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Robust Registration of Multispectral Satellite
Images based on Structural and Geometrical
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Guohua Lv, Qiang Chi, Mohammad Awrangjeb, Jian Li

Abstract—Accurate registration of multispectral satellite im-
ages is a challenging task due to the significant and nonlinear
radiometric differences between these data. To address this
problem, this paper explores the strategy of geometrical similarity
between triplets of feature points, and it is combined with
the structural similarity between images in a feature-based
image registration framework. The underlying principle is that
the structural and geometrical similarities generally preserve
across the images being registered. In this feature-based image
registration framework, a set of control points are firstly detected.
Then, the geometric similarity between triplets of control points
is defined, followed by a ranking operation of these triplets
of control points. The highly-ranked triplets are used to esti-
mate a spatial transformation between images. Finally, initial
matches obtained by a benchmark registration technique are
refined by the estimated transformation. The experimental results
demonstrate the great effectiveness of the proposed technique for
registering multispectral satellite images.

I. INTRODUCTION

MAGE registration is a fundamental task in computer

vision and image processing applications. It aims to find the
correct spatial alignment between images of the same scene
that have been acquired in different imaging conditions [1],
[17], [18]. The images being registered may be captured at
different times, from different viewpoints, by different types
of sensors, etc [17], [18].

Image registration methods can be classified into intensity-
based [3]-[5] and feature-based [6]-[8], [14], [17] ones. A
recent and comprehensive literature review can be found
in Ma et al. [2]. Intensity-based methods compare intensity
patterns between images via correlation metrics, while feature-
based methods find correspondences between image features
such as points, lines and contours. Compared to the feature-
based methods, the limitations of the intensity-based meth-
ods mainly lie in difficulties in dealing with large content
differences and low-overlapping between images, as well as
large computational cost caused by the optimization process
[18]. In the domain of remote sensing image registration, there
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are some recent developments [6]-[8]. In Chang et al. [6],
the most popular local image feature Scale Invariant Feature
Transform (SIFT) is improved by computing feature slope and
grouping feature points. A pixel-wise representation is used
to capture structural and shape properties, and the matching
process is speeded up using the three-dimensional Fast Fourier
Transform (3DFFT) [7]. In Jiang et al. [8], putative feature
correspondences are firstly established by matching local
descriptors, followed by removing outliers using geometrical
consistency priori together with filtering and denoising theory.

(a)

Fig. 1. A typical pair of multispectral satellite images. The two images shown
in (a) and (b) are bands 2 and 4 of Sioux city, Iowa, United States.

This paper focuses on feature-based registration of mul-
tispectral satellite images. The central difficulty lies in the
significant and nonlinear radiometric (intensity) differences
between images [9], [10], [15]-[18]. Fig. | shows a typical pair
of multispectral satellite images. To achieve robust image reg-
istration, the fundamental philosophy is that the structural and
geometrical patterns generally preserve across images. Thus,
the goal of this paper is to develop an effective registration
technique that is robust to significant and nonlinear intensity
differences between multispectral satellite images.

Motivated by the fact that phase congruency is invariant
to illumination and contract changes, a feature descriptor
called Histogram of Oriented Phase Congruency (HOPC) was
proposed to address the significant and nonlinear radiomet-
ric (intensity) differences in registering multimodal remote
sensing images [9]. The limitations of HOPC include the
following two aspects. First, the effectiveness of HOPC is
likely to be undermined in the cases where similar structures
occur within one image. Second, the HOPC descriptors only
encode structural properties of images in frequency domain,
which does not take into account the image information in
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spatial domain. To address these two issues, we explore the
geometrical information between triplets of feature points,
which is complementary to the structural information encoded
by HOPC, and integrate them into a registration framework.
By considering the geometrical information between feature
points within one image, the aforementioned first issue can be
confidently addressed.

II. METHODOLOGY
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Fig. 2. The framework of the proposed Structural and Geometrical Similarity
(SGS). The image pair used for the framework is the same used in Fig. 1.

This section elaborates the proposed technique called Struc-
tural and Geometrical Similarity (SGS). An overview of SGS
is first given, followed by a few key issues in detail.

A. Overview of SGS

The main steps of the SGS framework illustrated in Fig. 2
are:

1) Given two images to be registered, control points (CPs)
are detected by implementing the HOPC algorithm.

2) Based on the detected CPs, the geometrical similarity
between triplets of CPs is explored, including the An-
gle Difference between Triangular Vertices, the Length
Ratio of Line Segments, any two Line Segments and
their Intersection Angle, and the Orientation of Pairwise
Control Points (see Section II-B).

