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Abstract
In this thesis, we address the black-box nature of deep learning models for

molecular toxicity prediction as well as propose methods for aggregating

various chemical features to have an improved accuracy. An ideal toxicity

prediction model is characterized with high accuracy, capable of handling

descriptors/features diversity, ease of training and interpretability. Consid-

ering these attributes of an ideal model, in the first quarter of this thesis we

present a novel hybrid framework based on decision trees (DT) and shallow

neural networks (SNN). This method paves a path to feature interpretabil-

ity while enhancing the accuracy by selecting only the relevant features for

model training. Using this approach, the run-time complexity of developed

toxicity model is substantially reduced. The idea is to create a contextual

adaptation of the models by hybridizing the decisions trees to enhance the

features interpretability and accuracy both.

In the later quarters of this thesis, we argue for the idea of effective aggre-

gation of chemical knowledge about molecules in toxicity prediction. Molecules

are represented in various data formats such that each format has its own

specific role in predicting molecular activities. We propose various deep

learning ensemble approaches to effectively aggregate different chemical fea-

tures information. We have applied these methods to quantitative and qual-

itative molecular toxicity prediction problems and have obtained new state-

of-the-art accuracy improvements with respect to existing deep learning meth-

ods. Our ensembling methods also prove helpful in making the model’s pre-

diction robust over a range of performance metrics for toxicity prediction.
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Chapter 1

Introduction

In this thesis, we address the challenge of molecular toxicity prediction us-

ing various deep learning methods. Molecular toxicity prediction is one of

the most crucial steps in drug discovery process in pharmaceutical indus-

tries. It involves a series of wet lab experiments and animal trials for any

new drug candidate or a molecule. Usually it takes decades of experiments

and trials to market a newly discovered molecule or drug. One of the critical

component in a typical drugs discovery pipeline is determining if a molecule

used in developing a drug will have any harmful affects, thus called chem-

ical toxicity. Chemical toxicity is an important measure in environmental,

agricultural, and pharmaceutical science. In the environmental context, toxic

chemicals may cause varieties of chronic diseases. In pharmacology, toxic-

ity prediction plays a vital role in the drug discovery pipeline. This makes

toxicological screening to be mandatory for the development of new drugs

and for the extension of the therapeutic potential of existing molecules. In

this chapter, the main motivation of this research, the specific problems ad-

dressed, an overview of the contribution and thesis outline is described.

1.1 Motivation

Several in vitro/in vivo techniques have been devised to determine varieties

of toxic effects. However,these techniques for examining chemical toxicity
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are highly cost and time-intensive. In most cases, research with animals is the

most reliable means of detecting important toxic properties of chemical sub-

stances. The usage of animals however for toxicology screening has raised

ethical concerns. Therefore, there is an increased demand for cost-and time-

efficient as well as animal safe toxicological screening methods. This gives

an inspiration of using computational methods based on structure activity

relation (SAR) techniques to determine or predict the toxicity of a chemical

compound without using animals. SAR techniques uses computational mod-

eling methods to predict the toxic activities of molecules based on the struc-

tural properties. Amongst SAR techniques, classical machine learning meth-

ods such as k-nearest neighbors (KNN), support vectors machines (SVM),

decision trees (DT) and random forest (RF) have been used extensively to

predict molecular toxicity. These classical SAR methods however does not

perform very well in terms of performance accuracy when presented with

large amount of data with physical and chemical descriptors. These methods

also depend upon the feature engineering heavily which requires to design

specific types of informative features for prediction. Therefore, state of the

art deep learning methods such as deep neural networks (DNN) and its nu-

merous variants are are widely adopted. There are two main challenges in

using DNN and their variants.

• In toxicity prediction area, the black box nature of prediction models

makes them hard to interpret. Moreover, large number of features are

used in deep neural networks, which makes the model very prone to

curse of dimensionality. Therefore, there is a need of an effective way

of features to be used in neural networks for toxicity prediction. Also,

it makes sense to devise new machine learning techniques which can

combine the classical machine learning methods with deep learning ap-

proaches. This will not only help in making the prediction model more
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transparent to obtain the importance of various chemical features for

toxicity tasks but also boost the prediction performance.

• Each DNN variant requires the chemical data to be formulated in its

own specific type that might restrict the performance to a specific type

of features and model architecture used. There is a need of effective

aggregation of various chemical features together to improve the over-

all performance over a range of performance metrics. Our motivation

is to make a combined model that utilizes different types of features

and architectures to obtain better collective performance that could go

beyond the performance of each individual predictor.

1.2 Research problems and contributions

In this thesis, we address two problems related to molecular toxicity predic-

tion using deep learning/machine learning approaches. The first problem is

concerned with the effective use of features by jointly optimizing a shallow

neural network with decision trees. The second problem concerned with us-

ing meta ensemble approaches to boost the overall performance of toxicity

prediction models. Here we describe each problem and an overview of the

contribution towards its solution in this thesis.

1.2.1 Research problems

• Computationally intensive and black-box nature: An ideal chemical toxic-

ity model is characterized by its high accuracy, capability to deal with

molecular descriptor diversity, ease of training, and slightly more inter-

pretability. Unfortunately, most machine learning approaches act like

black boxes; which means no insights are available from them about

the problem or the solution structures, making them less trustworthy
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from human perspective. Large number of chemical/molecular fea-

tures in very deep neural network architectures makes them not only

compute intensive, but also very prone to over fitting. This may also

lead to curse of dimensionality which in turn plays a role in model’s

performance degradation.

• Features specific performance restriction: Chemical data can be expressed

in various data formats and representations. These data formats repre-

sents molecules at various levels. Each format has its own merits and

de-merits with respect to machine learning prediction models. These

molecular data representations are also termed as chemical or molecu-

lar features. In molecular toxicity prediction area, each DNN variant re-

quires the chemical data to be formulated in its own specific type which

might restrict the performance to a specific type of features and model

architecture used. Therefore, there is a need of effective aggregation of

various chemical features together to improve the overall performance

over a range of performance metrics.

1.2.2 Contributions

• Effective use of molecular features: In first quarter of this thesis, we ar-

gue for the models and methods that are simple in machine learning

characteristics, efficient in computing resource usage, and powerful to

achieve very high accuracy levels. We therefore present a novel hy-

brid framework that uses decision trees and shallow neural networks

to build a simple machine learning model that paves a path to feature

interpretability while achieving similar reasonable accuracy by select-

ing only the relevant features to train the model. To demonstrate this,

we develop a single task-based chemical toxicity prediction framework

using only 2D features that are less compute intensive. We effectively
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use a decision tree to obtain an optimum number of features from a

collection of thousands of them. We use a shallow neural network and

jointly optimize it with decision tree taking both network parameters

and input features into account. Our model needs only a minute on

a single CPU for its training while existing methods using deep neu-

ral networks need about 10 min on NVIDIA Tesla K40 GPU. We ob-

tain similar or better performance on several toxicity benchmark tasks.

Moreover, we have developed a cumulative feature ranking method

which enables to identify features that can help chemists perform pre-

screening of toxic compounds effectively. These contributions are pub-

lished with a title “Efficient toxicity prediction via simple features using

shallow neural networks and decision trees” in ACS Omega [68].

• Meta ensemble approaches: In this thesis, we propose various techniques

to aggregate the outputs of deep learning models for toxicity prediction

in single task and multi-task learning fashion. In the second quarter of

this thesis, we study quantitative toxicity prediction and propose a ma-

chine learning model for the same. Our model uses an ensemble of

heterogeneous predictors instead of typically using homogeneous pre-

dictors. The predictors that we use vary either on the type of features

used or on the deep learning architecture employed. Each of these pre-

dictors presumably has its own strengths and weaknesses in terms of

toxicity prediction. The outputs of all these predictors are averaged out

to obtain the final output. We use six predictors in our model and test

the model on four standard quantitative toxicity benchmark data sets.

In the third quarter, we propose a meta ensemble technique for the sin-

gle task and multitask quantitative toxicity data set to boost the over-all

prediction performance. In ensemble technique, we train the base deep

learning models on base molecular features to produce meta features.
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A separate fully connected neural network is trained on meta features

to produce the final output.

In the fourth quarter of this thesis, we apply our meta ensemble tech-

nique to cardio-toxicity data set and obtain state-of-the-art results over

a range of classification accuracy metrics. For cardio-toxicity, we evalu-

ate our meta ensemble technique against various classification metrics

using two oppositely biased independent test sets and obtain a robust

performance with respect to various state of the art methods. These

contributions are published/under revision/under review [70, 71, 72].

1.3 Thesis outline

Following this introductory chapter, the rest of the thesis is organized in a

number of related chapters.

• Chapter 2: reviews the key concepts of molecular toxicity and its pre-

diction using machine learning techniques.

• Chapter 3: presents the use of simple chemical 2D features with joint

optimization of shallow neural networks and decision trees to combat

the compute intensive and black box nature of deep learning models in

toxicity prediction.

• Chapter 4: presents an ensemble approach based on averaging of out-

puts of heterogeneous deep learning predictors to boost the quantita-

tive toxicity prediction performance.

• Chapter 5: presents meta features ensemble technique for multi-task

quantitative toxicity prediction.

• Chapter 6: presents the same meta features ensemble technique used

for classifying molecules with cardio-toxicity properties. It also shows



Chapter 1. Introduction 7

that this technique can prove more robust as compared to other ap-

proaches for classifying cardio-toxic molecules.

• Chapter 7: presents a summary of this work, outlines some future di-

rections to extend this work and concludes the thesis.
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Chapter 2

Preliminaries

This chapter introduces the concepts molecular toxicity and computational

methods to predict the same. The computational methods ranges from classi-

cal machine learning such as support vector machines, random forests and k-

nearest neighbors to deep learning approaches such as fully connected neu-

ral networks, convolution neural networks and recurrent neural networks.

Each of these techniques are discussed in this chapter and used throughout

this thesis. Then we present an overview of single task vs multi task machine

learning approaches later used in the chapter discussing quantitative toxicity

prediction. We also shed some light on various types of chemical/molecular

features and their compatibility with machine learning models used in this

chapter. At the end of this chapter, we discuss various accuracy metrics

which are used for performance evaluation of our toxicity prediction models

presented in this thesis.

2.1 Molecular toxicity

Every year a broad spectrum of chemical compounds are produced in vari-

ous laboratories all over the world. A large number of these chemical com-

pounds are suspected to be toxic or hazardous for human life, and at the

end, many of them are proven so. Toxicity is the degree to which a chemical

compound can affect organisms, tissues, or cells. The main metric employed
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to measure the toxicity level of a chemical compound is the concentration of

the compound at the time of its exposure to a given organism [98]. The toxic

concentration of a compound is ascertained by endpoints measuring experi-

ments. Toxicity of a compound could vary with individuals and their ages,

genders, and body weights. Thus, different toxicity indicators are devised to

measure the toxicity over the population such as eye irritancy test [27, 154],

mutagenicity [38, 43], toxicokinetics [156], neurotoxicity [40], embryotoxicity

[78] and genetic toxicity [106].

Toxicity estimation, similar to other attributes of chemical compounds,

is calculated using sophisticated experimental techniques on in-vivo or in-

vitro models. However, these techniques are very time consuming and cost

intensive. They also raise ethical concerns because of the involvement of an-

imals. To address these issues, in-silico methods (computer-aided methods)

have recently attracted much attention due to their lower cost and better time

efficiency. There exist many in-silico methods, but the structure activity rela-

tionship (SAR) methods are one of the most successful ones.

2.2 Structure activity relationship and toxicity pre-

diction

The main rationale behind structure activity relationship (SAR) methods is

that chemical molecules that are similar in the structure should have similar

activities [74]. The activity can be a quantitative which is related to a toxicity

end point level. Quantitative toxicity can be modeled as a regression problem

in machine learning [82]. Unlike determining the end point toxicity level,

qualitative toxicity prediction is related to classifying the molecule to be toxic

or non toxic in binary or multi-class machine learning context [68].
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2.2.1 Eye ball toxicity

Usually, a medicinal chemist is capable of identifying specific types of sub-

structures (toxicophores) in a molecule to classify them either toxic or non-

toxic. For instance Figure 2.1 shows two molecules both of which consists

of different toxicophores which can be identified easily by any medicinal

chemist. Left side of Figure 2.1 shows neurotoxin VX which is toxic because

of the presence of toxicophore which is phosphorous atom (orange arrow)

bound to one sulfur and two oxygen atoms. Benzaldehyde cyanohydrin on

the right side of Figure 2.1 is also toxic because of other well known tox-

icophore i.e. carbon atom (green arrow) which has both a hydroxyl (OH)

group and a cyanide (CN) group (orange arrows) bound to it. It is easier to

identify toxic molecules with an eye ball toxicity if they have well known

toxicophore present in their structure.

FIGURE 2.1: Toxicophore of the deadly neurotoxin VX (Left)
and in benzaldehyde cyanohydrin (Right). Image taken from

ACSH blog post [6].

2.2.2 Toxicity without obvious toxicophores

There is a large number of molecules with no obvious toxicophores and they

still show toxic activity. For instance Figure 2.2, three molecules with no obvi-

ous toxicophores with very similar structures and yet, molecule A (urushiol)

is toxic, molecule B (vitamin A) is good and molecule C (resveratrol) is neu-

tral. All the three molecules share similar structure of long chain of carbon

atoms with hydroxyl groups attached to them [6]. The challenge arises when

we have similar structures and yet very different activities. There might be
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some hidden features/structural attributes which are not obvious but might

be responsible for the molecule’s activity. In these situations when there is no

obvious toxicophore, computational methods such as machine learning tech-

niques capturing the structure activity relationships could prove very useful

to predict the toxicity of molecule.

FIGURE 2.2: Three molecules with no obvious toxicophore [6].

2.3 In-silico methods for toxicity prediction

In recent years, machine learning methods have been widely used in drug

discovery [88]. Because these techniques have proven to be capturing struc-

ture activity relationships where there is no obvious toxicophores [9, 23, 75].

Performance of traditional machine learning algorithms depends heavily upon

the quantity and quality of training data along with domain knowledge based

feature engineering [23]. Under the umbrella of machine learning, methods

like K-Nearest Neighbors (KNN) and Support Vectors Machines (SVM) were

used for Structure Activity Relation (SAR) techniques [9, 23, 75]. For instance,

a KNN model used for hazard evaluation support systems was designed on

carefully selected eight fingerprints as input features for a relatively small

data set of 94 chemicals in the training set and 24 chemicals in the test set

[122]. Similarly in another study, 74 topological descriptors with 314 training

instances were used for specific COX-2 inhibitors [75]. These models perform

relatively better on smaller data sets with fewer pre-selected features. One

key limitation of KNN algorithm is the exponential rise of computational

cost with the size of the input samples [8, 32, 140]. In contrast, non-linear
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SVMs can manage high dimensional data but do not exhibit sufficiently ro-

bust performance on diverse chemical descriptors [132].

Besides KNN and SVMs, naive Bayes and random forest (RF) methods

were also used extensively for toxicity prediction [13, 109, 137, 149]. Al-

though RF is a decision tree (DT) method capable of handling high dimen-

sional and diverse features, yet in many cheminformatics data sets, it shows

a relatively low classification accuracy when compared to deep neural net-

works (DNN) [132, 139]. DNN is an artificial neural network with more than

one hidden layer between the input and output while a shallow neural net-

work (SNN) has only one hidden layer [14, 100, 124, 144]. In order to achieve

high accuracy in a DNN, relatively a large data set is preferred with numer-

ous features [105, 138]. In RF, features are used in raw form while DNN

converts them to complex features using hidden layers [31, 139]. Moreover,

hyper-parameter tuning in DNN gives a better control over a granular level

optimization unlike in other machine learning approaches. In terms of fea-

tures used to predict toxicity of molecules, DNN in most of these previous

studies utilize single type of features such physicochemical, fingerprints or

graph features [16, 18, 85, 86]. The key to success for these previous methods

for toxicity prediction is elucidating correct structure-property relationships

from existing data using high level physicochemical features along with fin-

gerprints. There is also substantial literature for combining various types of

features and features selection for molecular activity prediction, but no clear

winner is concluded as yet because performance depends on the character-

istics of the molecules used for modeling [110]. In several cases though, it

was observed that the accuracy of the models can be improved by feature

aggregation because of complementary information [110, 129]
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2.3.1 Tox21 challenge and DNN

DNN attracted considerable attention in chemical information modelling com-

munity when Ma et al. won the “Merck Molecular Activity Challenge” us-

ing DNN networks in predicting the bio-molecular target for a drug [73, 93].

Later in 2014, “Tox21 Challenge” was also won by a group who used deep

neural networks [139]. Following this trend, many other groups in computa-

tional chemistry used DNN models to achieve high accuracy to predict var-

ious chemical and biological characteristics including toxicity [102, 150], ac-

tivity [29, 94, 112], reactivity [62, 63, 64], solubility [92], ADMET [76], docking

[142], and QM-compound energies [102, 126, 128]. Even after achieving the

state-of-the-art accuracy in various cheminformatics tasks, limited model in-

terpretability of DNN made it less preferred in real world health informatics

applications.

2.3.2 Quantitative toxicity

Quantitative structure activity relationship (QSAR) modelling using deep

learning techniques have become very popular in recent years [74]. Many of

these methods use 2D features calculated from the one dimensional represen-

tation of the molecules called SMILES, which is used to describe the chemical

structure of a molecule as a string of characters [143]. There is a special gram-

mar for SMILES to represent atoms, type and chemical bonds among them.

SMILES strings are used to calculate various types of numerical features (e.g.

Physicochemical descriptors) and molecular graphs by using different fea-

turization methods [113, 153]. Traditional machine learning approaches such

KNN, SVM, RF, and Fully Connected Neural Networks (FCNN) are based

on numerical features, mainly to predict activity or properties of a chem-

ical compound [89]. Besides, numerical features, SMILES strings can also

be used to generate molecular graphs or images, which then can be used in
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various types of convolutional neural network (CNN) to predict molecular

activities [50]. Using CNN for molecular graphs or images needs relatively

less domain expertise. It should be noted that SMILES strings can also be

transformed into a vector representation or their respective fingerprints (fin-

gerprints are bit strings composed of 0’s and 1’s) to be used in Recurrent

Neural Networks (RNN) for molecular activity/property prediction [49].

