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Ecosystem Water Use Efficiency Response to Drought

Over Southwest China

Abstract: Drought is showing an increasing trend as a result of the significant variation
in precipitation and temperature in China. This study investigated the impacts of drought
on ecosystem water use efficiency (WUE) in southwest China. The spatiotemporal
distribution of drought and ecosystem WUE were analyzed through integrated
approaches based on observed climate and satellite remote sensing datasets to understand
the response of ecosystem WUE to drought. Also, the impacts of climatic variables on
gross primary productivity (GPP), evapotranspiration (ET) and WUE have been
discussed. More than 30% of the total area can be categorized as suffering moderate
drought. Six drought events (autumn 2006, autumn 2009, winter 2010, summer 2011,
autumn 2011 and winter 2013) were identified during the period of 2001-2016. The
average monthly WUE was 2.37 gC/kgH,0, showing a decreasing trend under the
combined effects of drought and other environmental factors. Autumn 2006 exhibited the
highest significant positive effect of drought on WUE on more than 80% of the total area
that concentrated in the forest, shrubland, savanna and agriculture ecosystems. The
results of this study have implications for ecosystem management and climate policy
making that could allow implementing feasible water use strategies under a warming

climate.

Keywords: Drought; Water use efficiency; Gross primary productivity; Spatiotemporal

variability; MODIS datasets.
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1. Introduction

Drought is an intermittent disturbance when water supply does not meet the demand
for a long time (Zhao and Running, 2010), and can bring profound effects on carbon-
water fluxes in terrestrial ecosystems at the global and regional scales (Sheffield et al.,
2012, Yu et al., 2014). Extreme droughts happened every two years during the period of
1990-2007 in China which resulted in annual grain loss of around 39.2 million tons that
decreased the gross domestic product by 1.47% (Zhai et al., 2010). Globally, increasing
evaporation due to increasing temperature lead to drought without any changes in
precipitation. Moreover, the frequency and intensity of drought are also increasing
dramatically due to global warming (Zhang et al., 2018, Sheffield and Wood, 2008,
Trenberth et al., 2013, Mokhtar et al., 2021). In recent years, southwest China has
suffered serious droughts that caused disastrous effects on the socioeconomic,
ecosystems and agricultural sector, especially in 2006 when it caused crop failure on 0.3
million hectares of agricultural areas and water scarcity to more than 18 million people
(Yang et al., 2012, Zhang et al., 2012, Wang et al., 2015a). The frequency of occurrence
of dry and wet years in southern China were lower than northwest China during the
period of 1961-2005 (Zhai et al., 2010).

The ecosystem in China is huge and diverse, including a broad range of tropical and
temperate climate, and boreal forest, agriculture, grass, savanna and urban land cover. It
plays a vital role in the global and regional carbon cycle, and is slowly increasing the
concentration of atmospheric CO, (Mu et al., 2015, Quere et al., 2012). Due to the close
relationship between ecosystem dynamics and available water, drought can be restrictive
to ecosystem growth and the distribution pattern and types (Narasimhan and Srinivasan,
2005, Vicenteserrano et al., 2012, Vicente-Serrano, 2015). Several previous studies have
indicated that ecological programs can reduce ecosystem degradation and enhance
vegetation coverage, although where drought persists these programs have not worked

well (Deng et al., 2014, Zhitao et al., 2014). Therefore, ecosystem water use efficiency
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(WUE) is an important eco-physiological index which shows the relationship between
carbon and ecosystem water cycles.

WUE is the main variable for understanding the impact of climate change on
ecosystem productivity. Additionally, it is very essential to understand the linkage
between the important biological processes of photosynthesis and transpiration, and the
physical process of evaporation that together manage the Earth’s carbon and water
resources. Moreover, WUE can be used to point out the best strategy of water use in
various ecosystems (Shaobo et al., Donovan and Ehleringer, 1991, Yu et al., 2008). It has
been observed that WUE has a similar latitudinal trend on earth, increasing from the
subtropics to about 51 N and then decreasing in higher latitudes (Tang et al., 2014). At
the global scale, WUE varies with water availability with an increasing trend from
moderate to extreme drought and a decreasing trend in wet conditions (Ponce-Campos et
al., 2013). However, different ecosystem types have different sensitivity to changes of
climatic conditions. At the ecosystem level, WUE is defined as the ratio between gross
primary productivity (GPP) and evapotranspiration (ET) (Jassal et al., 2009, Briimmer et
al., 2012). This definition was adopted in this study to make our findings comparable
with previous studies (Reichstein, 2007, Huang et al., 2015, Yang et al., 2016a).