3) Triplets of CPs are ranked and a set of highly-ranked
CPs are used to estimate a spatial transformation be-
tween the two images (see Section II-C).

4) The estimated transformation is used to evaluate the cor-
rectness of the matching results that have been achieved
by the HOPC algorithm, thereby generating the final
matched CPs (see Section II-D).

B. Proposed Geometrical Similarity

Let IV be the number of pairs of matching CPs between a
query image and a target image. Corresponding to these N
point pairs, let P} and P/(1 <i < N) denote a pair of CPs in
the two images being registered. Py +— P/ is used to denote
a point match from the query image to the target image.

With N point matches, there exist C3; combinations of point
triplets in both of query and target images. As N increases,
the number of point triplets C3; goes up dramatically. To
ensure that the computational cost of the proposed technique

P{P / P{ - ; P]t
(a) (b)

Fig. 3. Illustrating the proposed geometrical similarity. (a) and (b) are drawn
for query image and target image, respectively. A triangular vertex represents
a control point. A blue arc between two line segments denotes the angle at
each triangle vertex. The orientation of pairwise control points is indicated
by the arrow beside the associated line segment.

is acceptable, it is critical to limit the number of point triplets.
Fortunately, in order to evenly detect CPs, the block-based
Harris operator [13] used in the HOPC algorithm imposes
a reasonable restriction on the number of interest points. In
order to ensure a low computational cost, the parameters for
the block-based Harris operator are finely tuned. Based on
the HOPC matching results, three point matches, e.g., the
it", j*" and k'™ matches, lead to a pair of point triplets. For
the referencing purpose, this pair of point triplets is denoted
as (P!, PJ, P¥) — (P}, P}, P}) from query image to target
image. Fig. 3 illustrates such a pair of point triplets.

With the point triplets generated above, the following four
types of geometrical similarity are explored, including the An-
gle Difference between Triangular Vertices, the Length Ratio
of Line Segments, the Line Segments and their Intersection
Angle, and the Orientation of Pairwise Control Points. First,
the Angle Difference between Triangular Vertices (ADTV) is
formulated as
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where Gflv, va and ng denote the angle at each triangle vertex

in the query image, 0/,, 6/ and 6% stand for the angle at
each triangle vertex in the target image, and ¢; is a pre-defined
error threshold for the angle difference between corresponding
triangular vertices.

Second, the Length Ratio of Line Segments (LRLS) is

formulated as
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tl&el)ine segments in the query image, |P/P/|, \PtﬁPt | and
|Ptj PF| denote the length of three line segments in the target
image, o is used to compute the standard deviation of the
length ratios of corresponding line segments, and €5 is a pre-
defined error threshold for this standard deviation.
Third, the Line Segments and their Intersection Angle
(LSIA) is formulated as
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where the first condition means that the length ratio of the
corresponding line segments should be close, the second con-
dition says that the angle difference between the corresponding
triangular vertices should be reasonably small, both of the
two conditions must be simultaneously satisfied, and €3 and
€4 are meﬁned error thresholds for the two conditions. In
Eq. 3, P}PJ, PPy are selected from the query image, and
the corresponding line segments are selected from the target
image. In practice, there are two other choices for selecting
line segments, as shown in Fig. 3.

Fourth, the Orientation of Pairwise Control Points (OPCP)
is formulated as

o{|PiPj — F;P}|,|PiP} — P PF|,|PFP: — PFP|} < =

where P;Pg , Pg qu and P(;“P; represent the orientation of
—

Imii/)ise control points in query image, Ptin , Ptj PF and
PF P} denote the orientation of pairwise control points in tar-
get image, o is to compute the standard deviation of orientation
differences of corresponding pairwise control points, and 5
is a pre-defined error threshold for this standard deviation. In
Fig. 3, the arrow alongside each line segment indicates the
orientation of the associated pairwise control points.

C. Estimating Spatial Transformation

The thresholds of Eqs. 1-4, ie., €1 to €5, are used to
measure the geometric similarity of triplets of control points.
Consistently, the more geometrically similar the compared
triplets of CPs are, the smaller such a threshold is. There
would be a high probability that those highly-ranked triplets
of CPs are exactly corresponding, which perfectly satisfies the
conditions expressed in Egs. 1-4.