Recently in the area of toxicity prediction, specialized type of features

called element-specific topological descriptors (ESTDs) are used in deep neu-

ral networks and consensus models by TopTox to predict toxicity level [145].

Another recent software named AdmetSAR used molecular fingerprints to

predict toxicity using RF, SVM, and KNN models [151]. The performance of

all these quantitative prediction methods is restricted by the specific type of

features or model used in prediction.

2.3.3 hERG toxicity

The human ether-à-go-go-related gene (hERG) encodes a voltage-dependent

ion channel (Kv11.1, hERG) involved in controlling the electrical activity of

the heart by mediating the re-polarisation current in the cardiac action po-

tential. [111, 114]. Malfunction or inhibition of hERG-channel activity by

drug molecules can lead to cardiac arrhythmias in the form of prolonged QT

intervals and may lead to sudden cardiac arrest. Therefore, unwanted drug-

induced arrhythmias are great concern for pharmaceutical companies and

have led to blockbuster drugs being withdrawn from the market and discon-

tinuation of drugs in late stages of development [11]. To prevent new drugs

with unwanted hERG-related cardiotoxicity to enter the market, guidelines

for assessment of potential for QT interval prolongation by non-cardiovascular

medicinal products were decided at the International Conference on Harmo-

nization of Technical Requirements for the Registration of Pharmaceuticals
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for Human Use (ICH) [30, 141].

These procedures are time-consuming and expensive and therefore, to

prevent product depletion due to cardiotoxicity at late preclinical and clinical

stages, there is focus on preventing drugs with hERG channel activity form

entering drug discovery pipelines in the first instance. To avoid this, compu-

tational methods to predict hERG liability have been established and can help

prioritise molecules during the early phase of drug development [141]. Most

of these methods are based on either machine learning techniques, includ-

ing random forest, support vector machine, deep neural networks and graph

convolutional neural networks (GCN) or on structure based methods includ-

ing pharmacophore searching, quantitative structure activity relationships

and molecular docking [18, 21, 35, 39, 85]. Publicly available high quality

datasets consisting of molecules classified as hERG and non-hERG blockers

are available and often utilized by these computational tools [18, 85, 86]. The

datasets annotate chemical structure by SMILES strings which is a chemical

language that describes the chemical structure using ASCII character strings.

The SMILES strings are human readable and are considered a low-level rep-

resentation of molecular structure [143]. For ease of computational process-

ing, the SMILES strings are often converted into binary vectors of fixed length

called fingerprints which is another low level representation [66]. From these

molecular representations, similarly, high level features such as 2D and 3D

physico-chemical descriptors can be computed from SMILES strings which

are then used in various machine learning models [68, 85]. Alternatively,

molecular graph representations have been used with graph convolutional

neural networks [90]. This intermediate level molecular graph representa-

tion offers a compromise between high level physico-chemical features and

low level SMILES and fingerprints [121]. Under this category, each molecule

can be represented via a molecular graph which consists of node features and

an adjacency matrix.
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2.4 Machine learning techniques

Here we describe main supervised machine learning techniques which are

used in later chapter of this thesis. These techniques include linear and logis-

tic regressions, decision trees and random forests, support vector machines,

deep neural neural networks and its variants. We also sheds light on each of

these methods interpretability and computational cost.

2.4.1 Linear and logistic regressions

Both linear and logistic regression methods are the part of simple supervised

machine learning methods. Linear regression is used for regression problems

whereas logic regression is used for classification problems. In linear regres-

sion shown in Equation 2.1, the approach is to find the best fit line to predict

the output In the logistic regression as shown in Equation 2.2, the approach

is to try for curved graphs that classify between the two classes that are 0 and

1 [3]. Linear regression can be made interpretable with explaining the coef-

ficients given in Equation 2.1. It works better for small data sets but in most

of real world cases, it is hard to satisfy the pre-requisite conditions for using

linear regression. These conditions include linearity, normality, homoscedas-

ticity, independence, fixed features and absence of multicollinearity [104]. In

case of logistic regression, the interpretations always come with a clause that

all other features stay the same. In logic regression, interactions has to be

hand crafted and it shows poor performance in most real world tasks. It fails

when relation between target and features is non-linear and the features are

interacting with each other.

y = a0 + a1x1 + a2x2 + a3x3.... (2.1)
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p(y = 1) =
1

1 + e−(a0+a1x1+a2x2+a3x3)
(2.2)

2.4.2 Decision trees and random forests

Decision tree is considered as one of the most important interpretable ma-

chine learning algorithm. It is very intuitive and covers interactions between

the features. As it is based on hard splits, so it is very inefficient to handle

linear relationships between the feature and the target variable. This leads to

lack of smoothness and instability. Moreover, to achieve high performance,

we need to use many trees instead of one tree, which eventually makes it

hard to interpret it again [59]. A large number of decision trees (as build-

ing blocks) work in an ensemble like way to predict or classify an instant in

random forest. The ensemble of the trees is based on the idea of boosting per-

formance by combining weak learners RF is a decision tree method capable

of handling high-dimensional and diverse features [28]. Ensemble learning

combines predictions from each individual decision tree and averages them

to produce a more accurate prediction, as shown in Figure 2.3, where each

individual decision tree is itself a weak learner which then becomes into a

strong learner together with other decision trees. At every node in the tree, a

small subset of variables is chosen to find a variable or a value of that variable

which optimises the split [28]. Again, the compute cost and interpretability

depends upon the number of trees in random forest. Usually large number

of trees are used in random forest which makes them computationally ex-

pensive and black box in nature [67].
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FIGURE 2.3: Trees in decision tree forming random forest.

2.4.3 Support vector machines

Support vector machines (SVM) belongs to a class of supervised machine

learning methods. It attempts to find a line/hyper-plane (in multidimen-

sional space) that separates classes of data under observation or ranges for

regression [10]. SVM designates the new point depending on whether it lies

on the positive or negative side of the hyper-plane. A function or kernel is

used to map data from a lower dimension to a higher dimension. A ker-

nel is useful in extracting a hyper-plane by transferring the data into high

dimensional space without any computational cost [10]. The reason to trans-

form the data into high dimensional space is that it is located in high dimen-

sional space, wherein a linear hyper-plane can be used to separate the data

of two classes, as shown in Figure 2.4. A non-linear SVM can handle high

dimensional data but not robust enough to handle the diversity of chemical

descriptors but mostly not the state of art classification accuracy [134].

2.4.4 Deep neural networks

Deep neural networks (often termed as deep learning) is a set of machine

learning algorithms extensively used for predictions in supervised and un-

supervised manners. Recently the advancement of deep learning technolo-

gies along with better computing resources have made them very popular
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FIGURE 2.4: An illustration of creating a linear hyper-plane
from a high dimensional transformation in a support vector

machine model.

in fields such as computer vision [115], natural language processing [146],

drugs discovery [68, 69, 70] and wide variety of related fields [33]. Here we

will briefly discuss three main deep neural networks types such as fully con-

nected neural network, convolution neural networks and recurrent neural

networks. In later chapter of this thesis, we have used various variants of

these three neural networks which are discussed in their respective chapters.

FIGURE 2.5: Transfer and activation functions used in various
architectures of deep neural networks [4].

Fully connected neural networks

Fully connected neural networks (FCNN) can be viewed as a complex map-

ping function, where the fundamental unit of a FCNN is called a neuron

and takes the input and computes the output after applying non-linearity
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as shown in Figure 2.5 . There are three different types of layers in a net-

work, namely, input, hidden and output layer as shown in Figure 2.6. Each

layer is composed of neurons. The input layer takes the feature vector and

multiplies it with a weight matrix followed by nonlinear activation as shown

in Figure 2.5. The weight matrix, which is usually initialised randomly in

the beginning, is then adjusted on the basis of the error at the output unit

(layer). A gradient descent based back-propagation algorithm is used to ad-

just the weight matrix on the basis of the error [119]. The tuning or updating

of the weight matrix in each step is called iteration. In each iteration, a chunk

of data called a mini-batch is selected from the complete data to adjust the

weights. The complete pass over the data is called an epoch. The overall

process of weight adjustment is called training the network. To avoid over-

fitting, a dropout technique is added after any hidden layer. Drop-out is

randomly dropping the neurons in each iteration to reduce over-fitting and

increase generality [130].

FIGURE 2.6: Sample architecture for fully connected neural net-
work with input, output and hidden layers. Image taken from

Deep Learning by Josh Patterson [1].

Convolution neural networks

Convolution Neural Network (CNN) is a special type of neural network for

the image data. CNNs can extract low level features from images and com-

pute more complex features as we go deeper in the networks [135]. Variants
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of CNN like Inception, Alexnet and Resnet have been developed and em-

ployed as highly accurate image classification models [56]. CNNs undergoes

the process of convolution which is applying number of filter (also called

feature maps) with various dimensions to create convolutional layer. A non

linear function is usually used after creating the convolutional layer. After

convolution process, a pooling layer is applied to reduce the spatial size of

the representation [107]. At the end after flattening, one or few fully con-

nected layer are used in CNN to form class probabilities or regression values

based on the features CNN has learnt as shown in Figure 2.7. Training pro-

cess for CNN is the same as discussed in FCNN.

FIGURE 2.7: Classical convolutional neural network for image
data. Image taken from SuperDataScience [2].

Recurrent neural networks

Recurrent Neural Network (RNN) is a specialized neural network for se-

quential data. RNNs can learn features directly from the sequence data with-

out explicitly computing features. RNN is recurrent in nature and use their

internal state (memory) to process the sequence of data. It performs the same

function for every input of data while the output of the current input de-

pends on the past one computation. After producing the output, it is copied

and sent back into the recurrent network as shown in Figure 2.7. For making

a decision, it considers the current input and the output that it has learned

from the previous input [5]. RNN have shown great success in natural lan-

guage processing and machine translation [101]. RNNs usually are prone
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to short term memory problem [58]. The information flows from one cell to

another sequentially and might be corrupted later in the network for longer

sequences. Long short-term memory (LSTM) units or gated recurrent units

(GRU) in RNN offer solutions to the short term memory problem [24].

FIGURE 2.8: Classical recurrent neural network for sequence
data. Image taken from towards data science [5].

2.5 Single task and multi task learning

In machine learning, we typically optimize for a single task or problem in

hand by training a single model on a specific data set. We fine tune our model

and optimize all its parameters for one specific task to achieve acceptable per-

formance. By doing so, we laser focus on a single task and might be ignoring

some relevant signals from other tasks that can improve the over-all perfor-

mance. If we share the lower level representation between tasks by training

a single model for multiple tasks, we might be able to generalize better on

our original task under consideration. Multitask learning has been success-

fully applied across various domains such as natural language processing,

computer vision and drug discovery [118]. In the context of Deep Learn-

ing, multi-task learning is typically done with either hard or soft parameter

sharing of hidden layers [118]. In hard parameters sharing generally, hid-

den layers between multiple tasks are shared while some task specific layers

near the output are kept un-shared [20, 118]. In soft parameter sharing on

the other hand, each task has its own model with its own parameters. The
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distance between the parameters of the model is then regularized in order

to encourage the parameters to be similar [37, 118]. In this thesis, we only

utilize hard parameter sharing for multi-task quantitative toxicity prediction

model because of less chance of over-fitting.

2.6 Evaluation metrics

In this thesis, we used various types of evaluation metrics to measure the

prediction performance of our proposed models for toxicity data sets. We

broadly divide the evaluation metrics into quantitative and qualitative toxi-

city prediction based problems.

2.6.1 Evaluation criteria for quantitative toxicity prediction

We use three evaluation metrics for reporting the performance of our models

for quantitative toxicity prediction.

• Coefficient of determination r2: The first metric used in the paper is the

coefficient of determination r2 shown in Equation (2.3) where yj and ŷj

respectively denote the predicted and actual value, and ȳj denotes the

mean of actual values. The coefficient of determination r2 explains the

relationship between the predicted and actual values. It varies between

0 and 1, and the higher the value of r2, the better the model’s perfor-

mance.

r2 = 1−
∑n

j=1(yj − ŷj)

∑n
j=1(yj − ȳj)

(2.3)

• Mean absolute error (mae): The second metric is the mean absolute

error (mae) shown in Equation (2.4). The mae is the mean difference

between the prediction yj and the actual observation ŷj).
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mae =
1
n

n

∑
j=1
|yj − ŷj| (2.4)

• Root mean squared error (rmse): The third metric is the root mean

squared error (rmse) shown in Equation (2.5). The rmse is the square

root of the mean of squared errors. In rmse, the errors are squared, so

the large errors will have the higher weights.

rmse =

√√√√ 1
n

n

∑
j=1

(yj − ŷj)2 (2.5)

2.6.2 Evaluation criteria for qualitative toxicity prediction

In order to measure the classification performance of qualitative toxicity pre-

diction, we used the following metrics: Area under curve of receiver oper-

ating curve (AUC-ROC), specificity (SPE), sensitivity (SEN), negative pre-

dictive value (NPV), positive predictive value (PPV), accuracy (ACC) and

Matthew’s correlation coefficient (MCC). The details of these metrics are as

follows:

• Area under curve of receiver operating curve (AUC-ROC): AUC-ROC

takes into account all the threshold. The higher the value of AUC-

ROC, the better the model is distinguishing between classes. It can be

computed by taking area under the curve for true positive rate (TPR)

on the y-axis and false positive rate (FPR) on the x-axis for a given

dataset. TPR which is also called sensitivity (SEN) describes how good

the model is at classifying a molecule as a positive class when the ac-

tual outcome is also a positive class. FPR describes how often a positive

class is predicted when the actual outcome is negative class.

SEN = TPR =
TP

TP + FN
(2.6)
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FPR =
FP

FP + TN
(2.7)

Where TP = True Positives, TN = True Negatives, FP = False Positives,

and FN = False Negatives, SEN = Sensitivity.

• Specificity (SPE): SPE is the total number of true negatives divided by

the sum of the number of true negatives and false positives. Specificity

would describe what proportion of the negative class got correctly clas-

sified by our model.

SPE =
TN

TN + FP
(2.8)

• Negative predictive value (NPV): NPV describes the probability of a

molecule predicted as negative class to be actually as negative class.

NPV =
TN

TN + FN
(2.9)

• Positive predictive value (PPV): PPV describes the probability of a

molecule predicted as positive class to be actually as positive class.

PPV =
TP

TP + FP
(2.10)

• Accuracy (ACC): ACC is the fraction of prediction our model got right.

i.e it predicted positive class and negative class correctly.

ACC =
TP + TN

TP + TN + FP + FN
(2.11)

• Matthews correlation coefficient (MCC): MCC has a range of -1 to 1

where -1 indicates a completely wrong binary classifier while 1 indi-

cates a completely correct binary classifier.
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MCC =
TP ∗ TN − FP ∗ FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(2.12)

In this chapter, we discussed the concepts of molecular toxicity, features

used to represent molecules, machine learning models used for activity re-

lationship predictions, single and multitask learning and various evaluation

metrics used in this thesis. In the next chapter, we present an efficient way

of predicting molecular toxicity using a hybrid approach based on shallow

neural networks and decision trees.
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Chapter 3

Efficient toxicity prediction

This chapter is published in the following peer reviewed journal.

• Karim, A., Mishra, A., Newton, M. H., Sattar, A. (2019). Efficient toxi-

city prediction via simple features using shallow neural networks and

decision trees. Acs Omega, 4(1), 1874-1888.

In this chapter, we strongly argue for the models and methods that are

simple in machine learning characteristics, efficient in computing resource

usage, and powerful to achieve very high accuracy levels. To demonstrate

this, we develop a single task-based chemical toxicity prediction framework

using only 2D features that are less compute intensive. We effectively use a

decision tree to obtain an optimum number of features from a collection of

thousands of them. We use a shallow neural network and jointly optimize

it with decision tree taking both network parameters and input features into

account. We call our model as hybrid2D because it is using decision trees

and shallow neural networks with 2D features only. Our model needs only

a minute on a single CPU for its training while existing methods using deep

neural networks need about 10 min on NVIDIA Tesla K40 GPU. However,

we obtain similar or better performance on several toxicity benchmark tasks.

We also develop a cumulative feature ranking method which enables us to

identify features that can help chemists perform pre-screening of toxic com-

pounds effectively.
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3.1 Introduction

In recent years, machine learning methods have been widely used in drug

discovery [88]. Classical machine learning methods like k-nearest neighbors

(KNN) and support vectors machines (SVM) were used for structure activity

relation (SAR) techniques [9, 23, 75]. Performance of classical machine learn-

ing algorithms depends heavily upon the quantity and quality of training

data along with domain knowledge based feature engineering. For instance,

a KNN model used for hazard evaluation support systems (HESS) was de-

signed on carefully selected eight fingerprints as input features for a rela-

tively small data set of 94 chemicals in the training set and 24 chemicals in

the test set [122]. Similarly in another study, 74 topological descriptors with

314 training instances were used for specific COX-2 inhibitors [75]. These

models perform relatively better on smaller data sets with fewer pre-selected

features. One key limitation of KNN algorithm is the exponential rise of

computational cost with the size of the input samples [8, 32, 140]. In con-

trast, non-linear SVMs can manage high dimensional data but do not exhibit

sufficiently robust performance on diverse chemical descriptors [132].

Besides KNN and SVMs, naive Bayes and random forest (RF) methods

were also used extensively for toxicity prediction [13, 109, 137, 149]. Al-

though RF is a decision tree (DT) method capable of handling high dimen-

sional and diverse features, yet in many cheminformatics data sets, it shows

a relatively low classification accuracy when compared to deep neural net-

works (DNN) [132, 139]. DNN is an artificial neural network with more than

one hidden layer between the input and output while a shallow neural net-

work (SNN) has only one hidden layer [14, 100, 124, 144]. In order to achieve

high accuracy in a DNN, relatively a large data set is preferred with numer-

ous features [105, 138]. In RF, features are used in raw form while DNN

converts them to complex features using hidden layers [31, 139]. Moreover,
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hyper-parameter tuning in DNN gives a better control over a granular level

optimization unlike in other machine learning approaches.