During the past decades, the spatiotemporal impacts of drought on WUE have been
widely studied. Drought can also strongly affect the carbon cycle, composition, structure
and function of the terrestrial ecosystem, which ultimately affect WUE (Breshears et al.,
2005). The intensity and frequency of drought events have a significant increasing trend,
which have a strong impact on WUE via the influence of carbon and water cycles. During

the period of 2009-2010 in southwest China, there have been negative impacts of drought
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on vegetation in Yunnan, eastern Sichuan and Guizhou provinces which have resulted in
the decline of primary productivity and carbon uptake (Li et al., 2019). Moreover, a
serious drought in spring 2010 reduced the regional annual net and gross primary
productivity of southwestern China to the lowest level by influencing the stomatal
conductance, leaf area and net primary productivity, which eventually influenced WUE.
However, it remains unclear how the severity of drought influences WUE (Ngugi et al.,
2003). In addition, the strong coupling of carbon and water cycles revealed that any
environmental disturbance on one component of WUE (i.e., GPP or ET) affects the other
at the same time. WUE is influenced by environmental factors of precipitation,
temperature, solar radiation, and ecosystem types. For example, under warm temperature,
WUE decreases due to the sharp decrease in GPP. Precipitation affects the spatial and
temporal variations of WUE, which can alter it by directly affecting the ecosystem
evaporation and transpiration process while indirectly affecting the plant carbon uptake
through soil water content regulation (Reichstein et al., 2010, Hu et al., 2010, Zhang et
al., 2014, Tang et al., 2017). By contrast, increasing vapor pressure deficit leads to
reduction in WUE of evergreen, rain, and deciduous forests (Law et al., 2002) and
Douglas-Fir Stand (Stephane Ponton, 2006).

The objectives of this study are to analyze the spatiotemporal distribution of drought
and ecosystem WUE in southwest China, and to explore the spatiotemporal responses of
WUE to drought events during the period of 2001-2016. The findings from this study
provide critical recommendations to governments and policy makers for implementing
credible ecosystem and water resources management strategies under natural and human

disturbances.
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2. Material and methods
2.1 Study area and datasets

The study area covers 1.052x10° km? of southwest China comprising of Yunnan,
Guizhou and Sichuan provinces. Topographically, the study area can be divided into
three regions namely: western-Sichuan Plateau, Sichuan Basin, and Yunnan-Guizhou
Plateau. The Sichuan basin is characterized by mountains with elevation varying between
1,000 and 3,000 m, the floor of the basin having an average elevation of 500 m. Yunnan-
Guizhou plateau has an average elevation of 2,000 m (Figure 1a). The climate of the
region is characterized as typical monsoonal but has temporarily fluctuated in the spatial
distribution of the climate variables during the past decades. The annual precipitation
decreased by 0.20 mm/year and temperature increased by 0.03 °C/year during the period
from 1960 to 2016 (Mokhtar et al., 2020a).

To achieve our aim, we collected several datasets including climate, remotely sensed
images (GPP, ET and ecosystem map) and topography (Digital Evaluation Model, DEM).
Climate datasets of 103 meteorological stations (1960-2016) were obtained from China

National Meteorological Data Sharing Platform (http://data.cma.cn/en). The products of

GPP (MOD17A2H), ET (MOD16A2) and annual ecosystem map (MCD12Q1 V051),
which were produced operationally for the southwest China’s terrestrial surface using
imagery from the MODIS (Moderate Resolution Imaging Spectroradiometer) sensor,
with 500m spatial resolution for the period from 2001 to 2016 were used

(earthdata.nasa.gov/). GPP was developed based on a light-use efficiency model and have
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been validated (Turner et al., 2006). The ecosystem systems were classified into 8 types
as follows: deciduous forest, evergreen forest, mixed forest, shrub, savanna, wetland,
agriculture and grass (Friedl et al., 2010).

The dominant ecosystem type is forest which occupies around 42% of the study area.
Grass is the second major ecosystem type, occupying about 22% of the study area.
Agriculture is the third major ecosystem type, covering about 20% of the study area
(Table 1). Forest (evergreen, EF; deciduous, DF; mixed, MF) and grass ecosystem types
are distributed primarily in the southern and eastern mountain areas, while grass
dominates in the high mountains area (Sichuan plateau) and agriculture covers the basins
area (Sichuan basin and some areas in Guizhou) (Figure 1). Agriculture is mainly rice,
corn, grape, and flue-cured tobacco accounting for 18.87%, 16.83%, 22.25%, and 25.16%
of the land area, respectively. Forest and agriculture increased by 77,896 km? and 2,334.8
km?, respectively, during the period from 2001 to 2013, while grass and savanna
decreased significantly by 23,029.7 km? and 28,802.5 km?, respectively (Table 2). The
grass area converted to forest was 22,404 km? (sum of row Grass under column EF, DF
and MF) while the area converted from forest to grass was 11,462.9 km? as much (sum
row EF, DF and MF under column Grass). The areas converted from agriculture to forest
(43,940 km?) were greater than that from forest to agriculture (25,921 km?). The
transition areas between forests and other ecosystem types were obviously greater than

other transitions, particularly when compared with agriculture.

