 (Mafarja et al., 2019)
6 Adaptive switching grey-whale optimizer ASGW 2019 (Mafarja et al., 2019)
7 Binary Genetic algorithm BGA 1994 (Leardi, 1994)
8 Particle swarm optimization PSO 1995 (Kennedy and Eberhart, 1995
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the rest of the 14 datasets (77.77%), AIEOU
ins by significant margin. However, ASGW beats
IEOU in only one dataset, BreastEW, achieves
uivalent results in 5 datasets. In the rest 12
tasets (66.66%), AIEOU outperforms RSGW.

GA and AIEOU produces equivalent results in
ly 2 datasets. AIEOU produces better classifi-
tion accuracy in the rest 16 datasets (88.89%).
milar thing can be said for BPSO. It produces
uivalent results in 2 datasets but loses in the rest
datasets (88.89%) when compared with AIEOU
the basis of achieved classification accuracy.

Table 7 depicts the comparison of AIEOU
ith the aforementioned 8 state-of-the-art methods
sed on number of selected features. In 6 datasets
3.33%), namely: HeartEW, Exactly, M-of-n, Zoo,
ote, and IonosphereEW, AIEOU selects the least
mber of faetures.
In Breastcancer, it chooses the highest number
features. In Tic-tac-toe also, it chooses the high-
t number of features along with SSds+LAHC
d RTHS. It holds second position along with
Ds+LAHC and AβBSF in WineEW. In case of

xactly2, Lymphography and SpectEW, it holds
e third position. In CongressEW, it holds fifth
sition. AIEOU stands in the second position in
e case of BreastEW, WaveformEW, SonarEW,
d PenglungEW. In KrvskpEW, AIEOU holds
cond position along with BGA.
Each method is run independently 20 times,
r each dataset. The Friedman test is a non-
rametric statistical test that Friedman (1937). It
used to detect differences in treatments across

ultiple test attempts. It considers a column as a
oup and a row as a block. Here, the null hypoth-
is is that the two sets of results produced by two
gorithms are drawn from the same distribution.

if any difference is encountered in the produced
sults, the only reason is the sampling error. Ini-
ally friedman test is performed to find out whether
ere is a statistical significance between the meth-
s based on p-values. It is important to note that
e Friedman test is an omnibus test, like its para-
etric alternative; that is, it tells us whether there
e overall differences, but does not pinpoint which
oups in particular differ from each other. To do
is we need to run post-hoc tests. Here, we have
ed the Nemenyi test Pohlert (2014). In statistics,
e Nemenyi test is a post-hoc test intended to find
e groups of data that differ after a statistical test
multiple comparisons has rejected the null hy-
thesis that the performance of the comparisons

on the groups of data is similar. It does pair-wis
tests of performance. Table 8 provides the pairwis
p-values. When multiple hypotheses are tested, th
chance of observing a rare event increases, and th
likelihood of incorrectly rejecting a null hypothe
sis as well (i.e., making a Type I error) increases
Here, need to use a Bonferroni adjustment West
fall (1997) on the results we get from the post-ho
tests because we are making multiple comparisons
which makes it more likely that we will declare
result significant when we should not (a Type I er
ror). The Bonferroni correction compensates fo
that increase by testing each individual hypothesi
at a significance level of α/m, where α is the sig
nificance level and ’m’ is the number of hypotheses
For example, if a trial is testing m=10 hypothe
ses with a desired α = 0.05, then the Bonferron
correction would test each individual hypothesis a
α = 0.05/10 = 0.005. Here, we have performed th
test at 0.05% significance level. So, if the gener
ated p-values are less than or equal to 0.05 / 8 =
0.00625, (after the Bonferroni adjustment, as ther
are 8 comparisons) then we say that the two set o
results belong to different (statistically) distribu
tions, which in turn rejects of the null hypothesis.

Details of the computational time taken b
AIEOU and the state-of-the-art methods consid
ered here for comparison are given in Table 9. Th
time is given in ’seconds’ for a single run of every F
method for each of the 18 standard UCI datasets
From this table we can see that AIEOU finds th
optimal solution within acceptable amount of time
Those methods which are taking less time tha
AIEOU, could not find better solution. As the mai
goal of any FS method is to find the most optima
solution, we can say that AIEOU performs bette
than other methods considered.