An ideal classification model is characterized by its high classification ac-

curacy, capability to deal with molecular descriptor diversity, ease of train-

ing, and somewhat more importantly interpretability [133]. Unfortunately,

most machine learning approaches act like black box; which means no in-

sights are available from them about the problem or the solution structures,

making them less trustworthy from human perspective. Considering the at-

tributes of an ideal classification model, in this chapter, we present a novel

hybrid framework that uses DTs and SNNs to build a simple machine learn-

ing model that paves a path to feature interpretability while enhances the

accuracy by selecting only the relevant features to train the model.

Using the proposed hybrid framework, we then construct a prediction

model and train it on nuclear receptor (NR), stress response (SR) and ames

mutagenicity (AM) data sets. The NR and SR data sets are from Tox21 data

repository [60] while the AM data set [55] from Hansen et al. For all three

data sets, we calculate only 2D chemical descriptors, which are less multi-

farious in nature and easy to calculate. The SNN in our model has only one

hidden layer with 10 neurons and is trained with significantly fewer features

(in the range of hundreds) than existing methods. The training times for our

prediction models are reduced to ≈ 1 minute on Intel Core i5 CPU while

the same was reported ≈ 10 minutes in the previous study using NVIDIA

Tesla K40 GPU [97]. However, our model still achieved better ensembled av-

erage accuracy of 0.836 AUC-ROC (area under the receiver operating char-

acteristic curve), 0.862, and 0.878 for NR, SR, and AM respectively while the

best known existing methods achieved 0.826, 0.858, and 0.860 respectively

[55, 97]. It is worth noting that our main objective is not merely to improve

the accuracy, but also to focus more on the compute intensiveness, obtaining
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simpler prediction models in terms of numbers of features used and architec-

ture of the neural network, and interpretability of the classification results.

We show that our model enables us to elucidate the interpretation of the de-

scriptors that are the most responsible for NR, SR and AM toxicity types.

These descriptors showed high classification strength to discriminate toxic

compounds and could be used as initial indicators for detecting NR, SR and

AM toxicity types.

3.2 Materials and methods

The work flow of our hybrid framework is composed of three main blocks as

shown in Figure 3.1. All these three main blocks with sub-modules in each

are explained below.

FIGURE 3.1: Prediction model flowchart.
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3.2.1 Pre-processing

In pre-processing, 1422 2D chemical descriptors for NR and SR while 1249 for

AM were calculated using an open source package called PADEL [152]. Data

is split into train, CV and test sets. The split for NR and SR was predefined by

the Tox21 Challenge [61] where a separate held out CV set of≈ 296 instances

is provided for an in-house cross validation purpose. On AM data, no such

division was given so we divided it into 60% train, 20% CV and 20% test

sets. The train and test sets for NR and SR consists of ≈ 8000 and ≈ 647

unique instances respectively. In order to avoid the bias of the model towards

majority instances, minority class was up-sampled. Data was normalized

using a data scaling method before up-sampling.

3.2.2 Hybrid framework

Considering a feature selection approach, we designed a novel hybrid frame-

work that consists of two components: a decision tree and an SNN. Decision

trees acted as a coarse filter to select a reduced number of features in order to

train the SNN. Decision trees with feature selection technique helps in inter-

pretability and provides with a criterion for pre-screening the compounds in

all three toxicity data sets while SNN helps improve the accuracy. Training

with selected feature subspace reduces time and model complexity which

leads to better interpretability [57].

3.2.3 Optimization

In model optimization, both components (decision tree and the SNN) of hy-

brid framework were conjointly optimized. Here the chosen objective func-

tion (AUC-ROC) of a neural network is dependent on its own parameters
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as well as on parameters of the feature selection module. A held out prede-

fined CV set was used to optimize both components of the hybrid model as

discussed below:

Feature selection via decision tree

In feature selection module, we used an extremely randomized extra tree

classifier (a type of decision tree) [42] with gini index, also called mean de-

crease impurity (MDI) [91, 131] to perform initial coarse filtering for features

ranking [99]. As our aim is to tweak the number of selected features, so only

those parameters were optimized that affect the process of selecting the fea-

tures. The extra tree classifier has several optimization parameters but the

most critical ones are (1) n_estimators that represent the number of trees in

the forest and (2) threshold that limits the number of features selected dur-

ing optimization [108]. All the features were ranked on the basis of the gini

index. The higher the gini index value, the greater the importance of that

feature in predicting a specific class [99].

TABLE 3.1: Hybrid model feature selection optimization.

(A) Threshold (Grid Search)

0.08×mean 0.09 0.1 0.2 0.3
0.4 0.5 0.6 0.7 0.8
0.9 1 1.1 1.2 1.3
1.4 1.5 1.6 1.7 1.8
1.9 2 2.1 2.2 2.3

Fixed Parameters

Epochs 20
Initialization Function he-normal
Dropout 0.5
Activation ReLU
Mini-batch 512
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During feature selection process via threshold parameter optimization,

parameters of the SNN were fixed as shown in Table 3.1. Because of the

single parameter optimization, a grid search was applied on threshold value

to achieve maximum AUC-ROC. A higher value of the threshold reflects a

smaller number of features while a lower value, a large number of available

features. The range of the threshold for grid search was set such that it can

select a small number of features up to the all available features.

SNN hyper-parameters tuning

Once the reduced feature subspace was obtained in the feature selection pro-

cess, then with the selected features, hyper-parameters were tuned for the

SNN as shown in Table 3.2. Then a random search was performed for SNN

hyper-parameters tuning because it is more efficient than the grid search in

case of more parameters to optimize [15].

TABLE 3.2: Hybrid model shallow neural network optimiza-
tion.

SNN hyper-parameter tuning (Random Search)

Epochs 10, 20, 40, 60
Initialization Function He-Normal, He-Uniform

Normal, Uniform
Dropout 0.0, 0.1, 0.2, 0.3, 0.4

0.5, 0.6, 0.7, 0.8, 0.9
Activation ReLU, Sigmoid
Mini-batch 32, 64, 128, 512

1024, 2048, 4096, 8192

3.2.4 Toxicity classification

In classification, the CV and the training set were mixed together after ob-

taining all the optimized parameters. Optimized parameters were used to

train the SNN for each individual toxicity task of all three data sets. A set

of four similar SNNs were trained and their outputs were averaged to form
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a more robust model to compute AUC-ROC. Complete pipeline of hybrid

prediction framework is shown in Figure 3.1.

3.3 Results and discussion

In this section, we discuss the benchmark data sets, performance on three

case studies and final test sets, investigate prediction potential of 2D descrip-

tor, analyse the comparative landscape and explain feature interpretability of

our classification results.

3.3.1 Benchmark data sets

NR and SR data sets were collected from Tox21 challenge [60]. NR assays

were classified into subtasks pathways: (1) aryl hydrocarbon receptor, (2)

androgen receptor-full, (3) androgen receptor-luciferase, (4) aromatase, (5)

estrogen receptor alpha, (6) estrogen receptor alpha-luciferase, and (7) per-

oxisome proliferator-activated receptor gamma. SR assays were classified

into 5 subtasks pathways:(1) antioxidant response element, (2) heat shock re-

sponse/ unfolded protein response, (3) mitochondrial membrane potential,

(4) DNA damage p53 pathway, and (5) geno-toxicity indicated by ATAD5.

A separate benchmark data set for AM was also obtained [55]. It should be

noted that for SR and NR, the data was pre-divided into training, held out

cross validation (CV) and separate test sets by the Tox21 repository. For AM,

no such division was given, so we divided it into train (60%), CV (20%) and

test (20%) sets. Each set contains toxic and non-toxic compounds, the de-

tailed description is provided in Table 3.3. It should be noted that Table 3.3

mentions the data setting after the cleaning and quality control.



Chapter 3. Efficient toxicity prediction 35

TABLE 3.3: NR, SR and AM data division: train, cross valida-
tion (CV) and test sets.

Task Train Toxic/Non-Toxic CV Toxic/Non-Toxic Test Toxic/Non-Toxic
NR-AHR 7863 937/6926 268 30/238 594 73/521
NR-AR 9036 374/7950 288 3/285 573 12/559

NR-AR-LBD 8234 284/7950 249 4/245 567 8/559
NR-Aromatase 6959 352/6607 211 18/193 515 37/478

NR-ER 7421 916/6505 261 27/234 505 50/455
NR-ER-LBD 8431 415/8016 283 10/273 585 20/565
NR-PPARG 7883 193/7690 263 15/248 590 30/560

SR-ARE 6915 1040/5875 230 47/183 540 90/450
SR-HSE 7879 386/7493 263 10/253 594 19/575

SR-MMP 7071 1117/5954 234 38/196 530 58/472
SR-p53 8349 509/7840 265 28/237 601 40/561

SR-ATAD5 8775 317/8458 268 25/243 606 36/570
AM 3900 2097/1803 1300 699/601 1300 699/601

3.3.2 Prediction potential of 2D descriptors

Representation of chemical compounds in 2D form as a connection table is

used to calculate their 2D descriptors. These descriptors are relatively eas-

ier to calculate and computationally less intensive. PADEL descriptor tool

was used to calculate 1422 2D descriptors [152]. Primarily, prediction (clas-

sification) potential of these features was evaluated by performing a dry run

using a neural network model on training data set of each task (2nd column

of Table 3.3). Training sets for NR and SR were up-sampled and split into in-

ternal training/validation set with 70/30 ratio for examining the prediction

potential of 2D features. Here, the CV and the test set (4th and 6th column of

Table 3.3) were not considered, as the aim was not to build final prediction

model rather to estimate the prediction power of the 2D features. AUC-ROC

for each toxicity task of NR and SR was calculated using internal validation

set as shown in Figure 3.2. It showed that 2D features have high potential to

discriminate toxic and non-toxic compounds.

The highest AUC-ROC of 0.95 was obtained for mitochondrial membrane

potential (MMP) task which belongs to SR panel while estrogen receptor (ER)

from NR panel showed the lowest AUC-ROC of 0.74. Although AUC-ROCs
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shown in Figure 3.2 is overestimated as it is on the internal validation set cre-

ated from training set of Tox21, but it clearly shows a good performance of

2D descriptors as features in the prediction model. Thus, the results shown

in Figure 3.2 confirmed that 2D descriptors alone have the potential to dis-

criminate between toxic and non-toxic compounds for NR and SR signaling

pathways. The same procedure was repeated for AM data set as well and the

AUC-ROC is included in the figure. It should be noted that results shown

in Figure 3.2 are not the final results, instead it shows that there is a predic-

tion potential in 2D features for all the three toxicity tasks. The results shown

in Figure 3.2 were obtained without any feature optimization and no hybrid

framework of neural network and decision tree is used. This result could be

improved with proper optimization as discussed in latter sections.

FIGURE 3.2: Area under the curve (AUC-ROC) for each of the
three toxicity data sets was calculated on the internal validation

set to evaluate the prediction potential of 2D features.

3.3.3 Case study-I: Series vs parallel optimization

Our hybrid model is composed of two main components, i.e. a shallow neu-

ral network (SNN) and a decision tree classifier (detail is given in methods

section). Optimization of different parameters involved in two components

of our hybrid framework is an essential phase to achieve a high accuracy.

Parameters of both components (i.e. decision tree and SNN) of the hybrid
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model could be optimized simultaneously (parallel mode) or one after an-

other (series mode). A case study was conducted to compare the perfor-

mance of series and parallel optimization on SR, NR and AM data sets. Es-

trogen receptor (ER) task of NR has shown the lowest accuracy in earlier

studies by different groups in Tox21 challenge while Mitochondrial Mem-

brane Potential (MMP) of SR has showed the best result [139]. Thus, NR-ER,

SR-MMP and AM were selected for this case study. Similarly, two most criti-

cal parameters, one from the decision tree and the other one from the neural

network were selected for optimization.

Threshold is an important parameter of a decision tree classifier that sets

cut-off value for the selection of features and “dropout” refers to dropping

out units in hidden layers of the neural network to prevent over-fitting. These

two parameters one from decision tree and one from neural network were

optimized in series and parallel mode using grid search technique consider-

ing AUC-ROC for the held out CV set (the train/CV/test split for the hybrid

model is explained in method section as well as in Table 3.3) as an objective

function. In addition to “threshold” in the decision tree classifier, the num-

ber of trees (n_estimator) [42, 108] were also tested in the range of 10 to 2000

on selected tasks, i.e. NR-ER, SR-MMP and AM. Figure 3.3(a) shows the be-

haviour of n_estimator with the AUC-ROC on CV set. Initially AUC-ROC

showed ripples but then it became stable after 1000 number of trees. This

suggests that n_estimator could be fixed to 1000 to make the model robust.

The AUC in Figure 3.3(a) is computed using all available 2D features with-

out considering any feature selection. Once the number of trees was fixed,

threshold values were taken in grid search over [0.08, 0.09, 0.1, 0.2, 0.3, 0.4,

0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2,

2.3] range while dropout was taken over [0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8,

0.9]. During series mode, threshold was optimized first for the AUC-ROC of

CV set which resulted in the optimized value of 1.6, 1.1 and 1.5 for NR-ER,
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NR-MMP and AM respectively. Later, with these optimized threshold values

selected, the dropout parameter was optimized in its search space. Optimum

values for the dropout were 0.4, 0.2 and 0.1 with AUC-ROC 0.811, 0.949 and

0.864 for NR-ER, SR-MMP and AM respectively. Hence, these values were

considered as optimized values for threshold and dropout. In parallel mode

optimization, each combination of threshold and dropout were explored si-

multaneously and respective AUC-ROCs were calculated.

The parallel optimization resulted in several pairs of values (1.6,0.7), (1.2,0.4)

and (1.3,0.3) for threshold and dropout with the best AUC-ROC of 0.789,

0.946 and 0.846 for NR-ER, SR-MMP and AM respectively. Results of series

and parallel optimization are shown in Figure 3.3(b). In all the three cases,

series and parallel optimizations perform very close to one another based

on their AUC-ROC. However, the series mode achieved marginally higher

AUC-ROC than the parallel mode. Additionally, the parallel optimization

between two or more parameters from decision tree and SNN was found

to be compute-intensive. This concluded to deployment of series parameter

optimization across the components of hybrid framework (decision tree and

SNN) to the build our predication model.

3.3.4 Case study-II: Do we really need a large set of 2D fea-

tures?

In this case study, we wanted to know the number of 2D features which are

sufficient for very good performance. This case study was inspired by a the-

orem called “curse of dimensionality” which states that beyond a certain

point, the inclusion of additional features may lead to higher probabilities

of error [138]. Moreover, there is a need of reducing the number of features

to make the model simple and less compute intensive. The reduced num-

ber of features should be nearly optimum for a good performance and thus
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which can give better performance while searching over different values of

thresholds in decision tree component of our hybrid model.

We plotted the AUC-ROC of all the three toxicity data sets (for external

CV sets) against the number of features selected to know whether we can

achieve better performance with fewer number of features. The threshold

value of a decision tree classifier component was varied over a space of [0.0,

0.5, 1.0, 1.5, 2.0, 2.5]. The greater the threshold value, the lesser the number

of features selected. The details of how the threshold changes the number

of features selected is given in the methods section. A shallow neural net-

work was trained for different number of selected features and the results

are shown in Figure 3.4. In each case, we see that for better performance,

we need not to train our model using all available 2D features, but instead a

reduced number of features is sufficient to get the better performance. In

case of AM in Figure 3.4, only 145 selected features achieved the highest

AUC-ROC on CV set. If we further increase the number of features, the per-

formance degrades. Similar trend can be seen for NR-ER and SR-MMP as

well, although the performance does not degrade much with the increase of

number of features. In these cases, It is a better choice to select the smaller

number of features to make the model simple, less compute intensive and

improve feature interpretability.

Considering case studies I and II, we developed a hybrid model (explained

in the methods section) which enables the shallow neural network to se-

lect the small number of effective features (nearly optimum) to be trained

on while jointly optimizing parameters of the shallow neural network and a

decision tree.
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≈ 1249 for AM to build each model. Average AUC-ROC of our hybrid model

on test set of NR is 0.836, on SR is 0.862 and on AM is 0.878.

TABLE 3.4: Performance on the final test sets of NR, SR and AM
toxicity.

Features Our Method Random Forest Support Vector Machine
Task Selected AUC AUC AUC

NR-AHR 270 0.921 0.907 0.889
NR-AR 284 0.743 0.638 0.730

NR-AR-LBD 365 0.881 0.800 0.702
NR-Aromatase 815 0.794 0.792 0.782

NR-ER 292 0.822 0.778 0.791
NR-ER-LBD 755 0.836 0.768 0.786
NR-PPARG 528 0.858 0.789 0.744
NR Average 472 0.836 0.782 0.775

SR-ARE 615 0.828 0.774 0.779
SR-HSE 1028 0.832 0.859 0.798

SR-MMP 685 0.958 0.978 0.916
SR-p53 223 0.875 0.847 0.810

SR-ATAD5 390 0.820 0.812 0.765
SR Average 588 0.862 0.854 0.814

AM 145 0.878 0.842 0.810
AM 5 Fold CV 145 0.879 0.831 0.815

In order to reduce the chance of error in the final result and to show ro-

bustness of our hybrid model, we performed ensemble averaging on all three

toxicity data sets. An additional 5 fold cross validation is also performed on

AM data set, which gave an AUC-ROC of 0.879. The average number of 2D

features used to achieve this accuracy is 472 for NR, 588 for SR and 145 for

AM. We also developed RF and SVM based models for all the three toxic-

ity tasks and report the AUC-ROC on the final test data using 2D features as

shown in Table 3.4 (4th and 5th column). Although in two cases (SR-HSE and

SR-MMP), RF performed better, yet both the RF and SVM showed relatively

less average AUC-ROC than AUC-ROC of our hybrid model.

3.3.7 Comparative landscape

On SR and NR data, our hybrid model was compared with the winning

model of Tox21 challenge [97, 139]. For AM, we compared our results with
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the state of the art methods [55]. We outperformed other methods in AUC-

ROC for all the three toxicity data sets. The winning model of Tox21 Chal-

lenge is based on DNN and is trained on ≈ 273577 features for NR and SR

data sets using a multitask approach. In this approach, DNNs up to four

layers with thousands of neurons in each layer were tested. By harnessing

the ability of a DNN to create intermediate complex features for prediction,

they were able to achieve the average AUC-ROC of 0.826 for NR and 0.858

for SR on the final test set. Training of the model was computationally very

expensive and took ≈ 10 minutes to train on NVIDIA Tesla K40 GPU. The

large numbers of features used by the model made it very hard to interpret

which features are playing vital role in decision making [97].