2.2 Drought characteristics
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Various drought indices have been investigated including the Palmer Drought
Severity Index (PDSI), the Soil Moisture Deficit Index (SMDI), standardized runoff
index (SRI) and the Standardized Precipitation Index (SPI) (Shi, 2014, Hoover and
Rogers, 2016). SPI is the most commonly used index to investigate drought categories
(Nufiez et al., 2014, Park et al., 2019). It has a simple structure and requires only rainfall
data (Wang et al., 2015b, Xu et al., 2015). Therefore, it is more suitable for regions with
limited hydrological data (Vergni and Todisco, 2011). Several studies have indicated that
SPI is the major popular index for drought monitoring (Ma et al., 2018, Wu et al., 2007,
Moradi et al., 2011, Nafarzadegan et al., 2012). Table 3 presents the categories of SPI
that can be calculated for different timescales (i.e., 1, 3, 6, 9, 12 months) (Agnew, 2000).
However, we restricted our study to only 3 (SPI-3) and 6 (SPI-6) months timescales
which are considered representative of agricultural drought where rainfall shortage in a
short time period is the main cause of drought (Park et al., 2018).

Drought variability in space and time was analyzed through principal component
analysis (PCA) in S-mod and applied to both SPI-3 and SPI-6 (Rencher, 1998). PCA was
applied to produce a smaller representative data, called the principal components (PCs),
from the original one. Such a transformation is linear and depends on the eigenvectors of
the covariance or correlation matrix (Xie et al., 2013). Then, Varimax orthogonal rotation
methods were applied to the “loading” to capture subset regions affected by drought (Raziei
et al., 2015). In this study, the dataset of SPI-3 and SPI-6 series were organized into a
matrix with 684 rows (length of the monthly SPIs time series) and 103 columns (number
of stations). PCA test was used to transform the SPI series (90 stations) into PCs to produce

more localized spatial regions. The Varimax orthogonal rotation method was applied to the
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“loadings” because it simplifies the structure of the patterns by forcing the value of the
loading coefficients towards zero or within = 1 (Tian and Quiring, 2019, Raziei et al.,
2009). The S-mode of the PCA was calculated for SPI-3 and SPI-6 to define the spatial
patterns of drought variability in the study area.

Several methods have been widely used for drought event identification including the
threshold level method, run theory, and empirical orthogonal functions (Lloyd-Hughes,
2012). In this study we determined a drought event as a period in which the SPI is
continuously negative (Tan et al., 2015a, McKee et al., 1993), i.e., for all SPI <0. To further
discriminate drought impacts on the regional ecosystem, the areas affected by drought were
estimated based on Table 3, and were identified using Eq. (1) as (Agnew, 2000, Tan et al.,
2015a):

SEoD (%) =-%100 )

M

where SEoD is the spatial drought extent, m is the number of drought points (SPI <0), and
M is the total number of points in the study area. Eq. (1) highlights the susceptibility of
areas to different drought categories. The drought-prone areas were examined by the
percentage of the number of drought locations in the total study area for the different
drought categories.

Once a specific drought event was identified, the drought characteristics of duration
(DD), intensity (DI), and severity (DS) were analyzed. DD is the number of months in
which SPI values are negative for a drought event (Spinoni et al., 2014, Guo et al., 2017)

and DS is the absolute sum of the SPI values during a drought event calculated as:

DS = (2)

DD
S ser,
i=1
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where SPJ; is the SPI value for month i1 and DI is the lowest SPI value during the specific
drought event. Therefore, the total duration of a drought episode (TDD) is defined as either
the sum of the number of continuous months n; when SPI < 0 (Spinoni et al., 2014, Guo et

al., 2017) as:

n,
— <100 3
NV, 3

z

TDD(%) = >
where n; is the sum of months encompassing drought episodes, N; is the total studied period

in months for each station.

2.3 WUE analysis
Monthly WUE was calculated as the ratio between GPP and ET for each month
during the period of 2001-2016 for each grid cell of the study area as:

WUE = ﬂ 4)
ET

where WUE is in g Ckg'H,O, GPP is in g Cm and ET is in kg H,O m.