Therefore, all compared point triplets are ranked in an
ascending order according to their similarity. From the list of
ranking, IV; pairs of top-ranking point triplets are selected. A
top-ranking pair of point triplets (P}, PJ, PF) — (Pf, P}, Pf)
means that the associated three point pairs are likely to be cor-
rectly matched. These top-ranking point triplets correspond to
a set of control points, thereby being used to estimate a spatial
transformation between the two images being registered. The
Matlab built-in function cp2tform is used to estimate the trans-
formation. It should be noted that projective transformation
is used and it is applicable to the satellite images tested in
our experiments. Other types of spatial transformation may be
adopted.

D. Evaluating the Correctness of HOPC Matches

Let T, denote the estimated spatial transformation between
the two images, (z4,y,) — (%, y:) represent a point match
from query image to target image that has been decided by
the HOPC algorithm. The correctness of (z4,yq) — (¢, yt)
can be evaluated by

Zq Wxte

Te Yg | = |WYte | » (5)
1 w

and

\/|xte - xt|2 + |yte - yt|2 S Epv (6)

where (Zte, Yte) is the transformed coordinate of (z4,y,), and
€p denotes an acceptable pixel error between the transformed
coordinate and the groundtruth. A maximum of 4-pixel error
for €, is considered to be accepted as a true match [19], [20].
If Eq. 6 is satisfied, (zq,yq) — (2, y¢) is decided as a correct
match.

III. PERFORMANCE STUDY

In this section, the proposed SGS will be evaluated against
SIFT (Scale Invariant Feature Transform) [11], MOG-IS-
SIFT (MOG: Magnitudes and Occurrences of Gradient, IS:
Improved Symmetric) [17], HD-MOG-IS-SIFT (HD: Higher
Discrimination) [17] and HOPC [9].

A. Dataset Description

The multispectral satellite image dataset used for our
experiments is accessible at https://serc.carleton.edu/
eyesinthesky2/week11/get_to_know_multispectral_imaging.
html#11 _download landsat. This dataset includes seven
original satellite images, named lowa, louisiana, mono lake,
owens valley, salt lake, santa cruz az and vegas, among which
five images have seven bands and the other two images have
six bands. With various combinations of different bands, 135
satellite image pairs are formed for the purpose of image
registration. Fig. 4 shows three sample image pairs that are
randomly selected from the dataset.

Fig. 4. Sample satellite image pairs.

B. Evaluation Metrics

The accuracy of an image registration technique depends
largely on the matching accuracy. The higher the matching
accuracy is, the more accurate the final registration should be
[14]-[18]. Hence, the proposed technique is evaluated by

number of correct matches found

x 100%.
(N

AeuTacy = umber o f total matches found
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Moreover, recall vs 1-precision [12], [14] is used for per-
formance evaluation. The precision is simply equivalent to the
accuracy defined in Eq. 7. The recall is defined as

b t match d
number of correct matches foun « 100%.

(®)
In addition, the efficiency of the compared techniques will be
compared.

recall =

number of correspondences

C. Implementation Details

TABLE I
PARAMETER SETTING FOR SGS

Stage of SGS Parameters How Decided
Geometrical g1 =5° Experimentation
Similarity
Geometrical g2 = 0.05 Experimentation
Similarity
Geometrical e3 = 0.05 & g4 = 5° Experimentation
Similarity
Geometrical es = 0.05 Experimentation
Similarity
Estimating Spatial Ny =3 Experimentation
Transformation
Evaluating ep =15 Source Code of
Correctness of [9]
HOPC Matches
Recall vs T; = 0.60 & Ty, = 0.99 Source Code of
1-Precision Results [14]
.. rid_size=[3:1:7 Experimentation
Recall vs 1-Precision num_f)oirﬁs_in_‘[gri d:[]6:2:10] P

Table I lists the parameters which the proposed technique
uses at its different stages. Some of these parameter values
were decided by experimentation, as indicated in Table I. For
the parameters €1 to ¢35, the smaller the value is, the tighter the
corresponding condition is. When deciding the parameter N,
our consideration is that 3 different pairs of point triplets corre-
spond to at least 5 point pairs that are sufficient for estimating
a project transformation. When evaluating the correctness of
HOPC matches, the same pixel error is used as Ye et al. [9].
By referring to Lv et al. [14], the lower and upper limits
for the matching threshold are decided so that recall vs 1-
precision results can be attained for SIFT, MOG-IS-SIFT and
HD-MOG-IS-SIFT. The grid_size and num_points_in_grid are
tuned from 3 to 7 and from 6 to 10, respectively, so that recall
vs 1-precision results can be obtained for HOPC and SGS.