The second ranked team, AMAZIZ developed consensus models using

associative neural network (ASNN) to achieve an average AUC-ROC of 0.816

for NR and 0.854 for SR. ASNN represents a combination of an ensemble of

feed-forward neural networks and the KNN technique [7]. The information

about the total number of features used and the training time is not reported

[7]. The third ranked group, dmlab developed ensemble models with com-

bining various fingerprinting tools using random forest and extra tree clas-

sifier (ET) to achieve an average AUC-ROC of 0.811 for NR and 0.850 for SR

[12]. Post Tox21 challenge, other groups developed prediction models for NR

and SR data sets [19, 46, 48]. Chemception developed convolutional neural

networks (CNN) to predict toxicity using 2D images of compounds without

explicitly calculating chemical descriptors and achieved average AUC-ROC

0.787 for NR and 0.739 for SR [46]. Capuzziet et al. used DNN with an en-

semble of 2489 molecular descriptors to achieve a very good overall average

AUC-ROC of 0.840 for both NR and SR [19]. SMILES2vec used deep recur-

rent neural networks that automatically learns features from the SMILES data

and the reported average AUC-ROC is 0.799 for both NR and SR [48].

On AM data, the best performing method was reported Hansen et al. with
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TABLE 3.5: Comparative analysis of different methods used for
NR and SR toxicity prediction.

Name NR Average SR Average
AUC-ROC AUC-ROC

Our Method 0.836 0.862
DeepTox [97] 0.826 0.858
AMAZIZ [7] 0.816 0.854

Capuzziet [19] 0.831 0.848
dmlab [7] 0.811 0.85

T 0.798 0.842
microsomes 0.785 0.814

filipsPL 0.765 0.817
Charite 0.75 0.811

RCC 0.751 0.781
frozenarm 0.759 0.768

ToxFit 0.753 0.756
CGL 0.72 0.791

SuperTox 0.682 0.768
kibutz 0.731 0.731
MML 0.7 0.753
NCI 0.651 0.791
VIF 0.702 0.692

Toxic Avg 0.659 0.607
Swamidass 0.596 0.593

Chemception [46] 0.787 0.739

an AUC-ROC OF 0.860. They compared with several commercial tools such

as DEREK, MultiCASE and Pipeline Pilot with off-the-shelf methods such as

SVM, Random Forests, KNN and Gaussian Processes [55]. The SVM achieved

the highest performance using different types of constitutional, topological,

geometrical, functional group count,and atom-centered fragments feature,

though the exact number of features was not reported. Their model outper-

formed the DEREK and MultiACSE by extracting rich information from the

training data. We outperform Hansen et al. SVM based model by achieving

0.878 AUC-ROC with only 145 2D features.

Our hybrid framework used reduced number of simple (easy to compute)

2D features to achieve the state of the art average AUC-ROCs. In contrast to

other methods, we used shallow neural network (1 hidden layer, 10 neurons)
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TABLE 3.6: Training time and model complexity of the top 5
models from Tox21 challenge and AM benchmark data set.

Number of Training AUC-
Task Name Method Features Time ROC
NR Our Method DT+SNN 472 ≈ 1 min CPU 0.836
NR DeepTox [97] DNN 273577 ≈ 10 min GPU 0.826
NR AMAZIZ [7] ASNN NA NA 0.816
NR Capuzziet [19] DNN 2489 NA 0.831
NR dmlab [7] RF + ET 681 ≈ 13 sec CPU 0.811
SR Our DT+SNN 588 ≈ 1 min CPU 0.862
SR DeepTox [97] DNN 273577 ≈ 10 min GPU 0.858
SR AMAZIZ [7] ASNN NA NA 0.854
SR Capuzziet [19] DNN 2489 NA 0.848
SR dmlab [7] RF + ET 681 ≈ 13 sec CPU 0.850

AM Our Method DT+SNN 145 ≈ 1 min CPU 0.878
AM Hansen et al. [55] SVM NA NA 0.860

that makes the model computationally efficient and opens the avenue for in-

terpretability. The average training time for our hybrid framework method

is always less than a minute for all the tasks. Effectively reduced number of

features selected in an optimization loop using decision tree and SNN im-

proves the model to achieve the highest accuracy. Table 3.5 shows the com-

prehensive comparison of our model with others for SR and NR. In addition

to accuracy we also compared our method on model complexity ground with

top 5 models in Tox21 challenge. Table 3.6 shows methods, training time and

number of feature for top 5 models of Tox21 challenge and for AM bench-

mark data set. DeepTox model achieved AUC-ROC close to our method but

it used DNN with 273577 features. Table 3.5 and Table 3.6 jointly demon-

strate the performance of our hybrid framework on accuracy and complexity

verticals. We achieved the highest accuracy while utilizing the least comput-

ing resources with introducing interpretability of the chemical descriptors in

terms of the decisions made by model.
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3.3.8 Regression modeling of additional toxicity data sets

In order to verify the general applicability of 2D features predictive power

and robustness of our model, we performed additional experiments using

four new category of toxicity data. These data sets namely, 96 h fathead min-

now LC50 data set (LC50 set), 48 h Daphnia magna LC50 data set (LC50-DM

set), 40 h Tetrahymena pyriformis IGC50 data set (IGC50 set), and oral rat

LD50 data set (LD50 set) were obtained from Wu and Wei while the setting

(train test split) was kept the same as given in their recent work on toxicity

[145]. In this work the authors used various types of approaches to verify

the predictive power of element specific topological descriptors (ESTD), aux-

iliary molecular descriptors (AUX) and a combination of both for the four

types of toxicity data sets. They named their predictive model as TopTox.

In order to verify the predictive power of 2D features with our model, we

compared our results with the single task deep neural network (ST-DNN)

approach of TopTox as our hybrid model is also based on single task. We

consider each toxicity task separately and independently. In 11 out of 12 sin-

gle task cases, we obtain better squared Pearson correlation coefficient than

TopTox models as shown in Table 3.7. In IGC50 data set, our model achieves

squared Pearson correlation coefficient value of 0.805 which is slightly better

than the state of the art.

TABLE 3.7: Single task (ST) performance comparison of our
method with TopTox for various toxicity data sets .

Method TopTox ST-DNN Our Method
Descriptors ESTD AUX ESTD+AUX 2D

R2 for IGC50 0.708 0.678 0.749 0.805
R2 for LC50-DM 0.446 0.430 0.459 0.616

R2 for LC50 0.675 0.598 0.692 0.678
R2 for LD50 0.601 0.593 0.614 0.615



Chapter 3. Efficient toxicity prediction 48

3.3.9 Feature interpretability

Machine learning models predominantly behave as “black box” which usu-

ally do not provide any explanation of the decisions made. In this study,

we tried to interpret the outcome in terms of feature importance. For this,

physico-chemical 2D descriptors calculated using PADEL package were used

to build predictive model. These features were ranked based on their gini in-

dex in the decision tree classifier. Gini index for individual toxicity task (7

NR tasks and 5 SR tasks) was calculated and added up to get the cumulative

gini index to assign a single score to each feature across NR and SR toxicity

data sets.

Figure 3.6(a) shows the cumulative gini index of 1422 features for NR and

SR data sets. These features are arranged in a descending order of their gini

index, the top 29 features in this list showed vertical drops in their gini index

values, thus suggests substantial difference in their importance while others

showed small variances (shown as the break point in Figure 3.6(a)). Sim-

ilarly, average rank of each feature was calculated across NR and SR data

sets. The relation between the average rank and the cumulative gini index

score is shown in Figure 3.6(b). The Proportional behaviour between these

parameters confirms a consistent nature of features as per their importance

score among all toxicity tasks of NR and SR data sets. Later, the top 29 gini in-

dex descriptors detected in gini index plot were identified separately. These

29 features with their average ranks are shown in Figure 3.6(c). Here, it is

observed that “path count descriptor” class is the most abundant class in

the top features list. The top 3 features showed average rank below 10 are:

(1) pipC10 (2) pipC9 and (3) pipC8 and their average ranks are 3.91, 9.91

and 6.41 respectively (marked with red stars in Figure 3.6(c)). These 3 fea-

tures from the path count descriptor class played the most critical role in
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FIGURE 3.7: Classification of toxic and non-toxic molecule
based on cut-off values of pipC10 features derived from de-
cision tree classifier. Toxic molecules are shown in light blue

while non-toxic are represented dark blue dots.

shows piPC10 values for toxic and non-toxic molecules, light blue circles rep-

resent toxic molecules while dark blue represent non-toxic molecules. As it

can be clearly observed in Figure 3.7 that toxic molecules make cluster in

certain range of piPC10 value leaving a large area as safe zone (non-toxic).

This shows the classifying property of piPC10 between toxic and non-toxic

molecule around a fixed value. The decision tree classifier used for feature

importance in the presented hybrid framework has assigned a cut-off value

to each feature at every node of the tree. These cut-offs of top features could

be used as discriminating planes for toxic molecules.

Feature cut-offs in decision trees are defined as the values that divides the

population in the highest ratios. Each tree has its own cut-off for each feature.

Average cut-off values across these 1000 trees grown in building model for 3

most important features were calculated. It is suggested, that any molecule

has value for these descriptors less than the respective cut-off would have

more possibility to be found in the toxic spectrum. Top 3 features with their
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respective cut-offs were combined together to improve the discriminating

power. Molecules that have values of these top 3 features less than their re-

spective cut-offs are taken in one group. Table 3.8 shows that this group has

less than 0.03 fraction toxic molecules to the total available toxic molecules

for all 12 tasks of SR and NR while on an average 0.50 fraction non-toxic

molecule to the total non-toxic molecules for respective classes. This suggest

that combined criteria for piPC10, piPC9 and piPC8 could be used to find the

probability of a given molecule to be toxic or non-toxic for SR and NR. Simi-

larly, individual cut-offs of pipC10, pipC9 and pipC8 are 5.29, 5.10 and 5.0 for

AM dataset. Later, these features and their respective cutoffs were used cu-

mulatively on AM data set as we done for NR/SR dataset. Here, again toxic

molecules have low fraction 0.05 below the combined cut-off while non-toxic

molecules have 0.10 fraction. Although the fractional discrimination between

toxic and non-toxic molecules on AM data is weaker that NR and SR dataset,

but it clearly shows that piPC10, piPC9 and piPC8 can be used to determine

the initial Ames mutagenicity probability of any new molecules. Thus, these

features could be used as initial indicators during molecule assessment.

TABLE 3.8: Toxic and non-toxic molecule fraction using com-
bined criteria of pipC10, pipC9 and pipC8 for NR, SR and AM.

Toxic Non-Toxic
Task Molecule Fraction Molecule Fraction

NR-AHR 0.01 0.48
NR-AR 0.01 0.47

NR-ARLBD 0.00 0.55
NR-Aromatase 0.02 0.55

NR-ER 0.02 0.43
NR-ERLBD 0.01 0.44
NR-PPARG 0.01 0.48

SR-ARE 0.00 0.44
SR-HSE 0.01 0.45

SR-MMP 0.02 0.51
SR-P53 0.00 0.49

SR-ATAD5 0.01 0.51
AM 0.05 0.10
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3.4 Conclusion

The joint optimization of feature selection by a decision tree and classifica-

tion using a shallow neural network enabled us to achieve the highest av-

erage AUC-ROC of 0.836 for NR, 0.862 for SR and 0.878 for AM which are

better than the state of art results. In our approach, a shallow neural net-

work is allowed to choose its feature set from the complete feature space.

These features would be used for the training to achieve high accuracy on

cross-validation data without any field expert intervention. The model com-

plexity as well as the training time is reduced by a large extent. Instead of

utilizing thousands of features, only selected reduced number of important

features made the model more comprehensible. This hybrid method reduces

the dimensionality curse by using only reduced effective features. One of the

aims of this study is to achieve comparable toxicity prediction results by us-

ing simpler machine learning model. This opens an avenue to highlight the

insight of a prediction process in order to understand the specific problem in

comprehensive manner.

In our hybrid framework, a coarse filter for feature selection in the form

of a decision tree prior to a classification model based on gini-index was ap-

plied. Decision trees helped in feature analysis using cumulative gini index.

This was performed to find global relevance of features across toxicity tasks.

Additionally, individual rankings of these features were used to calculate av-

erage ranking of each feature. The correlation between the average rank and

cumulative gini index suggests the similar importance pattern of these fea-

tures among diverse toxicity tasks. Eventually, the top features based on the

gini index were plotted and 3 features were observed (1) pipC10 (2) pipC9

and (3) pipC8 have average ranks below 10. They belong to single descriptor

class called path count. There individual cut-offs at first node were extracted
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from 1000 decision trees and average score was used to observe the classi-

fication potential of these top features on toxic and non-toxic compounds.

piPC10 was initially plotted for all toxicity tasks and clear discrimination

was observed between toxic and non-toxic molecules for SR and NR. Fur-

ther, piPC9 and piPC8 were combined with piPC10 to design a cumulative

criteria for classification. The cumulative criteria indicates a safe zone where

the probability of finding toxic compounds is less than 0.05%. This can allow

users for initial screening of toxic and non-toxic compounds based on only

piPC10, piPC9 and piPC8 scores.

We conclude, our hybrid model of a decision tree and an SNN can be used

for toxicity prediction or any similar tasks to achieve high accuracy in com-

parably lesser time and lesser resources. This technique enabled us to use

certain features for rapid and prior toxicity estimation. In addition, better

performance than any other existing methods were achieved for these toxic-

ity classes. We believe that our hybrid framework can be applied on various

other toxicity or related tasks to achieve high accuracy and to obtain inter-

pretable behaviour of the descriptors. It will also be interesting to apply a

coarse feature selection method using a heuristic approach to improve fea-

ture space optimization. Following are the main concluding points of our

study.

• 2D features if selected effectively, have the power to predict NR,SR and

AM Toxicity with the state of the art accuracy.

• We propose a hybrid algorithm which effectively select a feature subset

of 2D features for training.

• The use of significantly reduced number of effective 2D features helps

in interpretability.

• The computational complexity of AM, NR and SR toxicity prediction

can be reduced to a great extent with our hybrid algorithm.
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• Using features interpretation, we help the chemists effectively screen

out the toxic compounds with just three features.

In this chapter, we developed and demonstrated a novel hybrid frame-

work based on decision tree and a shallow neural network. Using this hy-

brid framework, we then build prediction model for nuclear receptor (NR)

toxicity, stress response (SR) toxicity and ames mutagenicity (AM) toxicity.

The software code along with data for this chapter can be found at https:

//github.com/Abdulk084/HybridTox2D. In the next chapter, we present the

idea of average ensembling of heterogeneous predictors for quantitative tox-

icity tasks.
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Chapter 4

Average ensemble of

heterogeneous predictors

This chapter is published as pre-print in the research square as follows.

• Karim, A., Riahi, V., Mishra, A., Dehzangi, A., Newton, M. H., Sattar,

A. (2019, December). Quantitative Toxicity Prediction via Ensembling

of Heterogeneous Predictors

In this chapter, we study quantitative toxicity prediction and propose a

machine learning model for the the same. Our model uses an ensemble of

heterogeneous predictors instead of typically using homogeneous predictors.

The predictors that we use vary either on the type of features used or on the

deep learning architecture employed. Each of these predictors presumably

has its own strengths and limitations in terms of toxicity prediction. We aim

to design an ensemble model utilizes different types of features and architec-

tures to obtain better collective performance that could go beyond the perfor-

mance of each individual predictor. We use six predictors in our model and

test the model on four standard quantitative toxicity benchmark data sets.

Experimental results show that our model outperforms the state-of-the-art

toxicity prediction models in 8 out of 12 accuracy measures.
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Our experiments show that ensembling heterogeneous predictor improves

the performance over single predictors and homogeneous ensembling of sin-

gle predictors. The results also show that each data representation or deep

learning based predictor has its own strengths and weaknesses, thus em-

ploying a model ensembling multiple heterogeneous predictors could go be-

yond the individual performance of each data representation or each predic-

tor type.

4.1 Introduction

The toxic concentration of the compounds is measured by endpoints measur-

ing experiments. Toxicity of compound could vary for different individual

depending on their age, gender and body weight. Thus different toxic in-

dicators are devised to measure the toxicity on the population. Population

based toxicity measures are considered in this study using an ensemble of

deep learning methods. Toxicity estimation, similar to other attributes of

chemical compounds, also calculated using sophisticated experimental tech-

niques on in-vivo or in-vitro models. However, these techniques are heavily

time-consuming and cost-intensive. It also raises ethical concerns because

of the involvement of animals. To address these issues, in-silico methods

(computer-aided methods) have recently attracted much attention due to

their cost and time efficiency. There exist many in-silico methods, but the

quantitative structure activity/property relationship (QSAR/QSPR) method

is one of the most successful ones.

In this chapter, we propose a model comprising an ensemble of heteroge-

neous predictors (HPE). The HPE uses six different deep learning methods,

thus called predictors in the chapter hereafter, to predict the regression val-

ues of four benchmark quantitative toxicity data sets. These predictors are:
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(1) fully connected physicochemicalical (FCPC) (2) fully connected physico-

chemicalical extended (FCPCe) (3) convolution 1D SMILES (C1DS) (4) con-

volution 2D fingerprints (C2DF) (5) molecular graph convolution (MGC) and

(6) molecular weave convolution (MWC). FCPC and FCFCe are fully con-

nected neural networks, C1DS and C2DF are two types of convolutional

neural networks, and MGC and MWC are two types of graph convolutional

networks. In our HPE model, we ensembled the outputs of these predictors

to achieve the overall performance. It should be noted that these predictors

vary (heterogeneity) on either class, architecture or feature levels as shown

in Table 4.1. For instance, FCPC and FCPCe vary on feature level only. They

both use numerical features (different in number only) but share the same

architecture. C1DS and C2DF vary on the architecture and the feature level

both. C1DS uses SMILES directly as input while C2DF converts SMILES into

fingerprints first. MGC and MWC also vary on the architecture and the fea-

ture level. The details of these predictors are given in the methods section.