From the above discussions, we can say tha
AIEOU achieves the best classification accuracy i
almost every dataset. It outperforms other 8 meth
ods. Although in case of selecting least features
it stands at third position. However, considerin
achieved classification accuracy and the number o
selected features, we can state that AIEOU is
better classifier than the 8 state-of-the-art method
and it will be a good choice for feature selection i
other spheres of research and application.

8. Additional Test on Microarray Data

The previous section proves the effectiveness o
AIEOU for FS on standard UCI datasets. In thi
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ble 6: Comparion of AIEOU with other 8 state-of-the-art methods based on achieved accuracy (highest classification accurac
in bold)

o. Dataset AIEOU SSDs+LAHC RTHS AβBSF HSGW RSGW ASGW BGA B

Breastcancer 100 98.93 99.28 100 98.6 97.1 98.5 97.43 9
Tic-tac-toe 88.02 87.24 83.8 88.54 82.8 85.9 86.5 79.96 7
WineEW 100 100 100 100 100 100 100 98.88 9
HeartEW 94.44 91.67 94.44 94.44 92.3 84.8 83.1 87.41 8
Exactly 100 100 100 100 100 99.7 99.9 100 1
Exactly2 81.5 79 76 81 81.5 77.9 77.7 77 7
M-of-n 100 100 100 100 100 100 100 100 1

Zoo 100 100 100 100 100 100 100 90.2 9
Vote 100 100 100 100 98.3 99.6 98.4 97.33

CongressEW 100 100 100 100 97.5 96.1 99.4 96.79 9
Lymphography 96.67 96.67 96.67 100 93.4 89.3 88.4 83.78 8

SpectEW 98.15 95.15 98.15 94.44 86.2 81.5 87 89.55 8
BreastEW 98.25 98.25 98.25 100 98.1 98.2 100 97.54 9

IonosphereEW 100 96.43 100 98.57 94.4 97.8 97.2 94.89 9
KrvskpEW 99.53 97.81 98.75 99.06 97.3 97.2 97.1 98.5 9

WaveformEW 87.2 84.4 84.1 86 74.8 75.7 74.6 78.36 7
SonarEW 100 97.62 100 97.62 96.4 97.9 94.8 99.04 9

PenglungEW 100 100 100 100 94.2 100 100 91.89 9

Average rank 1.17 2.39 2.17 1.5 3.83 4 4.11 4.28 5
Assigned rank 1 4 3 2 5 6 7 8

ble 7: Comparison of AIEOU with other 8 state-of-the-art methods based on number of selected features (least number o
atures are in bold)

No. Dataset AIEOU SSDs+LAHC RTHS AβBSF HSGW RSGW ASGW BGA BP

Breastcancer 8 2.5 3 4 5 5.933 4.867 4 4
Tic-tac-toe 9 9 9 7 7 7 7 5 6
WineEW 3 3 2 3 4.533 5.867 6 4 5
HeartEW 3 5 5 5 8.767 6.133 6.367 5 3
Exactly 6 6 6 8 6.7 7.1 6.867 6 6
Exactly2 8 8 1 11 9 9.2 8 1 1
M-of-n 6 6 6 7 6.8 7.1 6.867 6 6

Zoo 4 4.5 4 6 5.533 5.3 7.6 4 5
Vote 1 4.5 2 3 7.567 8.8 9 5 3

0 CongressEW 6 5.5 4 4 8.867 9.7 8.833 2 3
1 Lymphography 6 6.5 4 15 10.567 10.567 11.2 5 5
2 SpectEW 6 9 4 8 10.233 13.3 10.167 5 6
3 BreastEW 3 9 2 11 16.667 17.5 15.833 8 9
4 IonosphereEW 4 12 8 7 18 20.5 17.3 7 7
5 KrvskpEW 11 20 9 32 24.8 24.8 24.5 11 1
6 WaveformEW 19 22.5 15 30 27 27.333 25.833 15 1
7 SonarEW 14 23.5 8 17 34.3 36.433 35.5 19 2
8 PenglungEW 29 140 13 39 135.33 181.2 170.3 84 13