Drought events during the period of 2001-2016 were first identified. Next, we
calculated the difference between the WUE of the drought year and that of a normal year
(AWUE). WUE exhibits positive anomalies and drought is likely to increase WUE when
the AWUE value is greater than 0 while WUE shows negative anomalies when the
AWUE value is less than 0. Mann—Kendall (M-K) and Sen’s slope test were applied to
determine the linear trend of monthly WUE, SPIs (SPI-3 and SPI-6) and the climate
variables. The M-K test has been recommended for analysis of trends in timeseries of
precipitation, temperature, runoff, and water quality (Mokhtar et al., 2020b, Mokhtar et
al., 2020a). Pearson correlation analysis was applied to study the impact of drought on
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the monthly WUE for each ecosystem type in order to identify the positive and negative

effects of drought on ecosystem WUE for each grid cell over the study area.

3. Results
3.1 Spatial and temporal variations of droughts over the past decades

Southwest China has suffered from serious droughts that have significantly affected
ecosystem production and WUE. In order to identify the drought episodes in southwest
China, SPI-3 and SPI-6 were analyzed for 103 stations using the M-K test. The results
showed that, for SPI-3, there were positive significant trend for 38 stations (36.9%,
p<0.05), with 22 of them mainly in the Guizhou province having a p-value < 0.001
(Figure 2). Sixty-five stations that showed no trend were concentrated in the Yunnan and
the eastern part of Sichuan and Guizhou provinces. For SPI-6, a significant trend
(p<0.05) was found in 62 stations (60%) which covered a large area of southwest China,
and 33 stations (32%) with p <0.001. The SPI-3 in the northwest of Sichuan province had
a positive significant trend with Sen’s slope values that ranged from 0.0004 to 0.0009
(Figure 2), being the same results for SPI-6. The PCs were retained for Varimax rotation
in order to identify the 18 sub-regions of SPI-3 and SPI-6 by applying scree plots to
identify the number of PCs to retain (Hair Jr, 1999). Figure 2¢c-d show a slight change in
slope at the eigenvalues, although there is a smaller change for SPI-6 compared with SPI-
3. These eigenvalues for the SPIs were used to determine the contribution of the dataset
variance of each factor, cumulatively and individually. Accordingly, we defined eighteen

components that explained about 72.8% of the total variance of SPI-3 and 71.9% for SPI-
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6, the remaining components accounting for the remaining variance. The loadings
corresponding to each PC were mapped to show the spatial patterns of drought variability
across the studied area (Alsafadi et al., 2020). The results illustrate the spatial distribution
of the loadings corresponding to each extracted component. The spatial pattern shows
distinct areas with high heterogeneity in wet and dry events due to the large area that
extend across hundreds of kilometers, with several climate patterns influenced by
atmospheric circulation and general distribution of rainfall. For example, PC1 of SPI-3
timescale corresponds to the southern region with high annual precipitation (1000-1500
mm), i.e., temperate climate without dry season, while PC2 mainly follows a temperate
climate with dry winter experiencing total annual rainfall in excess of 2000 mm. In the
same context, PC4 reflects drought variability in the northern regions with moderate
precipitation (500-700 mm). Spatially, the PCs suggest high heterogeneity of drought in
the study area. Thus, the heterogeneity reflects the complex interactions among the
region's topography, atmospheric circulation scale processes, monsoon flow, and
anthropogenic forcing.

Furthermore, the SPI-3 and SPI-6 results indicated that a significant change occurred
after 2009 in southwest China (Fig. 3). The proportion of the drought area in southwest
China was used to measure the spatial extent of drought. Approximately 20% of the total
area affected was subjected to extreme droughts for SPI-3 and SPI-6. However, more
than 30% of the total area was categorized as moderate drought which is similar to the
observation by (Liu et al., 2014) over China (Figure 4). In order to study the drought
events after 2000, six seasons (autumn 2006, autumn 2009, winter 2010, summer 2011,

autumn 2011 and winter 2013) were identified among the 64 seasons for the period of
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2001-2016. The highest number of the total drought durations happened in the southern
part of the study area, especially in central Yunnan province that reached 90% (> 50
months) of the total period. Moreover, the results of SPI-6 indicated longer durations of
drought than SPI-3, especially in the Yunnan province. The highest severity was recorded
in the eastern part of Yunnan and the lowest values in the northern part of Sichuan
province (Figure 5). The drought intensity ranged from -3 to less than -1 over the study

area, the highest intensity occurring in the southeast of Yunnan province.