Thus by introducing heterogeneity in each predictor with respect to the

others, we were able to make a single model that utilizes different types of

features and architectures to obtain collective performance that could go be-

yond the individual performance of single predictor type. Toxicity measures

used in this study for different data sets are: (1) IGC50 (2) LD50 (3) LC50 and

LC50-DM. On four benchmark toxicity data sets, the proposed method out-

performed in 8 out of 12 cases of evaluation metrics compared to the state-

of-the-art method. Toxicity measures where we performed better than any

existing techniques are: IGC50, LD50 and LC50-DM. Moreover, it also showed

that HPE model significantly improves the performance over individual pre-

dictors and their homogeneous ensembling for all four toxicity data sets.
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4.2 Materials and methods

In this section, we first overview four data sets used in this chapter. We also

present the implementation details of the individual predictors of our HPE

model used in this chapter.

4.2.1 Data sets

Mathematical representation of toxicity is the simplest way to understand

the unwanted effect of a given compound on cells, tissues and living organ-

ism. These mathematical formulas for toxicity are based on two factors: (i)

dose and (ii) time of exposure. These two factors combine and formulate

quantitative toxicity of a compound. Quantitative toxicity, due to its math-

ematical characteristics, is not only easy to illustrate but is also proven to

be compatible with supervised learning prediction algorithms. Four differ-

ent quantitative toxic data sets are used in this study. These data sets are

labelled as: LC50, LC50-DM (Lethal Concentration, 50%), LD50 (Lethal Dose,

50%) and IGC50 (Inhibition Growth Concentration, 50%) with different toxi-

city measure indicators on the population.

All these endpoint measures are being used in toxicology for estimating

the toxicity behaviour of any given chemical compound on a given popu-

lation of the organism. LC50 and LD50 are the concentrations of the com-

pound that kills half members of the tested animal population. Here, the

LC50 data set is showing the toxicity for a given compound on fathead min-

now, a species of temperate freshwater fish after 96 hr exposure. LC50-DM

data set records the concentration of test chemicals in water in milligrams per

litre that cause 50% population of Daphnia maga to die after 48 h. LD50 data

set has the lethal dose data for killing 50% rat population when the given

compound is administered orally. LD50 depends on the route of adminis-

tration: oral administration could cause less toxicity than intravenous route.
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IGC50 data set shows the concentration of the chemical compound to arrest

the growth of Tetrahymena pyriformis when exposed for 40 hr. In addition

to the concentration, these measures also depend on the duration of exposure

of a given organism to the compound. LC50 data set shows the LC50 record

on fathead minnow species after 96 hr duration of exposure while LC50-DM

data set shows the LC50 values on Daphnia magna after 48 hr of exposure.

IGC50 data set shows the IGC50 record on Tetrahymena pyriformis after 40 hrs

of exposure.

The units of LC50, LC50-DM, IGC50 end points are −log10(T mol/L),

where T represents corresponding end point. For LD50 set, the units are

−log10(LD50 mol/kg). Pre-processed data sets (in the form of SMILES strings

and activity measures) are sourced from Wu and Wei while the original repos-

itory is available at http://cfpub.epa.gov/ecotox/, http://cfpub.epa.gov/

ecotox/ and http://chem.sis.nlm.nih.gov/chemidplus/chemidheavy.jsp,

http://chem.sis.nlm.nih.gov/chemidplus/chemidheavy.jsp. These data

sets have different sizes ranging from hundreds to thousands. For instance,

LC50-DM contains 353, LC50 contains 823, IGC50 contains 1792 and LD50 con-

tains 7413 molecules.

4.2.2 Methods

In our HPE model, we ensembled six various deep learning based predictors

to achieve the overall performance. It should be noted that these predictors

vary (heterogeneity) on either class, architecture or feature levels as shown in

Table 4.1. We used an ensemble averaging method to combine the output of

each individual predictor and to compute the final output of our model. We

refer the reader to [125] for the concepts and mathematics of deep learning

and neural networks. In the rest of this section, we explain these predictors in

terms of their classes, architectures and features. The FCPC and FCPCe vary
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on feature levels only, C1DS, C2DF and MGC, MWC vary on architectures

and feature levels both.

TABLE 4.1: Predictors with their attributes.

Predictor Name Class Architecture Features
FCPC Fully Connected Standard 2D physicochemical

Deep Neural Network feed-forward features [153]
FCPCe Fully Connected Standard 2D+3D physicochemical

Deep Neural Network feed-forward features [103]
C1DS Convolutional 1D Convolution SMILE Strings

Neural Network
C2DF Convolutional 2D Convolution Fingerprints

Neural Network
MGC Geometric Graph Convolution Molecular Graph

Neural Network Coordinates (Atom Features)
MWC Geometric Weave Molecular Graph

Neural Network Coordinates (Atom and Pair Features)

Fully connected physicochemical (FCPC) and fully connected physicochem-

ical extended (FCPCe)

The first challenge in any machine learning algorithm is selecting a specific

representation of the training data. The most common type of representation

is numerical value based features. Usually, for numerical features, a standard

fully connected neural network is used. A neural network that has each unit

of each layer connected to all the units of the next layer is termed as a fully

connected neural network (FCNN). FCNN operates on a fixed shape input by

passing information through multiple non-linear transformations. The first

two predictors of our method (FCPC and FCPCe) use standard fully con-

nected neural networks as shown in Figure 4.1. FCNN in both FCPC and

FCPCe predictors consists of 10 layers with 1000 neurons in each layer. The

final layer consists of a single unit with a linear function. The non linear acti-

vation function of the sigmoid is used after each layer except the final layer.

A dropout value of 0.5 is used after each layer. The learning rate was kept

5e−6 with a batch size of 32. Optimization was performed using the ADAM

optimizer [79]. Both of these predictors are built using a Keras deep learning

framework on a system with NVIDIA Tesla K40 GPU [25].
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employed as highly accurate image classification models [56]. 1D convolu-

tion is a special type of convolution which uses convolution operation over

one dimension such as sequence or time series data as opposed to 2D con-

volution which works for 2 dimensional data such as images. It should be

noted that there is another type of specialized neural network called recur-

rent neural network (RNN) which also works for sequential data but suffers

from high computational cost as compared to 1D convolutional neural net-

work [58].

We developed an 1D convolutional neural network (C1DS) as a third pre-

dictor of our model. C1DS was trained directly on SMILES strings of the

molecules. SMILES is a chemical language that describes the chemical struc-

ture of a molecule in a string of characters [143]. There is a special grammar

for SMILES strings. Different characters represent atoms or bonds between

the atoms. For instance, a small c represents aromatic carbon whereas capital

C represents aliphatic carbon. To represent a single or double bond between

atoms, special characters like “=” and “-” are used between the atom char-

acters. An example of a SMILES string is “COc(c1)cccc1C#N”, which repre-

sents 3-cyanoanisole. It should be noted that SMILES strings are canonically

normalised before feeding into C1DS predictor.

The architecture of CIDS predictor is shown in Figure 4.2a. The SMILES

strings of molecules are of different lengths. We pad each smile with ‘0’ and

make them all equal to the length of the longest smile in a particular data

set. The longest SMILES string is 52, 103, 75 and 181 for IGC50, LC50-DM,

LC50 and LD50 respectively. Each character of the SMILES is encoded into

a numerical value. Thus we obtain equal length vectors of each SMILE to be

used in convolution 1D predictor. This fixed dimensional feature vector goes

into the embedding layer of convolution 1D predictor. Each integer value of

the fixed sized vector is embedded into 400 dimensional vector, thus creating

a matrix of the shape [maximum length of a SMILES string, 400]. This matrix is
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all the four data sets under consideration. Those molecules with less than

92 "1s" in their 1024 bit fingerprint were padded with zero at the end. Thus

we obtain fixed length vectors called fingerprint indices vector of each 1024

bit size fingerprint. This fixed length fingerprint indices vector goes into the

embedding layer of C2DF predictor. Similar to C1DF, each integer value of

the fingerprint index vector is embedded into 400 dimensional vector, thus

creating a matrix of the shape [92, 400]. This matrix is trained along with the

rest of the model training as similar to C1DS.

Unlike C1DS, in C2DF we used 2D convolution layer followed by max-

pool layer. The output of the embedding layer in C2DF is fed into a 2D con-

volutional layer. The number of filters in this layer is chosen to be 2024 each

with a size of [4, 400]. A maxpool layer with a kernel size of 89 followed by a

dense layer with 100 units in it is applied. Rest of the hyper-parameters were

kept same as that of C1DS. It should be noted that parameters like embed-

ding size (which is chosen to be 400 for both C1DS and C2DF), filter/kernel

sizes, number of filters, learning rate, batch size and optimizer type are cho-

sen to be inspired from the previously published research [45, 47, 66, 68, 70]

and initial experimentation.

Molecular graph convolution (MGC) and molecular weave convolution

(MWC)

Molecular Graph Convolution (MGC) and Molecular Weave Convolution

(MWC) belong to the third category of our developed predictors. They use

similar features and classes but different architectures as given in Table 4.1.

As the name suggests, Graph Convolution Networks (GCN) are inspired

from the convolutional neural network by redefining them for graphs in-

stead of typical pixel based images [80]. Typical neural networks like fully

connected, recurrent and convolution neural networks extract latent repre-

sentation from Euclidean space but they fail to work efficiently on graph
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with default settings [113]. The specific architecture details of both MGC and

MWC can be found in the original molecular graph convolution paper by

Google and deepchem open source library [77, 113, 147].

4.3 Results

We report the prediction results of the proposed HPE model. In order to eval-

uate our predictors, we used K-fold cross validation with K = 10. Data was

split into 10 equal random parts. One part was kept for testing while other 9

parts were used for training. This process was repeated for 10 times. All the

results shown later in the section represent an average value of 10 fold cross

validation. We have compared the proposed model with each of the single

predictor (i.e., FCPC, FCPCe, C1DS, C2DF, MGC and MWC) used in our HPE

model, and also with their homogeneous ensembles. The homogeneous en-

sembles (Hom) of each predictor are obtained by ensembling each individual

predictor with itself six times. We also have compared the proposed model

against known best-performing models in the literature: TopTox [145], Hy-

brid2d [68] and various methods used in the development of TEST software

[96].

4.3.1 Comparison of HPE against individual predictors and

their homogeneous ensembles

Table 4.2 presents the prediction results of individual predictors, their homo-

geneous ensembles (Hom), and our final model HPE in four data sets using

three metrics. It should be noted that HPE is the ensemble of all six predic-

tors. Comparing columns Ind and Hom in each data set, in each metric, we

see that each Hom obtains better performance compared to the correspond-

ing individual predictor (Ind). These are expected results and we include
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to reaffirm the strength of homogeneous ensembles. Our main results come

from the ensembling heterogeneous predictors or HPE. Comparing columns

Hom and HPE, we see that the HPE outperforms the homogeneous ensem-

bles in all metrics in all data sets. The difference is in the range of 0.018–0.084

with an average of 0.03825 on a scale of 1.00. This clearly demonstrates the

strength of the HPE over the homogeneous ensembles.

As can be seen from Table 4.2, in all four data sets, and in all three met-

rics, the proposed HPE model outperforms all six predictors. These results

confirm that using a heterogeneous predictors ensembling (HPE) model us-

ing 6 different predictors is better than using just a single predictor. The

results show that each data representation or neural network type has its

own strengths and weaknesses, thus employing a model ensembling multi-

ple predictors could go beyond the individual performance of each data rep-

resentation or each neural network type. For further clarification, the results

are discussed below for each data set in detail.

• IGC50: the proposed HPE obtained a correlation coefficient (R2) of 0.831,

RMSE of 0.426 log(mol/L), and MAE of 0.182 log(mol/L). However,

among those 6 various individual predictors, MGC obtained the best

R2 value with of 0.782. FCPC obtained the best RMSE and MAE values

with of 0.472 log(mol/L) and 0.223 log(mol/L), respectively. HPE im-

proves the R2 by 6.26% and 4.52%, RMSE by 9.74% and 7.59% , MAE

by 9.03% and 8.73% from the best Ind and best Hom respectively.

• LD50: the proposed HPE model obtains better results in all three met-

rics with R2 of 0.680, RMSE of 0.536 log(mol/kg), and MAE of 0.407

log(mol/kg) . HPE improves the R2 by 7.59% and 4.61%, RMSE by

10.96% and 4.79% , MAE by 8.94% and 4.23% from the best Ind and best

Hom respectively.
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• LC50-DM : as table shows, for this data set, the proposed HPE model

obtains better results in all three metrics as well. It obtains R2 of 0.811,

RMSE of 0.787 log(mol/L), and MAE of 0.620 log(mol/L). HPE im-

proves the R2 by 8.13% and 6.29%, RMSE by 3.14% and 2.95% , MAE

by 8.01% and 5.05% from the best Ind and best Hom respectively.

• LC50: for this data set, the proposed HPE obtained R2 of 0.742, RMSE of

0.788 log(mol/L), and MAE of 0.621 log(mol/L). HPE improves the R2

by 7.53% and 4.50%, RMSE by 8.26% and 6.52% , MAE by 15.85% and

11.91% from the best Ind and best Hom respectively.

TABLE 4.2: Comparison of prediction results (10 fold cross-
validation) of individual predictors, their homogeneous ensem-
bles, and our proposed HPE model on four data sets. In the
table, columns Ind, Hom, and HPE are respectively for individ-
ual predictors, their homogeneous ensembles, and the hetero-
geneous ensemble. For each metric, the bold numbers are the
best ones in the respective columns, and the underlined num-

ber is the best among all.

Metric Predictor IGC50 Data set LD50 Data set LC50-DM Data set LC50 Data set
Ind Hom HPE Ind Hom HPE Ind Hom HPE Ind Hom HPE

FCPC 0.781 0.785 0.564 0.572 0.740 0.751 0.671 0.685
FCPCe 0.683 0.698 0.563 0.581 0.642 0.658 0.675 0.689

R2 C1DS 0.699 0.715 0.538 0.539 0.702 0.713 0.646 0.653
C2DF 0.632 0.645 0.557 0.564 0.665 0.671 0.601 0.615
MGC 0.782 0.795 0.632 0.650 0.669 0.675 0.690 0.710
MWC 0.771 0.785 0.586 0.623 0.750 0.763 0.687 0.693

0.831 0.680 0.811 0.742
FCPC 0.472 0.471 0.621 0.610 0.864 0.850 0.874 0.860
FCPCe 0.564 0.550 0.617 0.604 1.085 1.055 0.872 0.859

RMSE C1DS 0.544 0.542 0.659 0.643 1.036 1.026 0.926 0.910
C2DF 0.605 0.602 0.623 0.616 0.985 0.961 0.967 0.962
MGC 0.480 0.476 0.602 0.563 0.969 0.962 0.986 0.967
MWC 0.478 0.461 0.625 0.589 0.820 0.811 0.859 0.843

0.426 0.536 0.787 0.788
FCPC 0.315 0.311 0.461 0.458 0.747 0.736 0.764 0.743
FCPCe 0.318 0.310 0.473 0.443 1.177 1.160 0.761 0.740

MAE C1DS 0.353 0.334 0.514 0.497 1.074 1.070 0.857 0.834
C2DF 0.366 0.351 0.467 0.462 0.972 0.960 0.935 0.920
MGC 0.310 0.309 0.447 0.425 0.939 0.913 0.972 0.961
MWC 0.313 0.310 0.469 0.442 0.674 0.653 0.738 0.705

0.282 0.407 0.620 0.621
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4.3.2 Evaluation of HPE model against several best-performing

models

After finding the effectiveness of the proposed HPE model over various indi-

vidual predictors and Hom, here we are to examine its performance against

the state-of-the-art algorithms in the literature; the models used in the devel-

opment of TEST software [96], TopTox [145] and Hybrid2d [68]. The results

are shown in Table 4.3. As can be seen, from total 12 metrics, the proposed

HPE model obtain the best results in 8 of them, especially in two of the data

sets, it dominates other algorithms with obtaining better results in all three

metrics. The detailed results are discussed below.

• IGC50: As can be seen, for this data set, TEST consensus obtained the

highest R2 among different models in TEST software with of 0.764,

while TopTox model achieved R2 of 0.802. However, the proposed

model obtained R2 of 0.831 which is better than all 6 models compared

including TopTox. The proposed model also obtained better RMSE and

MAE values with of 0.426 log(mol/L) and 0.282 log(mol/L), respec-

tively.

• LD50: for this data set, the proposed model dominates other algorithms

in all three metrics with R2 of 0.680, RMSE of 0.536 log(mol/kg), and

MAE of 0.407 log(mol/kg). The results of TopTox model, in all three

metrics, was better than TEST software models but worse than the pro-

posed model in this study.

• LC50-DM: For R2 and MRSE, the proposed model obtained 0.811 and

0.787 log(mol/L) which was the better than all other models compared.

However, for MAE, the proposed model obtained 0.620 log(mol/L)

which was better than all other models but TopTox with of 0.592 log(mol/L).
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• LC50: As this table indicates, the proposed model obtained better R2

results than 6 comparing models yet TopTox [145] with R2 of 0.788. The

TopTox [145] also obtained better results in terms of RMSE and MAE

with of 0.677 log(mol/L) and 0.446 log(mol/L) respectively.

TABLE 4.3: Comparison of prediction results For HPE model
vs. the sate-of-the-art models on four data sets

Model_Name R2 RMSE MAE R2 RMSE MAE
IGC50 LD50

HPE 0.831 0.426 0.282 0.680 0.536 0.407
hierarchical[96] 0.719 0.539 0.358 0.578 0.650 0.460
FDA[96] 0.747 0.489 0.337 0.557 0.657 0.474
group contribution[96] 0.682 0.575 0.411 – – –
nearest neighbor[96] 0.6 0.638 0.451 0.557 0.656 0.477
TEST consensus[96] 0.764 0.475 0.332 0.626 0.594 0.431
TopTox[145] 0.802 0.438 0.305 0.653 0.568 0.421
Hybrid2D[68] 0.810 – – 0.629 – –

LC50-DM LC50
HPE 0.811 0.787 0.62 0.742 0.788 0.621
hierarchical [96] 0.695 0.979 0.757 0.71 0.801 0.574
single model [96] 0.697 0.993 0.772 0.704 0.803 0.605
FDA [96] 0.565 1.19 0.909 0.626 0.915 0.656
group contribution [96] 0.671 0.803 0.62 0.686 0.81 0.578
nearest neighbor [96] 0.733 0.975 0.745 0.667 0.876 0.649
TEST consensus [96] 0.739 0.911 0.727 0.728 0.768 0.545
TopTox [145] 0.788 0.805 0.592 0.788 0.677 0.446
Hybrid2D [68] 0.616 – – 0.678 – –

4.4 Discussion

Representing molecules in a single type of representation and then using ho-

mogeneous modeling techniques might not help to capture the whole infor-

mation about that molecule. For instance, basic molecular graph represen-

tation does not capture the quantum mechanical structure of molecules or

necessarily express the information. Similarly, the models which use molec-

ular graphs as input like graph convolution will not be able to distinguish

between chiral molecules (molecules having the same graph structure with
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a mirror image to each other). In the case of fingerprints as an input, it is

also possible that different molecules may have identical fingerprints which

will make it difficult for a model to distinguish if it only takes fingerprints

as input. There is also some information loss when one type of feature is

converted into another type of feature.