D. Comparisons in Accuracy and Efficiency

TABLE II
COMPARISONS IN AVERAGE ACCURACY AND EFFICIENCY OF THE
COMPARED TECHNIQUES.

Technique Average Accuracy | Average Runtime (seconds)
SIFT 74.06% 464.80
MOG-IS-SIFT 84.00% 142.35
HD-MOG-IS-SIFT 87.04% 143.33
HOPC 90.05% 43.71
SGS 98.54% 63.48

Table II presents the average accuracy and efficiency
achieved by SIFT, MOG-IS-SIFT, HD-MOG-IS-SIFT, HOPC

and the proposed SGS. It should be noted that the SGS with
the proposed four types of geometrical similarity achieves the
same matching accuracy for each image pair. This is because
the selected N, pairs of top-ranking point triplets estimate
the same spatial transformation, so that the final matched CPs
determined by these four types of geometrical similarity are
indistinguishable from each other.

By analyzing the results shown in Table II, the following
can be concluded.

1) Due to the significant and nonlinear radiometric differ-
ences between satellite images, the SIFT is incapable of
achieving desirable matching accuracy. This is because
SIFT descriptors are relatively sensitive to large content
differences between the corresponding parts of images.

2) MOG-IS-SIFT is able to achieve high matching accu-
racy as compared to SIFT, with an approximate 10%
increase. Based on MOG-IS-SIFT, HD-MOG-IS-SIFT
further increases the overall matching accuracy as the
HD part plays its role effectively.

3) Overall, HOPC is superior to SIFT, MOG-IS-SIFT
and HD-MOG-IS-SIFT, demonstrating that HOPC better
deals with the significant and nonlinear radiometric
differences between images.

4) The proposed SGS performs best in terms of matching
accuracy among the compared techniques, increasing
HOPC by 8.49%.

5) When it comes to efficiency, SIFT is the worse efficient
in that the largest number of CPs are detected and
described among these five compared techniques. The
runtime of MOG-IS-SIFT and HD-MOG-IS-SIFT is less
than one-third of SIFT’s runtime. HD-MOG-IS-SIFT
takes slightly more time as compared to MOG-IS-SIFT
due to the utilization of the HD part. HOPC is the most
efficient, whereas the computational complexity of SGS
is nearly 1.5 times that of HOPC. Since the experiments
were carried out on Matlab, the efficiency should be
significantly improved on some other programming plat-
forms such as C and/or C++.

Moreover, Fig. 5 compares matching results of HOPC and
the proposed SGS. In this example, the proposed SGS achieves
a 18.95% accuracy improvement over HOPC.

E. Comparisons in Recall vs I-Precision

The recall vs 1-precision curve is generally plotted for
a particular image pair [12], [14] by tuning the matching
threshold. Fig. 6 shows the recall vs 1-precision curves for
sample image pairs that have been randomly selected from the
tested dataset. By analyzing the recall vs 1-precision results,
the following conclusions can be drawn.

1) The recall vs I-precision results achieved by SIFT,
MOG-IS-SIFT and HD-MOG-IS-SIFT are almost at the
same level.

2) HOPC and SGS outperform SIFT, MOG-IS-SIFT and
HD-MOG-IS-SIFT by a large margin. The proposed
SGS achieves better recall vs 1-precision as compared
to HOPC.
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Fig. 5.
HOPC: 158,/200=79.00%. (b) SGS: 143/146=97.95%.

Comparisons in matching results for a sample image pair. Green (solid) and red (dashed) lines indicate correct and incorrect matches respectively. (a)
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Fig. 6. Recall vs 1-precision curves plotted for sample image pairs. (a): recall vs
Fig. 4(a)-(b), (c)-(d), and (e)-(f), respectively.

IV. CONCLUSION (71
This paper has presented a feature-based image registra-
tion technique called the SGS by utilizing the structural g
and geometrical similarity between images. The structural
similarity part is based on HOPC descriptors that encode the
structural information in the frequency domain, whereas the o

geometrical similarity part is related to triplets of feature points
that belongs to the image information in the spatial domain.
The experimental results have demonstrated that the proposed
SGS is robust to the significant and nonlinear radiometric
differences between multispectral satellite images and achieves
state-of-the-art performance in both matching accuracy and
recall. In our future work, it is worth integrating more local
features in the frequency and spatial domains into the SGS,
thereby further enhancing its effectiveness and robustness.
Moreover, the SGS will be improved to achieve scale and
rotation invariance, and will be extensively evaluated against
popular deep learning-based image registration techniques.
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