3.2 Spatiotemporal variations of water use efficiency (WUE)

WUE fluctuated temporally and spatially based on the drought situation and the
environmental factors. The average annual WUE was 2.37 gC/kgH,O for the period from
2001 to 2016, with the highest value registered in 2001 (3.99 gC/kgH,0) and the lowest
value in 2004 (1.38 gC/kgH,0). The annual WUE shows a decreasing linear trend of -
0.05 gC/kgH,0/year. GPP and ET increased by 0.63 gC/year and 5.82 kgH,0O/year,
respectively, which are consistent with the increasing trend of temperature and solar
radiation. The annual pattern of WUE by location depicts a long-term change in the
ecosystem types. WUE reached 5.6 gC/kgH,O for the forest ecosystem in most of
Yunnan and Guizhou provinces, and averaged at 1.2 gC/KgH,O for the grass ecosystem
in the northern Sichuan.

Seasonally, WUE had the lowest value for grasses located in the northwest of
Sichuan province in the winter season. However, the northeastern part of Sichuan
province had a high WUE where agricultural activities were prominent. By contrast, the

highest values of 5 gC/kgH,0 occurred in the forest ecosystem of southern Yunnan
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province. The summer season recorded the highest values of WUE (> 10 gC/kgH,0) in
comparison with the other seasons, especially in Yunnan province (>20 gC/kgH,0). For
spring and autumn seasons, the highest WUE values were located in the east of Guizhou
and the south of Yunnan, respectively. However, the northwest of Sichuan has the lowest
values in spring and autumn seasons. In terms of ecosystem types, the average annual
WUE values (gC kg ! H,O) were in the following decreasing order; evergreen broadleaf
forests (2.32) > mixed forests (2.02) > savannas (1.83), and the lowest ecosystem WUE
was in grass (0.95) (Figure 5). Our findings indicated that the WUE ecosystem types
varied over time and location due to the significant variations of the climate variables.
Since WUE depends on GPP and ET, it is expected that climate factors that affect
GPP and/or ET should also affect WUE. While GPP and ET both increased during the
study period, WUE showed a decreasing trend in the same period because the rate of
increase in ET was higher than in GPP. Increasing solar radiation amount, vapor pressure
deficit, temperature and precipitation contributed to increases in GPP by 0.47, 3.9, 4.3
and 0.33 gC/m?, and in ET by 0.15, 1.2, 1.3 and 0.1 kgH,O, respectively (Figure 6).
Temperature is the main factor controlling the annual and monthly GPP and ET, which
eventually leads to a decrease in WUE. Solar radiation and vapor pressure deficit had a

positive impact on WUE with a slope of 0.002 and 0.001 gC/kH,0O per year, respectively.

3.3 Responses of WUE to drought
The monthly correlation coefficient between the SPIs and WUE shows a significant
spatial heterogeneity that ranged from -0.4 to 0.6. For SPI-3 and in the winter season,

WUE had the highest positive significant correlation with drought (26%, p<0.05) in
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Yunnan province and some other parts of the south Sichuan and Guizhou provinces.
Nonetheless, the non-significant positive correlation was more than 57% of the total area
in the autumn season. By contrast, the significant negative correlation with drought was
8.6% (non-significant in 58%, p< 0.05) which covered the whole of Guizhou province.
For SPI-6, WUE had a positive significant correlation with drought of 35.5% (non-
significant in 63%, p< 0.05) over the whole study area except small pockets in the
northwest of Yunnan and the northeast of Guizhou province during the winter season
(Figure 7). However, the negative correlation with SPI-6 was significant in 11% and non-
significant in 50% of the total area that covered Yunnan and Guizhou and the north of
Sichuan province (Table 4). In the summer season, the WUE had a negative correlation
with SPIs due to the abundant precipitation in summer season that leads to increase in
WUE through a higher rate of increase in GPP than in ET. In terms of ecosystem types,
WUE had a correlation with SPI-3 of -0.37 for agriculture in the summer season (JJA),
while in the winter season (DJF) it was 0.26 with evergreen needle-leaf forests (ENF)
(Figure 8). By contrast, the WUE presented negative correlation with SPI-3 for
agriculture in autumn (SON) was -0.20. For SPI-6, in summer season, evergreen broad-
leaf forests (EBF) and agriculture had a positive correlation of 0.39 and 0.35,
respectively. Likewise, ENF had a positive correlation of 0.42 and grass was -0.10 with
WUE in the winter season (Figure 8).