In our experiments on the quantitative toxicity data sets, HPE obtains the

highest performance followed by Hom and then individual predictors. The

percentage improvement of HPE over Hom and Ind in all four data sets in-

dicates that various predictors might be learning different knowledge from

the same data set. As it can be seen in Table 4.2, graph based predictors like

MGC and MWC achieves better performances in most of the metrics and

data sets. Specifically in maximizing R2 for IGC50, LD50, and LC50 data sets,

MGC produces the best results whereas for LC50-DM data set, MWC pro-

duces the best results. The quantitative toxicity data sets considered in this

study contain relatively smaller molecules which make them more suitable

for graph based predictors. The second highest performers on the average

are FCPCe and FCPC which use the features based on physicochemicalical

properties. These features have proved to have high predictive power in lit-

erature [68, 74, 155]. It can be noticed that predictors like C1DS and C2DF

struggle to perform as compared to other predictors. Yet, when all of them

are ensembled to form an HPE model, they help in improving the results.

Even though various heterogeneous predictors ensembling enhance the

overall accuracy, yet it would be interesting to see the commonality between

the learnt representation of various individual predictors and to what degree

one predictor’s captured knowledge differ to the others.
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4.5 Conclusion

Toxicity prediction methods of chemical compounds recently achieved en-

hanced performance in terms of accuracy after the introduction of various

deep learning models in this space. Usually, molecules are represented in a

fixed representation which is then used as features with a specific machine

learning method to predict the toxicity. Among various other types of com-

pounds toxicity, quantitative toxicity measurement has paramount impor-

tance in pharmaceuticals [145]. The performance of any quantitative toxicity

prediction method depends upon the specific features and model used. This

restricts the overall performance to a single type of features and a model.

Our approach eliminates the restriction of model and data representa-

tion bound performance. Each of our model’s predictor vary either on fea-

tures level, deep learning architecture level or both. These predictors include

FCPC, FCPCe, C1DS, C2DF, MGC and MWC. The FCPC and FCPCe vary

only on feature level. They both use numerical features (different in number

only) but share the same architecture. The C1DS and C2DF vary on both ar-

chitecture and feature level. The C1DS uses SMILES directly as input while

C2DF first converts SMILES into fingerprints. Molecular graph convolution

(MGC) and molecular weave convolution (MWC) also vary on both architec-

ture and feature level. Our motivation is to make a single model that utilizes

different types of feature and architecture to obtain collective performance

that could go beyond the individual performance of a single predictor type.

We also performed experiments which showed that the heterogeneous en-

sembling method performs better than ensembling the homogeneous pre-

dictors. We achieved better performance in 8 out of 12 accuracy metrics for

four quantitative toxicity data sets compared to the best-existing methods in

the literature.

In this chapter, we proposed a method which uses various heterogeneous
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predictors ensembling (HPE) to achieve better accuracy in quantitative tox-

icity prediction of four benchmark data sets. The software code along with

data for this chapter can be found on https://github.com/Abdulk084/HPE.

In the next chapter, we explore the idea of using meta features to train and

test a meta ensemble neural neural in multitask way for quantitative toxicity

tasks.



74

Chapter 5

Meta ensemble of multi-model

deep learning

This chapter is published in the following peer review venues.

• Karim, A., Singh, J., Mishra, A., Dehzangi, A., Newton, M. H., Sattar, A.

(2019, August). Toxicity Prediction by Multimodal Deep Learning. In

Pacific Rim Knowledge Acquisition Workshop (pp. 142-152). Springer,

Cham.

• Karim, A., Riahi, V., Mishra, A., Newton, M. H., Dehzangi, A., Balle,

T., Sattar, A. (2021). Quantitative toxicity prediction via meta ensem-

bling of multi task deep learning models. In ACS Omega 2021, 6, 18,

12306–12317

In this chapter, we propose a deep learning framework for toxicity pre-

diction called QuantitativeTox which uses five individual base deep learn-

ing models and their own base feature representations. We then propose

to adopt a meta ensembling approach using another separate deep learning

model to perform aggregation of the outputs of the individual base deep

learning models. We train our deep learning models in a weighted multi-

task fashion combining four quantitative toxicity data sets of LD50, IGC50,

LC50, and LC50-DM and minimising the root mean square errors. Compared
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to the current state-of-the-art toxicity prediction method TopTox, on LD50,

IGC50, and LC50-DM, i.e. three out of four data sets, our method respectively

obtains (5.457%, 16.666%, ,6.335%) better root means square errors, (6.413%,

11.803%, 12.162%) better mean absolute errors, and (5.206%, 7.356%, 2.538%)

better coefficients of determination.

5.1 Introduction

QSAR modelling using deep learning techniques has become very popular

in recent years [74]. Many of these methods use 2D features calculated from

the one dimensional representation of the molecules called SMILES. SMILES

is a language used in describing the chemical structure of a molecule as a

string of characters [143]. There is a special grammar for SMILES to rep-

resent atoms, types, and chemical bonds among them. SMILES strings are

used in calculating various types of numerical features (e.g. physicochemi-

cal descriptors) and molecular graphs by using different featurization meth-

ods [113, 153]. These numerical features can then be used by traditional ma-

chine learning approaches such as K-Nearest Neighbours (KNN), Support

Vector Machines (SVM), Random Forest (RF), and Fully Connected Neural

Networks (FCNN) to predict activity or properties of a chemical compound

[89]. Besides, numerical features, SMILES strings can also be used to gen-

erate molecular graphs or images, which then can be used in various types

of convolutional neural network (CNN) to predict molecular activities [50].

Using CNN for molecular graphs or images needs relatively less domain ex-

pertise. It should be noted that SMILES strings can also be transformed into

a vector representation or into their respective fingerprints. Fingerprints are

bit strings composed of 0’s and 1’s and can be used in Recurrent Neural Net-

works (RNN) for molecular activity/property prediction [49]. Recently in
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the area of toxicity prediction, a specialized type of features called element-

specific topological descriptors (ESTDs) are used in deep neural networks

and in consensus models by TopTox to predict toxicity level [145]. A recent

software named AdmetSAR uses molecular fingerprints to predict toxicity

using RF, SVM, and KNN models [151]. Another method, named Hybrid2D,

uses joint optimization of shallow neural networks and decision trees on 2D

features only to predict toxicity measurement levels [68]. The performance of

all these quantitative prediction methods is restricted by the specific type of

features or models used in prediction. A yet another method named Deep-

HIT [120] utilize a reasonably diverse feature set, but it still suffers from the

lack of an effective way for combining the outputs of individual models to

obtain a robust performance over a range of metrics. Moreover, DeepHit is

optimized for toxicity classification to enhance the sensitivity of the model.

In this chapter, for quantitative toxicity prediction, we hypothesize that an

effective aggregation of various chemical information captured within vari-

ous feature representations extracted from SMILES strings can improve the

prediction accuracy. For this purpose, we propose a three stage deep learning

framework: A featurization stage first generates a number of base features.

A base learning stage then trains a number of deep learning models, one for

each base feature. A meta learning stage uses the outputs of the base learn-

ing stage as input meta features and trains a separate deep learning model for

meta ensembling and producing the final output. The five types of base fea-

tures generated in the featurization stage are 2D and 3D descriptors, molec-

ular graph features, extended-connectivity fingerprints (ECFPs), SMILES vo-

cabulary based embedded vectors, and fingerprint based embedded vectors.

The base learning stage comprises five deep learning models such as 2 ×

deep neural networks, 1 × graph convolutional neural network, and 2 ×

1D convolutional neural network. Each of these deep learning models es-

sentially is for one of the base features. The meta learning stage comprises
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a fully connected deep neural network. We train all of our deep learning

models in an weighted multi-task fashion combining four quantitative tox-

icity data sets of LD50, LC50, IGC50 and LC50-DM and minimising the root

mean square error. Compared to the current state-of-the-art toxicity predic-

tion method TopTox, on LD50, IGC50, and LC50-DM, i.e. three out of four data

sets, our method respectively obtains (5.457%, 16.666%, ,6.335%) better root

means square error, (6.413%, 11.803%, 12.162%) better mean absolute error,

and (5.206%, 7.356%, 2.538%) better coefficient of determination.

5.2 Materials and methods

We describe the four quantitative data sets, the evaluation criteria, and the

weighted loss function used in this work. As shown in Figure 5.1, our deep

learning framework has three stages: featurization, base learning, and meta

learning. The featurization stage is to generate base features which are used

in training base learning models. The output of the base learning models are

then used as meta features for the meta learning model to produce the final

predictions. We describe the three stages in more details.

5.2.1 Featurization stage

The featurization stage of our framework consists of various types of fea-

turizers. Each featurizer takes SMILES strings as input and produces fixed

length base features as output. Figure 5.1 shows the five featurizers and their

output base features.

2D and 3D descriptors (DESC)

A total of 995 high level features such as 2D and 3D physicochemical descrip-

tors are computed using Mordred [103]. The feature names are in Table S2 of
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from atom descriptors. The details of these are in Table S3 of DeepHIT sup-

plementary material [120].

Molecular fingerprints (MFP)

The third featurizer deals with fingerprints, where structural features are rep-

resented either by bits in a bit string or by counts in a count vector [116, 136].

1024 extended-connectivity fingerprints with a maximum diameter param-

eter of 2 (EFCP2) fingerprints and 881 pubChem fingerprints are computed

using the Python package PyBioMed [36, 120]. EFCPs are also referred to as

circular fingerprints and are specifically designed for structure-activity rela-

tionship modeling [117] whereas pubChem fingerprints are mainly designed

for similarity neighboring and similarity searching [53].

SMILES strings embedded vectors (SeV)

We compute low level features SMILES strings embedded vectors [45, 70].

These features do not directly describe any biological attribute of the molecules,

but have been proven to have a reasonable predictive power in various QSAR

tasks. In the SMILES vectorizer, we create a vocabulary based on the valid

SMILES tokens. Based on the training data, SMILES vocabulary is gener-

ated using tokenizer module developed by Reverie Labs, the link of which is

given below.

https://blog.reverielabs.com/transformers-for-drug-discovery/.

Each SMILES string is converted into fixed sized numerical vectors based

on dictionary mapping of SMILES vocab as shown Figure 5.2. The dictionary

maps each SMILES vocab element to a numerical value. The length of the

longest SMILES string is 97 in terms of SMILES vocab element in the training

data considered for this work. A total of 64 unique tokens are determined

based on the training data. Each SMILES string is converted into a one-hot

encoded vector based on the SMILES vocabulary.
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  $', '^', '#', '(', ')', '-', '.', '/', '1', '2', '3', '4', '5', '6', '7', '=', 'Br', 
           'C', 'Cl', 'F', 'I', 'N', 'O', 'P', 'S', [2H]', [Br-]', [C@@H]', [C@@]', '[C@H]', [C@]', 
           [Cl-]', [H]', [I-]', [N+]', [N-]', '[N@+]', [N@@+]', '[NH+]', [NH2+]', [NH3+]', '[N]', 

           [Na+]', [O-]', [P+]', [S+]', '[S-]', [S@+]', [S@@+]', '[SH]', [Si]', '[n+]', [n-]', 
           [nH+]', [nH]', [o+]', '[se]', \\', 'c', 'n', 'o', 's'

Traning data SMILES
tokenizer

Mapping DictionarySM LES string
SMILES Embedding vector of

length 97

SMILES vocab

FIGURE 5.2: SMILES embedding vectors based on the vocab
elements

Fingerprints embedded vectors (FPeV)

We also compute fingerprint based embedded vectors [66]. In the fingerprint

vectorizer, SMILES string are converted into 1024-bit Morgan (or circular)

fingerprints with a radius of 2 via RDKIT [84]. As per an existing technique

[66], we extract fingerprint indices, which are marked 1 in the fingerprints

generated. Thus, we obtain a vector of length 93 where the vector consists

of integers representing presence of specific substructures in a molecule. The

procedure for fingerprint embedded vector is described FP2VEC [66].

5.2.2 Base learning stage

The base learning stage consists of five base deep neural network models,

which are trained on respective base features from the featurization stage.

All of the base models are trained at a learning rate of 10e−4 with Adam

optimizer and 100 epochs with a batch size of 32. Selection of parameters,

hyper-parameters and network architecture of base models are inspired from

previous published research in this area [45, 66, 68, 69, 70, 85, 120]. Each of

these base models produce 4 regression values for 4 tasks as output; only the
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layer except the output layer. Various regularization parameters such as Ker-

nel regularizer that applies penalties to the Kernel (main units in layer), bias

regularizer that applies penalties to the bias units to reduce the over-fitting

during optimization [51, 54] are used. We also apply a drop-out rate of 0.5 to

the middle layers [130].

Graph convolutional neural network for MGF (GCNN)

As shown in Figure 5.3b), a graph convolutional neural network (GCNN)

was trained using the molecular graph features. GCNN consists of two graph

convolution layers [80], one global attention pool layer [87], and a dense layer

before the output. Each of the graph convolutional layers are initiated with

64 channels with a Kernel regularization value of 0.01 and a ReLu activation.

The number of channels in the global attention pool layer is made equal to

1024, the number of units in the following dense layer.

Fully connected neural network for MFP (FCNNF)

As shown in Figure 5.3c), a FCNN is used with fingerprints as the base fea-

ture. Unlike FCNND, FCNNF uses a much smaller number of units in each

layer. Except the number of units, other parameters are kept the same as

in FCNND. The number of input nodes in the input layer is kept at 1905 to

match the sum of 1024 EFCP fingerprints and 881 pubChem fingerprints.

Convolution 1D Neural Network for SeV (C1DS) and for FPeV (C1DF)

As shown in Figure 5.3d), a variant of a Convolution 1D Neural Network

(C1D) is used for each of SMILES embedded vectors and fingerprint embed-

ded vectors as base features. The only difference between the two C1D is in

the number of input-layer nodes: 97 for SMILES embedded vectors and 93

for fingerprint embedded vectors. Input vectors are converted to a trainable
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embedded matrix of size [97 or 93 × 200], which was then fed into a series

of three 1D convolution layers. Each of these 1D convolution layers used

ReLu activation, 192 filters with a Kernel size of 10, 5 and 3 respectively. Two

densely connected layers are also used before the output layer.

5.2.3 Meta learning stage

As mentioned before, each base model produce four outputs for four data

sets. The outputs of the base models are used as meta features for the meta

learning model. As shown as FCNNM in Figure 5.3e), the meta learning

model is an FCNN with an input layer, an output layer, and two hidden lay-

ers. It is trained at a learning rate of 10e−3 with an Adam optimizer and 300

epochs with a batch size of 32. The meta learning model acts as an ensem-

bling method for the whole framework. Our hypothesis is that for quanti-

tative toxicity prediction, the meta ensembling will be able better aggregate

the output of individual base models than the typical average ensembling

approaches.

5.2.4 Data sets

We use end points for four quantitative toxicity data sets (also called tasks).

These data sets are LD50, IGC50, LC50, and LC50-DM [145]. These endpoint

measures have been used in toxicology for estimating the toxicity behaviour

of a given chemical compound on a given population of a given organism.

These measures depend on the concentration of the compound as well as

the duration of exposure of a given organism to the compound. LC50 and

LD50 are the compound’s concentrations that kill half members of the tested

animal population. LC50 records the toxicity of a given compound on fat-

head minnow, a species of temperate freshwater fish after 96 hour exposure.

LC50-DM records the concentration of a compound in water in milligrams
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per litre causing 50% population of Daphnia maga to die after 48 hour. LD50

data set has the lethal dose data for killing 50% rat population when a given

compound is administered orally, given oral administration could cause less

toxicity than intravenous route. IGC50 data set shows the concentration of

a chemical compound to arrest the growth of Tetrahymena pyriformis when

exposed for 40 hour. The units of LC50, LC50-DM, IGC50 end points are

− log10(T mol/L), where T represents corresponding end point. For LD50

set, the units are − log10(LD50 mol/kg).

TABLE 5.1: Description of data sets after standardization. LD50
data set actually has 5924 and 1479 train and test compounds

before standardization.

data set train test total
LD50 5901 1475 7376
IGC50 1434 358 1792
LC50 659 164 823

LC50-DM 283 70 353

Original data is available at http://cfpub.epa.gov/ecotox/, http://cfpub.

epa.gov/ecotox/, http://chem.sis.nlm.nih.gov/chemidplus/chemidheavy.

jsp, and http://chem.sis.nlm.nih.gov/chemidplus/chemidheavy.jsp. We

obtained pre-processed train and test sets (as pairs of SMILES strings and

toxicity measures) from TopTox [145]. As shown in Table 5.1, these data sets

have different sizes ranging from hundreds to thousands compounds. In

LD50, some molecules were removed as part of standardization using using

RDKIT http://www.RDKIT.org/ and MolVS https://molvs.readthedocs.

io/en/latest/. The train set from each of the four tasks is randomly split

into four types of subsets: 70% for base train set, 10% for base validation set,

10% for meta train set, and 10% for meta validation set. Next, for each type

of subset, the corresponding subsets for the four tasks are concatenated to

obtain a combined set of that type. The test sets from the four tasks are also

concatenated to obtain a combined test set. These combined train and test

sets are available from a GitHub repository https://github.com/Abdulk084/
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QuantitativeTox/blob/master/training_multitask.tar.xz. The data split

procedure is shown in Figure 5.4.
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FIGURE 5.4: Multi-task data split of train and test data

5.2.5 Weighted loss functions

Although, as noted before, we use three measures to report our performances,

we only use the third metric rmse, as the loss function in the training of the

deep neural networks in both of base and meta learning stages. However,

each learning model has four outputs for four data sets. So in each learning

model (either base or meta), we compute the rmse value for each output sep-

arately and then we take a weighted sum of the rmse values to compute the

total rmse value for all outputs of the learning models. The weight is w when

a given input belongs to the task associated with the output and 1 when not.