Average rank 2.39 3.39 1.55 4.17 5.11 6.06 5.28 2.17 2.
Assigned rank 3 5 1 6 7 9 8 2 4
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ble 8: p-values generated via pair-wise Friedman test with the Nemenyi post-hoc test using the results obtained from 2
dependent runs of the proposed AIEOU method and all the state-of-the-art methods used for comparison

Dataset SSDs+LAHC RTHS AβBSF HSGW RSGW ASGW BGA BPSO

Breastcancer 0.001 0.164 0.488 0.001 0.001 0.001 0.001 0.001
Tic-tac-toe 0.9 0.001 0.9 0.001 0.001 0.629 0.009 0.001
WineEW 0.9 0.9 0.392 0.001 0.001 0.003 0.072 0.001
HeartEW 0.787 0.001 0.9 0.001 0.001 0.839 0.107 0.015
Exactly 0.9 0.9 0.254 0.001 0.001 0.019 0.001 0.001
Exactly2 0.004 0.9 0.9 0.001 0.001 0.009 0.011 0.011
M-of-n 0.9 0.9 0.612 0.001 0.001 0.007 0.001 0.001

Zoo 0.392 0.072 0.488 0.115 0.017 0.9 0.9 0.302
Vote 0.115 0.734 0.009 0.001 0.001 0.004 0.001 0.001

CongressEW 0.014 0.001 0.067 0.001 0.001 0.001 0.001 0.001
Lymphography 0.175 0.091 0.822 0.003 0.002 0.9 0.612 0.212

SpectEW 0.857 0.9 0.664 0.001 0.001 0.164 0.001 0.001
BreastEW 0.001 0.124 0.014 0.001 0.001 0.008 0.001 0.001

IonosphereEW 0.085 0.9 0.354 0.001 0.001 0.001 0.001 0.001
KrvskpEW 0.056 0.9 0.9 0.001 0.001 0.007 0.001 0.001

WaveformEW 0.001 0.9 0.142 0.001 0.001 0.001 0.001 0.001
SonarEW 0.212 0.9 0.001 0.001 0.001 0.001 0.099 0.001

PenglungEW 0.107 0.699 0.001 0.001 0.001 0.001 0.030 0.001

Table 9: Computational time comparison of AIEOU with few state-of-the-art methods

Dataset AIEOU SSDs+LAHC RTHS AβBSF HSGW RSGW ASGW BGA BPSO

reastCancer 41.6038 284.4343 79.39269 501.5298 5.645988 6.167367 6.043857 8.558856 9.48469
Tic-tac-toe 51.60454 568.5071 126.7236 897.4343 9.112209 9.299647 9.547518 11.00313 15.0490

Wine 13.27103 148.9643 36.72728 146.2968 2.199575 2.199005 2.266556 5.802927 4.33172
HeartEW 16.40863 169.4982 46.25367 152.3111 2.781135 3.237339 2.92879 7.136589 5.85543
Exactly 60.45272 461.7837 130.8398 644.148 9.705345 12.67615 10.50372 12.72327 13.4113
Exactly2 48.31129 871.7877 113.1011 828.3796 9.616275 9.747207 10.26053 12.68336 15.6220
M-of-n 52.86973 343.448 131.1547 822.6228 9.771276 12.06348 10.3175 12.64771 14.5242

Zoo 10.12563 115.7439 28.89036 124.7213 1.618331 2.868032 1.661179 5.221694 3.39370
Vote 20.0757 167.4907 45.85368 251.1039 3.082977 4.907526 3.218837 6.975272 6.08207

ongressEW 27.29547 199.6871 57.38437 262.4423 4.167467 8.33757 4.403181 8.024364 7.50386
mphography 11.84859 131.7186 33.44731 140.0983 2.170386 3.795401 2.052081 5.298428 4.45292
SpectEW 15.44286 236.2166 44.269 198.9711 3.038768 4.312171 3.166366 7.123889 4.90275
BreastEW 26.07796 357.3333 72.12786 337.3407 5.412808 6.427983 5.783034 8.219117 9.95685
Ionosphere 23.08059 284.2316 57.94887 271.5085 4.491678 5.669727 4.695843 7.979099 8.38944
rVsKpEW 553.4841 2291.531 1272.034 4807.749 86.79092 95.94066 92.80219 75.94349 126.051
aveformEW 1519.973 15133.25 2908.037 14748.95 245.2904 244.3141 255.6241 220.4667 310.354