Six drought events (autumn 2006, autumn 2009, winter 2010, summer 2011, autumn
2011 and winter 2013) were identified during the period of 2001-2016 based on the
average WUE values. The AWUE was used to study the impacts of drought on the

ecosystems. Figure 9 shows the spatial distribution of WUE for the drought seasons and

15

John Wiley & Sons, Ltd



oNOYTULT D WN =

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

http://mc.manuscriptcentral.com/ecohydrology

the spatial patterns of the annual WUE anomalies. For example, the spatial distribution of
WUE and the total average in autumn 2009 (Figure 9b) changed significantly, and this is
also true for summer 2011 (Figure 9¢). AWUE in autumn 2009 and summer 2011 were
the highest decrease in values by -82% and -88%, respectively (Figure 9k and m). By
contrast, AWUE in autumn 2006 and winter 2013 were the highest increase in values by
60% and 33%, respectively. In autumn 2006, the drought event had a significant positive
effect on WUE for more than 80% of the ecosystem grid cells of forest, shrubland,
savanna and agriculture ecosystems (Figure 9j). In winter 2010, the drought had
significant negative impacts on more than 65% of ecosystem type grid cells except for the
grass ecosystem that showed a positive increase for all grid cells (Table 5).

Finally, the spatial extent of drought (SEoD) areas during the period from 2009 to
2013 were analyzed to determine the responses of the ecosystems” WUE, GPP and ET to
drought areas at the seasonal scale (Figure 10). WUE has slightly positively correlated
with the percentage drought area for the SPIs. Moreover, the highest WUE values were in
spring 2010 whereas the highest drought area was in winter 2010, indicating that the
impact of the previous drought season on WUE was higher than the current season
(Figure 10a). The impacts of drought on GPP and ET were similar. Thus, the variations in

seasonal WUE were mainly caused by the variations in seasonal values of GPP and ET.

4. Discussion
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The characteristics of climatic change in southwest China indicate that temperature
exhibits an increasing trend while precipitation has a decreasing trend. The significant
reduction of sunshine in southwest China plays a vital role in the evaporation rate that is
responsible for the drought events (Mokhtar et al., 2020a). The significant positive
correlation between GPP and ET during the 16 years (2001-2016) were lower than
reported by previous investigations (Krishnan et al., 2006, Yu et al., 2008, Jassal et al.,
2009) for the different ecosystem types. Lower WUE in the mixed forest plantation is
attributed to the broadleaf dominant stand with higher evapotranspiration and lower GPP.
For example, in the dry season, GPP and ET drop gradually due to decline in air
temperature, and in February and March GPP and ET continue to drop to reach the lowest
values. Thus, WUE decreased by 0.8 gC/kgH,0 (27% of the annual average) during the
study period, responding to the variations of drought and environmental factors. This
result corroborates the findings of (Xue et al., 2015). By contrast, the highest values of
WUE occurred in July and August, which also agree with the investigation of (Tong et
al., 2014). This could be due to the stoma closing during high temperature, decreasing
transpiration rate more than the photosynthesis rate, which results in the rise of WUE in
the wet season (Maroco et al., 1997, Briimmer et al., 2012). Moreover, the spatial
differences of WUE were influenced by climate conditions and plant morphology, this
result being consistent with those of Yang et al. (2016), Huang et al. (2017), and Xue et
al. (2015). The annual WUE of southwestern China was higher than the mean annual
WUE of China’s terrestrial ecosystems (Liu et al., 2015a), and the global WUE (Ito,
.2012). WUE correlated positively with SPI-3 and SPI-6 over Yunnan province in spring

and summer seasons. The result of Yang et al. (2016) (Yang et al., 2016b)(Yang et al.,
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2016b)(Yang, Guan et al. 2016)(Yang et al., 2016b) is consistent with our finding (Yang
et al., 2016a). In the dry season WUE responded negatively to increasing SPI-3 and SPI-6
as observed by Guo et al. (2019). Table 6 illustrates the correlation coefficient between
WUE and the environmental factors for the ecosystem types, all being positive except for
the evergreen broadleaf forests and the savanna ecosystem. This explains the difference
between tropical and temperate ecosystems, and as reported by (Tian et al., 2010).
Moreover, precipitation had a strong positive correlation between WUE and the
evergreen broadleaf forest (0.87), deciduous broadleaf forest (0.82) and grass ecosystem
(0.85). Precipitation is one of the major important factors for WUE because it controls the
evaporation rate. Meanwhile, increased precipitation can contribute to increase in canopy
cover and a decrease in soil evaporation, contributing to an increase in WUE. Also,
increase precipitation leads to increase in GPP and ET. In the wet season, precipitation is
not the main limiting factor for ecosystem growth and WUE, as the shortwave solar
radiation and vapor pressure deficit are the limiting factors by controlling transpiration
and photosynthesis. Further, photosynthesis is limited under strong solar radiation and
vapor pressure deficit which is reflected on WUE. This result is inconsistent with the
findings of (Beer et al., 2009, Xin et al., 2016, Wagle et al., 2016). Solar radiation
controls transpiration and photosynthesis and there is a significant correlation between
solar radiation and WUE for deciduous needleleaf forest (0.82), deciduous broadleaf
forest (0.78) and evergreen broadleaf forest (0.74). Mean air temperature has both
positive and negative effect on WUE at the annual and seasonal scale due to its complex
impact on both GPP and ET through the influence of LAI (leave area index) that