This means for a given input from a given task, the weight of the loss func-

tions associated with the other three outputs are all 1. In the experiments, we
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try various values from {1, 3, 5, 7, 9} for weight w as shown in Equation (5.1),

(5.2), (5.3) and (5.4). Once a w is selected, the same w is used in all based

models and the meta model.

LD50loss = w× LD50rmse + IGC50rmse + LC50rmse + LC50−DMrmse

(5.1)

IGC50loss = LD50rmse + w× IGC50rmse + LC50rmse + LC50−DMrmse

(5.2)

LC50loss = LD50rmse + IGC50rmse + w× LC50rmse + LC50−DMrmse

(5.3)

LC50−DMloss = LD50rmse + IGC50rmse + LC50rmse + w× LC50−DMrmse

(5.4)

5.3 Results

We select weights to be used in our weighted loss functions. Then, we eval-

uate our base features and meta features. These experimental results are re-

ported from 10-fold cross validation processes. Finally, we compare our ex-

perimental results with that of the state-of-the-art toxicity prediction meth-

ods using our independent test sets.

5.3.1 Weight selection in multi-task loss function

For these experiments, we use all components of our method: five types of

base features, five base models, and the meta model. We consider the out-

put of the the meta model. Figure 5.5 shows our method achieves the best

performance with weight 5 for LD50, IGC50 and LC50 and with weight 9 for

LC50-DM. Henceforth, we will use these weights in our further experiments.
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FIGURE 5.5: 10 fold cross validation performance with various
loss weight values evaluated against meta validation sets.

5.3.2 Performance evaluation of base features

Table 5.2 shows the performance of the base models using respective base

features and using the base validation set. The table shows the averages of

the ten runs in the ten fold cross validation process. The standard deviation

values are given in Table 5.3.

TABLE 5.2: 10 fold cross validation performance of the base
models using respective base features and using the base val-

idation set.

Base features r2 mae rmse r2 mae rmse
LD50 IGC50

DESC 0.553 0.465 0.627 0.788 0.355 0.482
MGF 0.544 0.469 0.630 0.764 0.358 0.502
MFP 0.566 0.457 0.621 0.737 0.417 0.549
FPeV 0.361 0.563 0.754 0.432 0.628 0.800
SeV 0.267 0.597 0.800 0.572 0.532 0.703

LC50 LC50-DM
DESC 0.700 0.574 0.814 0.623 0.792 1.053
MGF 0.568 0.674 0.935 0.544 0.875 1.158
MFP 0.617 0.630 0.892 0.456 0.738 1.008
FPeV 0.369 0.909 1.157 0.297 0.937 1.270
SeV 0.567 0.699 0.962 0.431 0.955 1.289

As shown in Table 5.2, DESC performed better in all three metrics for

LC50 and IGC50. For LD50 and LC50-DM, MFP obtains the best results in

all metrics except in one case. MGF shows reasonable performance close to

DESC and MFP. The possible reason behind these performance might be the
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direct biological relevance of DESC, MFP, and MGF to activity prediction.

SeV and FPeV showed the lowest performance for all tasks in three metrics

possibly because of their no direct biological relevance to the activity predic-

tion. From Table 5.3, we observe that MGF in LD50 and LC50 and DESC in

IGC50 and LC50-DM obtain the overall most stable performances with least

deviations values.. The standard deviation values are large for FPeV and SeV

compared to that for DESC, MGF and MFP. Comparatively smaller data sets

such as LC50 and LC50-DM show the least stable results in terms of standard

deviation values.

TABLE 5.3: Standard deviation values for 10 fold cross valida-
tion performance of the base models on base validation set.

Base features r2 mae rmse r2 mae rmse
LD50 IGC50

DESC 0.053 0.018 0.029 0.030 0.030 0.042
MGF 0.034 0.015 0.026 0.058 0.034 0.060
MFP 0.036 0.015 0.028 0.045 0.036 0.040
FPeV 0.040 0.023 0.033 0.093 0.067 0.083
SeV 0.154 0.071 0.095 0.062 0.056 0.067

LC50 LC50-DM
DESC 0.039 0.071 0.094 0.095 0.103 0.141
MGF 0.113 0.046 0.069 0.130 0.179 0.190
MFP 0.140 0.089 0.135 0.429 0.114 0.252
FPeV 0.200 0.108 0.132 0.193 0.139 0.197
SeV 0.143 0.087 0.159 0.161 0.207 0.298

5.3.3 Performance evaluation of meta features

Our goal in this study is to effectively aggregate the chemical information

extracted from various base features for quantitative toxicity data sets so that

the regression performance can be improved. We have five types of base fea-

tures DESC, MGF, MFP, SeV, and FPeV. Hence, we have five based models.

We consider all possible subsets of these five types of base features. This

gives us 25 − 1 = 31 possible subsets. For each subset, we consider only the
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base features in the subset and then use only the corresponding base models.

However, for each of the 5 subsets having just one type of base features, in

order to have ensembling effects, we use two base models using the same

base features but trained separately. The set of four outputs of a subset of

features are denoted by Mi-j where i is the number of types of features in

the subset and j is a unique index within the subsets all having i types of

features. These outputs are used as the meta features for the meta learning

models. To summarise, we consider 31 possible meta ensembling models.

For convenience, Mi-j is also used to denote the corresponding meta ensem-

bling model. Moreover, Mi denotes the set of meta models all have i types of

features. Table 5.4 shows 10 fold cross validation performance of the 31 meta

ensembling models. The corresponding standard deviation values are given

Table 5.5. We also compute the mean of standard deviation values for M1

meta features from Table 5.5 and for base models from Table 5.3 for all tasks

to see the effect of meta ensembling on the stability of results. These mean

values are plotted and compared in Figure 5.6.

Table 5.4 shows that meta features in M3, M4 and M5 show overall better

performance for most of the metrics for all four tasks. M3-1 which represents

only those three features which are directly related to a biological activity

prediction achieves better performance in 4 cases across three tasks. Simi-

larly, M3-10, M4-1, M4-2 and M5-1 achieve better performance in two met-

rics across one or two tasks. Note M3-1, M4-1, M4-2 and M5-1 are associated

with at least two direct biologically relevant base features. Surprisingly, SeV

and FPeV which lack in direct biological relevance helps LC50-DM task to im-

prove r2, mae and rmse from 0.707, 0.636 and 0.841 to 0.773, 0.551 and 0.702

respectively when used with DESC. Using SeV and FPeV individually or to-

gether result in worst performance in all metrics. Overall, meta features used

with meta ensemble models results in more stable performances as shown in

Table 5.5. M2-8 shows the most stable performances across two tasks in 5



Chapter 5. Meta ensemble of multi-model deep learning 90

TABLE 5.4: 10 fold cross validation results for meta features on
meta validation set.

LD50 IGC50 LC50 LC50-DM
Meta Base features r2 mae rmse r2 mae rmse r2 mae rmse r2 mae rmse
features
M1-1 DESC, DESC 0.585 0.455 0.613 0.828 0.329 0.434 0.767 0.547 0.737 0.707 0.636 0.841
M1-2 MGF, MGF 0.550 0.470 0.628 0.803 0.345 0.465 0.662 0.650 0.860 0.736 0.670 0.848
M1-3 MFP, MFP 0.578 0.459 0.620 0.764 0.390 0.518 0.673 0.604 0.831 0.704 0.672 0.847
M1-4 FPeV, FPeV 0.365 0.554 0.742 0.431 0.612 0.781 0.491 0.834 1.082 0.507 0.832 1.106
M1-5 SeV, SeV 0.287 0.589 0.791 0.582 0.519 0.679 0.648 0.641 0.883 0.697 0.697 0.904
M2-1 MGF, MFP 0.637 0.419 0.571 0.846 0.303 0.411 0.736 0.542 0.726 0.714 0.624 0.813
M2-2 MGF, DESC 0.629 0.433 0.580 0.851 0.291 0.397 0.772 0.512 0.710 0.738 0.649 0.871
M2-3 MGF, SeV 0.577 0.458 0.617 0.820 0.331 0.444 0.736 0.573 0.760 0.710 0.600 0.804
M2-4 MGF, FPeV 0.564 0.468 0.629 0.837 0.318 0.426 0.712 0.578 0.784 0.719 0.674 0.861
M2-5 MFP, DESC 0.633 0.418 0.566 0.856 0.313 0.409 0.771 0.509 0.678 0.722 0.723 0.910
M2-6 MFP, SeV 0.593 0.455 0.614 0.779 0.376 0.496 0.702 0.584 0.770 0.745 0.613 0.786
M2-7 MFP, FPeV 0.597 0.447 0.593 0.773 0.381 0.501 0.671 0.616 0.828 0.690 0.676 0.868
M2-8 DESC, SeV 0.586 0.451 0.603 0.817 0.331 0.440 0.715 0.570 0.768 0.779 0.589 0.762
M2-9 DESC, FPeV 0.602 0.449 0.597 0.818 0.323 0.435 0.724 0.568 0.756 0.692 0.688 0.878
M2-10 SeV, FPeV 0.414 0.536 0.720 0.641 0.500 0.656 0.623 0.653 0.864 0.645 0.721 0.933
M3-1 MGF, MFP, DESC 0.647 0.412 0.559 0.866 0.289 0.385 0.770 0.499 0.676 0.812 0.566 0.724
M3-2 MGF, MFP, SeV 0.627 0.431 0.576 0.846 0.316 0.415 0.760 0.505 0.690 0.708 0.643 0.821
M3-3 MGF, MFP, FPeV 0.625 0.426 0.580 0.842 0.316 0.421 0.730 0.569 0.784 0.713 0.618 0.807
M3-4 MGF, DESC, SeV 0.614 0.433 0.577 0.853 0.302 0.403 0.756 0.512 0.693 0.778 0.589 0.756
M3-5 MGF, DESC, FPeV 0.634 0.431 0.578 0.860 0.306 0.407 0.777 0.514 0.684 0.737 0.607 0.813
M3-6 MGF, SeV, FPeV 0.573 0.458 0.613 0.821 0.339 0.450 0.752 0.535 0.720 0.719 0.637 0.798
M3-7 MFP, DESC, SeV 0.626 0.425 0.580 0.847 0.306 0.410 0.754 0.513 0.702 0.757 0.613 0.786
M3-8 MFP, DESC, FPeV 0.634 0.423 0.575 0.845 0.315 0.426 0.744 0.530 0.707 0.780 0.622 0.807
M3-9 MFP, SeV, FPeV 0.589 0.448 0.606 0.799 0.367 0.482 0.704 0.547 0.768 0.712 0.689 0.894
M3-10 DESC, SeV, FPeV 0.589 0.440 0.588 0.833 0.323 0.433 0.697 0.542 0.755 0.773 0.551 0.702
M4-1 MGF, MFP, DESC, SeV 0.644 0.413 0.551 0.860 0.290 0.384 0.783 0.516 0.701 0.736 0.558 0.754
M4-2 MGF, MFP, DESC, FPeV 0.637 0.413 0.555 0.859 0.294 0.400 0.786 0.489 0.678 0.783 0.563 0.731
M4-3 MGF, MFP, SeV, FPeV 0.629 0.421 0.569 0.840 0.313 0.422 0.768 0.544 0.725 0.725 0.618 0.810
M4-4 MGF, DESC, SeV, FPeV 0.619 0.430 0.578 0.851 0.298 0.403 0.761 0.525 0.718 0.741 0.584 0.784
M4-5 MFP, DESC, SeV, FPV 0.632 0.421 0.569 0.850 0.311 0.411 0.756 0.518 0.691 0.756 0.605 0.811
M5-1 MGF, DESC, SeV, FPeV, MFP 0.652 0.411 0.553 0.860 0.302 0.399 0.785 0.506 0.686 0.784 0.615 0.784

performance metrics.

5.3.4 Effectiveness of meta models over base models

In order to investigate the effectiveness of meta models M2-M5 compared to

the best meta models in M1 that have only one types of base features, we

compute % improvement and show in Figure 5.7. An overall improvement

can be observed in r2, mae and rmse for all four tasks. As expected, meta

model M2-10, which refers to using SeV and FPeV only, causes increase in

both types of errors and decrease in the correlation substantially. For each

task separately, we highlight in Figure 5.7a,b,c,d the best meta model. We

select M5-1 with improvement of 11.44% for r2, 9.75% for mae and 9.74% for

rmse on LD50; M3-1 with improvement of 4.53% for r2, 12.26% for mae, and

11.39% for rmse on IGC50; M4-2 with improvement of 2.50% for r2, 10.58% for

mae, and 8.00% for rmse on LC50; and M3-1 with improvement of 10.39% for

r2, 11.04% for mae, and 13.92% for rmse on LC50-DM. We develop our final
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TABLE 5.5: Standard deviation values for 10 fold cross valida-
tion results for various meta features on meta validation set.

LD50 IGC50 LC50 LC50-DM
Meta Base features r2 mae rmse r2 mae rmse r2 mae rmse r2 mae rmse
features
M1-1 DESC, DESC 0.037 0.020 0.031 0.026 0.031 0.041 0.034 0.052 0.062 0.128 0.118 0.180
M1-2 MGF, MGF 0.030 0.015 0.020 0.052 0.043 0.058 0.087 0.072 0.087 0.087 0.132 0.156
M1-3 MFP, MFP 0.034 0.012 0.021 0.041 0.026 0.038 0.109 0.100 0.167 0.117 0.105 0.146
M1-4 FPeV, FPeV 0.053 0.018 0.033 0.102 0.060 0.071 0.120 0.100 0.131 0.156 0.152 0.211
M1-5 SeV, SeV 0.117 0.059 0.072 0.096 0.078 0.092 0.066 0.050 0.065 0.108 0.064 0.096
M2-1 MGF, MFP 0.025 0.011 0.015 0.037 0.020 0.029 0.101 0.084 0.113 0.133 0.110 0.152
M2-2 MGF, DESC 0.026 0.012 0.016 0.032 0.021 0.040 0.063 0.082 0.133 0.083 0.139 0.161
M2-3 MGF, SeV 0.020 0.013 0.020 0.031 0.032 0.047 0.049 0.067 0.083 0.097 0.062 0.133
M2-4 MGF, FPeV 0.048 0.015 0.026 0.026 0.020 0.034 0.080 0.061 0.079 0.098 0.081 0.097
M2-5 MFP, DESC 0.035 0.010 0.021 0.026 0.024 0.032 0.045 0.062 0.084 0.122 0.124 0.152
M2-6 MFP, SeV 0.036 0.023 0.034 0.038 0.033 0.043 0.097 0.093 0.143 0.072 0.092 0.122
M2-7 MFP, FPeV 0.032 0.016 0.025 0.024 0.023 0.030 0.067 0.080 0.120 0.090 0.099 0.112
M2-8 DESC, SeV 0.016 0.013 0.016 0.025 0.014 0.023 0.023 0.042 0.062 0.083 0.078 0.113
M2-9 DESC, FPeV 0.025 0.020 0.030 0.030 0.024 0.036 0.061 0.062 0.082 0.118 0.100 0.148
M2-10 SeV, FPeV 0.041 0.013 0.026 0.045 0.039 0.041 0.074 0.086 0.124 0.088 0.086 0.111
M3-1 MGF, MFP, DESC 0.018 0.013 0.021 0.026 0.026 0.043 0.066 0.063 0.088 0.072 0.129 0.185
M3-2 MGF, MFP, SeV 0.019 0.015 0.016 0.024 0.024 0.027 0.053 0.042 0.058 0.135 0.104 0.136
M3-3 MGF, MFP, FPeV 0.033 0.016 0.027 0.038 0.026 0.039 0.060 0.075 0.084 0.106 0.125 0.170
M3-4 MGF, DESC, SeV 0.022 0.012 0.016 0.016 0.027 0.031 0.046 0.068 0.109 0.046 0.123 0.124
M3-5 MGF, DESC, FPeV 0.030 0.019 0.033 0.025 0.020 0.030 0.062 0.072 0.118 0.105 0.127 0.222
M3-6 MGF, SeV, FPeV 0.032 0.022 0.029 0.028 0.027 0.038 0.037 0.045 0.064 0.089 0.092 0.131
M3-7 MFP, DESC, SeV 0.029 0.008 0.027 0.021 0.026 0.034 0.081 0.086 0.113 0.075 0.099 0.131
M3-8 MFP, DESC, FPeV 0.028 0.012 0.026 0.023 0.018 0.031 0.053 0.060 0.084 0.079 0.120 0.171
M3-9 MFP, SeV, FPeV 0.045 0.030 0.042 0.034 0.033 0.042 0.066 0.064 0.088 0.082 0.091 0.112
M3-10 DESC, SeV, FPeV 0.030 0.021 0.031 0.019 0.019 0.028 0.066 0.051 0.070 0.111 0.109 0.166
M4-1 MGF, MFP, DESC, SeV 0.027 0.019 0.030 0.039 0.035 0.053 0.032 0.057 0.070 0.109 0.113 0.145
M4-2 MGF, MFP, DESC, FPeV 0.026 0.017 0.021 0.014 0.016 0.026 0.049 0.054 0.066 0.086 0.102 0.153
M4-3 MGF, MFP, SeV, FPeV 0.027 0.017 0.029 0.025 0.028 0.040 0.045 0.061 0.080 0.187 0.124 0.161
M4-4 MGF, DESC, SeV, FPeV 0.030 0.016 0.035 0.035 0.030 0.044 0.068 0.071 0.096 0.118 0.100 0.186
M4-5 MFP, DESC, SeV, FPV 0.025 0.012 0.028 0.027 0.025 0.038 0.072 0.057 0.081 0.108 0.132 0.234
M5-1 MGF, DESC, SeV, FPeV, MFP 0.031 0.017 0.026 0.028 0.030 0.040 0.052 0.046 0.072 0.084 0.098 0.139

model with these selected meta models for each task individually as follows

for external independent testing.