Sonar 16.57394 186.1112 46.1303 218.9721 3.555642 3.44155 3.552653 7.471765 6.45121
englungEW 23.63256 248.9183 43.6011 285.8581 4.14005 4.148993 3.490046 8.047539 9.39781

22

Jo
ur

na
l P

re
-p

ro
of



se
ch
da
pr

da
te
th
ro
ti
ha
in

M
th
as
M
(2
(2
C
(2
po
(2
ra
ut
tu
vi

9.

ta
m
he
th
si
ut
E
of
an
ri
it
fe
U
pu
A
or
da
m
A

ca

-
y
e
-
n

e
-
t
-
f
-

.
:

n
.

el
g
d

-
s-
.

,
n
-
/

r,
d
-
/

l
.

.,
i-
/

y

t-
d
s
.

,

Journal Pre-proof
ction, additional experiments are performed to
eck how AIEOU can scale to high dimensional
tasets which are challenging binary optimization
oblems.
Microarray datasets are high dimensional
tasets and FS becomes difficult due to the exis-
nce of an extremely large search space. Hence,
ese datasets are used extensively to test the
bustness of any FS model. For this experimenta-
on, three publicly available Microarray datasets
ve been considered details of which are provided
Table 10.
The classification accuracies obtained over the
icroarray datasets Ghosh et al. (2018) have fur-
er been compared with some classical as well
recently proposed meta-heuristics such as: GA,

emetic Algorithm (MA) Moscato and Porras
003), PSO, Ant Lion Optimizer (ALO) Mirjalili
015), GSA, SSD-LAHC, ECWSA and Adaptive β
oral-Reefs Optimization (AβCRO) Ahmed et al.
020a). The results of these algorithms are re-
rted in Guha et al. (2020); Chatterjee et al.
020). Table 11 contains the classification accu-
cy (in %) obtained by these algorithms over the
ilized microarray datasets and the number of fea-
res used to achieve the accuracy has been pro-
ded in parenthesis corresponding to the accuracy.

Conclusion

Feature selection is an important and fundamen-
l pre-processing phase in the data related do-
ains. In the past few decades, several meta-
uristic algorithms have been proposed to select
e most relevant features from various high dimen-
onal datasets. These methods have proved their
ility in this field by producing promising results.
O has an efficient exploration capability because
its equilibrium pool. The present work proposes
improved version of EO by improving its equilib-

um pool with AβHC and finding proper values for
s parameters with learning-based automata. As
ature selection is a binary optimization problem,
-shaped transfer function is used to limit the out-
t to 0 and 1. The proposed method is named as

IEOU. To establish the effectiveness and superi-
ity of AIEOU, it is evaluated on 18 standard UCI
tasets and compared with 8 state-of-the-art FS
ethods. The achieved results demonstrate that
IEOU is an appropriate choice for FS problem.
As AIEOU is a meta-heurtistic algorithm, there
n be some research problems where it may fail to

find the optimal solution. Although this is in ac
cordance with NFL theorem Wolpert and Macread
(1997), it can still be considered as a disadvantag
of using the suggested method. The δ values (men
tioned in section 5) for the parameters of EO ca
be chosen differently for different datasets. AIEOU
can also be applied to some real-world problems lik
handwritten word or digit recognition, human ac
tivity recognition, facial emotion recognition, scrip
recognition, graphology applications, sleep depriva
tion detection, etc. Further analysis of impact o
use of other classifiers like neural networks or ran
dom forest can also be made.
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Table 10: Description of the Microarray datasets used for experimentation

Sl. No. Dataset #Instances #Features #Classes

1 DLBCL 77 7070 2
2 Leukemia 72 5147 2
3 SRBCT 83 2308 4

Table 11: Performance comparison of the proposed method with some existing methods on Microarray datasets

ataset AIEOU GA MA PSO ALO GSA LAHC-SSD ECWSA AβCRO
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SRBCT 100(34) 100(78) 100(50) 99.1(49) 98.7(45) 100(62) 99.2(54) 100(40) 100(37)
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