increases ET especially in the subtropical ecosystems (Tan et al., 2015b).
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Previous studies have indicated both positive and negative correlation between
WUE and drought (Yang et al., 2016b, Guo et al., 2019). The variations could be due to
the numerous drought indices, locations, and data sources used. Furthermore, the
differences in sensitivities of GPP and ET to drought control the WUE-drought
relationships across various sub-regions and ecosystems (Liu et al., 2015b, Yang et al.,
2016b). For example, water resources played a vital role for ecosystem productivity (Bai
et al., 2008). Sichuan province has a sparse ecosystem (e.g., grass, agriculture and
forest), thus, increasing precipitation would alleviate water shortages and improve gross
primary productivity. In this study, the ecosystem types indicated different WUE that
presented different responses to drought due to the differences in sensitivities of GPP
and ET to climate change, resulting in variabilities in carbon uptake and water
consumption (Liu et al., 2013b, Knapp and Smith, 2001). For instance, grass ecosystem
yielded the lowest WUE but had a significant positive correlation with SPI due to their
growth, activity and productivity that depend strongly on water supply (Ponce-Campos
et al., 2013, Knapp and Smith, 2001). However, the WUE of agriculture in wetter
regions had a positive response to drought because of their sensitivity to water shortages.
The crops would wilt or even die under water deficient conditions, thus WUE will
decrease with increase in ET and decline in ecosystem GPP (Liu et al., 2013a, Liu et al.,
2013b). In semi-humid regions with abundant vegetation (i.e., grass, DBF, DNF and
MF), energy is the major influence on ecosystem growth during drought periods because
the incoming shortwave solar radiation is reduced which results in obstructing the
absorption of carbon (Liu et al., 2015b). Generally, the shortage in precipitation and lack

of cloud cover result in drought because of increase in incoming solar radiation for the
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ecosystem processes (GPP and ET) to accelerate (Larcher, 2003). The negative
correlation coefficient between drought and ET was greater than between drought and
GPP, resulting in a decrease in annual WUE as also reported by (Liu et al., 2015a). The
overall sensitivity of GPP and ET to drought index is low in both dry and wet
ecosystems, but ET is sensitive to changes in hydro-climatic conditions. Therefore, it is
the primary reason for the negative correlation between WUE and SPI which indicates
that it is not only SPI that controls WUE. Another reason is that drought and changes in
WUE may not occur at the same time because of the different impact of drought on

carbon uptake and water loss.

5. Conclusions

In this paper we analyzed the monthly spatiotemporal patterns of WUE and its
response to drought using MODIS data products (GPP and ET) and the SPI-3 and SPI-6
drought indices in southwest China during the period of 2001-2016. The PCs present a
high spatial heterogeneity of drought in the study area. The main conclusions are the

following.

e Six drought events (autumn 2006, autumn 2009, winter 2010, summer 2011, autumn

2011 and winter 2013) were identified during the period of 2001-2016.

e The monthly correlation coefficient between the SPIs and WUE exhibits a large
spatial heterogeneity, especially in the summer season when the WUE is negatively
correlated with the drought indices (SPI-3/SPI-6). The highest and lowest annual
WUE were recorded for the evergreen broadleaf forest and grass ecosystem,

respectively.
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e The highest decreasing changes in WUE occurred during autumn 2009 and summer
2011, whereas WUE for autumn 2006 and winter 2013 showed the highest
increasing values. WUE is expected to continue changing under future climate
change, particularly as drought is projected to increase in both frequency and
severity.

Our findings have implications for ecosystem management and climate policy making.

Moreover, it can help to better understand plant water use strategy in order to implement

feasible water use strategies to minimize the influence of drought under the warming

climate.
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Figure 10: Seasonal variation of WUE, GPP and ET with percentage drought area

(SEoD) during the drought events.
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Figure 1: The location of the study area (a) and the spatial distribution of the ecosystem evolution
from 2001 to 2013 (b-¢).

Figure 2: Spatial distribution of drought index (SPI-3 and SPI-6) and Scree plot of the cumulative
variance explained by the components of the PCA for SPI-3 and SPI-6.

Figure 3: Temporal evolution and trends of the 3 and 6 monthly SPIs from the PCs’ corresponding
scores representing drought patterns in southwest China.

Figure 4: Spatial distribution of (TDD, %), drought severity (DS) and drought intensity (DI) during
drought events (a, b) and the temporal evolution of spatial extent of drought (SEoD %, i.e., the

percentage area affected by drought (c, d).

Figure. 5: Spatial distribution of WUE for the seasons (a-d), monthly changes in WUE

(e) and WUE for the different ecosystem types (f) in southwest China during 2001-2016.

Note: (ENF: evergreen needle-leaf forests, EBF: evergreen broadleaf forests, DNF: deciduous
needle-leaf forests, DBF: deciduous broadleaf forests, MF: mixed forests, SH: shrublands, SA:
savannas, AG: agriculture, GRA: grass and WT: wetland

Figure 6: The monthly relationship of GPP and ET with the monthly temperature (a), precipitation
(b), vapor pressure deficit (VPD) (¢) and solar radiation (d)(a-d), relationship of monthly WUE with
monthly solar radiation (e) and VPD () for the different ecosystems during 2001-2016.

Figure 7: The spatial monthly distribution of Pearson correlation coefficient between WUE and the
SPIs (winter - DJF: December, January and February; spring - MAM: March, April and May;
summer - JJA: June, July, August; and autumn - SON: September, October and November.

Figure 8: The regional monthly correlation coefficients between WUE and the SPIs for the different

ecosystem types.
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Figure 9: Spatial distribution of WUE for the seasons (a to 1) and the magnitude and spatial patterns

of the annual WUE anomalies (j to p ).

oNOYTULT D WN =

Figure 10: Seasonal variation of WUE, GPP and ET with percentage drought area (SEoD) during

10 the drought events.

60 John Wiley & Sons, Ltd



oNOYTULT D WN =

http://mc.manuscriptcentral.com/ecohydrology

Table 1. The ecosystem area extent in southwest China between 2001and 2013 (km?)

Water bodies
Evergreen forest (EF)

Deciduous forest (DF)
Mixed forest (MF)
Shrub

Savanna

Grass

Wetland

Agriculture

Others

2001 2005 2010 2013
1,360.71 1,129.09 995.79 1,017.04
48,227 53,811.72 55,162.77 75,024.04
5,271.74 1,481.55 1,276.56 1,554.32
351,181.55 354,690.32 413,582.31 406,291.94
29,817.67 4,661.04 3,061.43 2,957.53
158,759.48 178,969.57 140,264.70 129,954.12
230,738.84 235,579.34 215,846.00 208,226.35
2,703.81 3,138.70 4,302.57 1,185.33
209,584.48 204,663.70 203,642.58 212,186.75
6,878.87 6,399.12 6,389.46 6,126.72
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Table 3 The Agnew's scheme for drought categories classification (Agnew, 2000).

oNOYTULT D WN =

Drought group SPI values
No drought > ()
No drought 0to-0.5
Moderate drought -0.5 to -0.84
Severe drought -0.84 to -1.28
Extreme drought -1.28 to -1.65
Very extreme drought >-1.65

John Wiley & Sons, Ltd
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Table 6. Correlation coefficient between monthly water use efficiency (WUE) and the

controlling climate factors for the ecosystem functional types.

oNOYTULT D WN =

Ecosystem types P T SR VPD

10 WUE ENF 0.87++ 0.83** 0.74%x 0.81%*
EBF -0.72%+ -0.83** -0.68% -0.65%*
13 DNF 0.70%* 0.76%* 0.82%* 0.88%*
15 DBF 0.82%+ 0.83*+ 0.78%* 0.87**
17 MF 0.04 -0.04 0.03 0.18

19 SH 0.34 0.39+ 0.47+ 0.59%*
SA -0.22 -0.25 -0.19 -0.02

22 AG 0.25 0.30 0.35+ 0.55%*
24 GRA 0.85%* 0.82%+ 0.69%+ 0.72%+
26 WT 0.38* 0.38+ 0.46* 0.61%*

28 Note: ** Correlation is significant at the 1% significance level and * Correlation is

30 significant at the 5% significance level.

ENF: evergreen needleleaf forest; EBF: evergreen board forest; DNF: deciduous

33 needleleaf forest; DBF: deciduous board forest; MF: mixed forest; SH: shrubland; SA:
35 savanna; AG: agriculture; GRA: grass; WT: wetland; P: precipitation; T: temperature;

SR: solar radiation; and VPD: vapor pressure deficit.
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