5.3.5 Comparative landscape using the external independent

test sets

We compare our method’s performance against the state-of-the-art methods

in the literature e.g. the models used in the development of TEST software

[96], TopTox [145] and Hybrid2d [68]. The results are shown in Table 5.6. As

can be seen, from total 12 metrics, the proposed method obtains best results

in 11 of them. Especially in three of the four data sets, it dominates other

algorithms with significant margin in all three metrics. The detailed results

are discussed below for each task separately.

• LD50: For this data set, which is the largest for the four, our proposed

method dominate other methods in all three metrics with r2 0.687, mae
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TABLE 5.6: Comparison of our method with other methods us-
ing external independent test sets for all four tasks.

Methods r2 mae rmse r2 mae rmse
LD50 IGC50

QuantitativeTox 0.687 0.394 0.537 0.861 0.269 0.365
hierarchical [96] 0.578 0.460 0.650 0.719 0.358 0.539
FDA [96] 0.557 0.474 0.657 0.747 0.337 0.489
group contribution [96] – – – 0.682 0.411 0.575
nearest neighbor [96] 0.557 0.477 0.656 0.6 0.451 0.638
TEST consensus [96] 0.626 0.431 0.594 0.764 0.332 0.475
TopTox [145] 0.653 0.421 0.568 0.802 0.305 0.438
Hybrid2D [68] 0.629 – – 0.810 – –

LC50 LC50-DM
QuantitativeTox 0.792 0.479 0.668 0.808 0.520 0.754
hierarchical [96] 0.71 0.574 0.801 0.695 0.757 0.979
single model [96] 0.704 0.605 0.803 0.697 0.772 0.993
FDA [96] 0.626 0.656 0.915 0.565 0.909 1.19
group contribution [96] 0.686 0.578 0.81 0.671 0.62 0.803
nearest neighbor [96] 0.667 0.649 0.876 0.733 0.745 0.975
TEST consensus [96] 0.728 0.545 0.768 0.739 0.727 0.911
TopTox [145] 0.788 0.446 0.677 0.788 0.592 0.805
Hybrid2D [68] 0.678 – – 0.616 – –

0.394, and rmse 0.537. The results of TopTox method, in all three met-

rics, are better than those of the TEST software methods but worse than

that of our proposed methods. The improvements of our method over

the state-of-the-art TopTox method are r2 5.206%, mae 6.413%, rmse

5.457%.

• IGC50: As can be seen, for this data set, TEST consensus obtains the

highest r2 of 0.764 among all the models in TEST software while Top-

Tox model achieved r2 of 0.802. Our proposed model obtains r2 of

0.861, which is better than all 6 models including TopTox. The pro-

posed model also obtains better mae and rmse values with 0.269 and

0.365 respectively. The improvements over the state-of-the-art TopTox

method is r2 7.356%, mae 11.803%, rmse 16.666%.
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5.3.6 Chemical space and prediction confidence

A diverse dataset covering a broad sample space is a prerequisite for build-

ing predictive models [17]. For all SMILES strings in the combined train and

test sets, we computed the 2048-bit Morgan fingerprints using RDKIT [84].

We then use the t-SNE dimensional reduction technique [95] to convert the

2048 dimensional vectors into two t-SNE dimensions; which are shown in

Figure 5.9 with a perplexity value of 30. From the charts, train sets are ob-

served to be covering the test sets for LD50, IGC50 and LC50 indicating the

possibility of highly accurate predictions. However, in LC50-DM, the train

set does not cover the test set, which is more diverse. This indicates that

prediction will be more challenging for this data set. As shown in Figure 5.5,

Table 5.2, Table 5.4, and Table 5.6, this finding is consistent with the compara-

tively lower performance of our proposed method on LC50-DM data set than

on the other three data sets.

For each task separately, we show the prediction confidence for full train-

ing as well as external test sets in Figure 5.8. By taking 2 times the mean

absolute error for external test sets of each task, above 85% of the predictions

are covered in the confidence interval. Prediction confidence for external

test sets of LD50, IGC50, LC50 and LC50-DM is 87.93%, 87.98%, 87.80% and

85.71% respectively. The prediction confidence for external test set of IGC50

is the highest whereas it is lowest for the external test set of LC50-DM. The

possible reason for lowest prediction confidence interval for the external test

set of LC50-DM might be its exceptionally diverse chemical space as shown

in Figure 5.9d.

5.4 Discussion

We discuss how meta ensembling and multi-task learning bring new insights

into quantitative toxicity end points and can improve overall performances





Chapter 5. Meta ensemble of multi-model deep learning 97

use molecular graphs as input like graph convolution will not be able to dis-

tinguish between chiral molecules (molecules having the same graph struc-

ture with a mirror image of each other). In the case of fingerprints as an input,

it is also possible that different molecules may have identical fingerprints and

this will make it difficult for a model to distinguish if it only takes finger-

prints as input. Features with direct biological relevance such as DESC, MGF

and MFP in Table 5.2 prove very useful individually as opposed to those fea-

tures which do not have any direct biological relevance such as FPeV and

SeV. The predictive power DESC, MGF and MFP can be further enhanced

when aggregated effectively with FPeV and SeV as shown in Table 5.4 and

Figure 5.7. Specifically in case of LC50-DM, the r2, mae, and rmse are sub-

stantially improved by using SeV and FPeV with DESC (M3-10 meta model).

This paves a path towards the idea of using weak features (SeV and FPeV)

along with strong features (DESC) to further enhance the performance due to

strong features. The chemical information captured by weak features might

not be significant by itself but can play a vital role when aggregated with the

chemical information extracted using strong features. Besides performance

improvements, meta ensembling helps stabilize the results by producing low

standard deviation in most metrics. In case of smaller data sets such as LC50-

DM, meta models M1 decrease the mean standard deviation value substan-

tially as compared to the the mean stand deviation value for base models.

5.5 Conclusion

Quantitative toxicity measurement has paramount importance in pharma-

ceuticals. Toxicity prediction for chemical compounds recently achieved en-

hanced performance in terms of accuracy after the introduction of various

deep learning models in this space. Usually, molecules are represented by a

given type of features and a specific machine learning method is then used to
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predict the toxicity. The performance of any quantitative toxicity prediction

method depends upon the specific type of features and the learning model

used. This restricts the overall performance to a single type of features and a

learning model.

In this chapter, we have introduced a deep learning based framework

called QuantitativeTox for predicting quantitative toxicity end points or data

sets such as LD50, IGC50, LC50 and LC50-DM. Our approach has three stages:

generating base features, training base learning models on the base features,

and training a meta learning model. We use 5 types of base features, and

then use five base learning models on them. The outputs of the base learning

models are used as the meta features for the meta learning model. To support

multi-task training, each model produces four outputs for four data sets and

the loss function uses an weighted sum over the data sets.

We have found that high level physicochemical, low level fingerprints,

SMILES embedded vectors, and fingerprint embedded vectors when used to

create meta features for the meta ensemble model, enhance the performance

over a wide range of metrics for the quantitative toxicity prediction tasks. We

evaluated our framework against three main regression metrics using inde-

pendent test sets and obtained a robust performance compared to state of the

art methods. Our framework can serve as a robust tool for quantitative tox-

icity prediction with better aggregation strategy for various features along

with individual models and multi-tasking. The software code along with

data can be found on https://github.com/Abdulk084/QuantitativeTox. In

the next chapter, we will test the idea of meta ensembling approach devel-

oped in this chapter for cardiotoxicity in single task manner. We also will

show the effectiveness of meta ensembling approach for robust classification

of molecular cardiotoxity.
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Chapter 6

Robust cardiotoxicity classifier

This chapter is accepted for publication in journal of cheminformatics.

• Karim, A., Lee, M., Balle, T., Sattar, A. (2021). CardioTox net: A robust

predictor for hERG channel blockade via deep learning meta ensem-

bling approaches. (Accepted for publication)

In this chapter, we use similar architecture which we developed in chap-

ter 5 and applied it to cardiotoxicity data. The cardiotoxicity data consists

of molecules which are evaluated for their potential to block ether-a-go-go-

related gene (hERG) channel. Ether-a-go-go-related gene (hERG) channel

blockade by small molecules is a major concern during drug development

in the pharmaceutical industry. Blockade of hERG channels may cause pro-

longed QT intervals that potentially could lead to cardiotoxicity. Various in-

silico techniques including deep learning models are widely used to screen

out small molecules with potential hERG related toxicity. Most of the pub-

lished deep learning methods utilize a single type of features which might

restrict their performance. Methods based on more than one type of fea-

tures struggle with the aggregation of extracted information and show better

performance when evaluated against a single accuracy metric but struggle

when evaluated against others. Therefore, there is a need for a method that
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can efficiently aggregate information gathered from models based on differ-

ent chemical representations and boost hERG toxicity prediction over a range

of performance metrics.

In this chapter, we use deep learning framework developed in chapter 5

to predict hERG channel blocking activity of small molecules. As described

5, our approach utilizes five individual deep learning base models with their

respective base features and a separate neural network to combine the out-

puts of the five base models. By using the same training and external test

data with potency activity of IC50 at a threshold of 10 µM as that of state-

of-the-art DeepHIT, we improved Matthew correlation coefficient (MCC) by

25.84%, specificity (SPE) by 22.23%, positive predictive value (PPV) by 7.20%

and accuracy (ACC) by 4.78% with no loss of sensitivity (SEN) and nega-

tive predictive value (NPV) over DeepHIT. In addition, on newly prepared

independent external test set with the same potency activity and threshold,

our method improved MCC by 13.56%, SPE by 12.57%, PPV by 9.11% and

ACC by 4.71% over DeepHIT. We also investigate the effective aggregation

of chemical information extracted for robust hERG activity prediction. In

summary, our framework (CardioTox) can serve as a robust tool for screen-

ing small molecules for hERG channel blockade in drug discovery pipelines

and performs better than previously reported methods on a range of classifi-

cation metrics.

6.1 Introduction

Models in most of the previous studies either utilize a single type of features

which might restrict the performance or struggle with the aggregation of ex-

tracted chemical information from various types of features [16, 18, 85, 86].

Thus they achieve reasonable performance when evaluated against one ac-

curacy metric, but falls behind when evaluated against others. For instance,
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CardPred used a total of 3456 physicochemical descriptors and fingerprints

with six individual machine learning models [85] to achieve reasonable per-

formance when evaluated against accuracy (ACC) and positive predictive

value (PPV) but performed poorly when evaluated against other metrics

such as Matthew correlation coefficient (MCC), negative predictive value

(NPV), specificity (SPE), sensitivity (SEN) (evaluated on external test sets as

reported in the results section) [120]. A method reported by Cai et al.. relies

on physicochemical descriptors and molecular vectors combined together as

a single input for a fully connected multi-task deep neural network to achieve

better performance for various metrics except NPV (for their internal cross

validation datasets).

Li et al. used 8 different types of machine learning models and their en-

semble with physicochemical descriptors and fingerprints performed well

when evaluated against SPE and PPV but less so for other metrics. The

key to success for these previous methods for hERG activity prediction is

elucidating correct structure-property relationships from existing data using

high level physicochemical features along with fingerprints. Recently the

DeepHIT method was introduced which utilizes physicochemical descrip-

tors, fingerprints and graph features with fully connected deep neural net-

works and graph convolution neural networks to achieving better perfor-

mance for hERG activity prediction [120]. DeepHIT classifies a molecule as

a hERG blocker if at least one model out of the three models used predicts a

given molecule as a hERG blocker [120], thus enhancing the sensitivity of the

model. Although DeepHIT utilize reasonably diverse feature set, it still lacks

in an effective way of combining the outputs of individual models for robust

performance over a range of metrics.

We hypothesize that if we can extract chemical information from all or

the subsets of three levels of features (low, high and intermediate) and their

variants for molecular hERG activity prediction, we can improve upon the
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performance over a wide range of accuracy metrics. For this purpose, we

customized our developed framework in chapter 5 for single task classifi-

cation and called it "CardioTox". For two different external test sets, Car-

dioTox net improves the Matthew correlation coefficient (25.84%, 13.56%),

accuracy (4.78%, 4.71%), positive predictive value (7.20%, 9.11%) and speci-

ficity (22.23%, 12.57%) while keeping the sensitivity same as the so far best

in class method, DeepHIT. Our framework consists of three stages; A featur-

ization stage which generates base features; an individual prediction stage

which uses base features with the base individual deep learning models to

generate the outputs also called meta features; and a meta ensemble stage

which uses meta features generated by the previous stage to classify the

molecule as hERG blocker or hERG non-blocker.

6.2 Materials and methods

In this section, we explain the data preparation method for training as well as

both external test sets. We then describe the architecture details of the deep

learning framework used in this study. It should be noted that the main ar-

chitecture including the featurization stage, individual prediction stage and

meta ensemble stage is similar to the one used in chapter 5. For the purpose

of this study, we customized it to a single task classification.

6.2.1 Data preparation

A dataset consisting of molecular structures labelled as hERG and non-hERG

blockers in the form of SMILES strings was obtained from the DeepHIT au-

thors [120] and was curated from five sources, the BindingDB database (3056

hERG blockers, 3039 hERG non-blockers) [44], ChEMBL bioactivity database

(4859 hERG blockers, 4751 hERG non-blockers) [41], and literature derived

(4355 hERG blockers, 3534 hERG non-blockers) [18], (1545 hERG blockers,
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816 hERG non-blockers) [35], (2849 hERG blockers, 1202 hERG non-blockers)

[34] and unlike in the DeepHIT procedure, we did not use any in-house

data. A total of 30000 molecular structures were obtained and were stan-

dardized using using RDKIT http://www.rdkit.org/ and MolVS https:

//molvs.readthedocs.io/en/latest/ as described by Ryu et al [120]. We

further removed duplicates and mislabeled compounds. Thus we obtained

total of 12620 molecules with 6643 labelled as hERG blockers and 5977 as

hERG non-blockers to constitute our training set. We evaluated our frame-

work against two external independent test sets, one of which was obtained

from the authors of DeepHIT [120], hereafter called test-set I which is posi-

tively imbalanced (i.e. more blockers (30) than non-blockers (14)). We also

retrieved another independent test set (test-set II) from [127] and [81] as per

the criteria of half maximal inhibitory concentration (IC50) values < 10 µM

considered to be hERG blockers and (IC50) values ≥ 10 µM considered to be

hERG non-blockers. Test-set II was negatively imbalanced with 11 blockers

and 30 non-blockers. The Tanimoto similarity [120] criteria was also ensured

for all molecules in both test and training sets (explained in upcoming section

of similarity and chemical diversity). The training set was subdivided into

four sets, 70% for training the base models, 10% for validating base models,

10% for training the meta ensemble model and 10% for validating the meta

ensemble model.

All redundant molecules were removed and respective sets were merged

together to form a combined base training set, base validation set, meta train-

ing set and meta validation set. We used test set-I from DeepHIT “as is”

which contains more hERG blockers than non-blockers. Pairwise Tanimoto

similarity [120] was computed between all molecules of combined data sets

with those of molecules in test set-I obtained from DeepHIT. All those molecules

in the combined data sets, the Tanimoto similarity of which are >0.7 to any

of the molecule in test set-I were removed, thus forming a gold standard
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training and validation data as shown in Figure 6.1a.

In order to evaluate our model on another independent test set which

should contain more non blockers molecules, we curated 110 hERG blockers

and 336 hERG non-blockers from “E3 training” set of Siramshetty et al.. The

reason we curated from E3 training is because it contains molecules with po-

tency threshold (IC50) values < 10 µM considered to be hERG blockers and

(IC50) values≥ 10 µM considered to be hERG non-blockers which is compat-

ible with other datasets used in our study. Besides, E3 training is also nega-

tively imbalanced which contains more non-blockers than blocker molecules,

as test set-II is aimed to be negatively imbalanced unlike test set-I which is

positively imbalanced. We also obtained 9250 molecules from Konda et al.

with pIC50 values as potency threshold. We converted the unit of potency

from pIC50 to IC50 and labelled molecules with (IC50) values < 10 µM as

hERG blockers and (IC50) values ≥ 10 µM as hERG non-blockers. Both data

sets were merged together and all those molecules with Tanimoto similar-

ity > 0.7 to any molecule in gold standard data training and validation or

test set-I were removed. Thus we obtained test set-II which contains more

non blocker molecule than blockers and is dissimilar to both gold standard

training and validation as well as test set-I as shown in Figure 6.1b.

6.2.2 Similarity and chemical diversity

A diverse dataset covering a broad chemical space is a prerequisite for build-

ing predictive models [17]. For all SMILES strings in training as well as in

both external test sets, we computed the 2048 bit Morgan fingerprints using

RDKIT [? ]. The t-SNE dimensional reduction technique [95] was then used

to convert the 2048 dimensional vector into two t-SNE dimensions for each

SMILES string. As demonstrated by the chemical space defined by the t-SNE

components in Figure 6.2, diverse chemical space distributions for classified
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in the SMILES string and an adjacency matrix which shows the bonds be-

tween atoms [121]. In this study, we extracted the same graph features as

were extracted for DeepHIT [120], i.e a [50x65] node vector and a [50x50]

adjacency matrix, details of which are also given in Table S3 of DeepHIT

supplementary material [120]. Here 50 refers to the maximum number of

atoms and 65 refers to the one hot-encoded feature vector computed from

atom descriptors [120].

Molecular fingerprint generator

The third featurizer deals with fingerprints where structural features are rep-

resented by either bits in a bit string or counts in a count vector [116, 136].

1024 extended-connectivity fingerprints with a maximum diameter parame-

ter of 2 (EFCP2) fingerprints and 881 pubChem fingerprints were computed

using using the Python package PyBioMed [36, 120]. EFCP are also referred

to as circular fingerprints and are specifically designed for structure-activity

relationship modeling [117] whereas pubChem fingerprints are mainly de-

signed for similarity neighboring and similarity searching [53].

SMILES vectorizer

We also computed two variants of low level features, SMILES strings embed-

ded vectors (SeV) [45, 70] and fingerprint based embedded vectors (FPeV)

[66] which themselves do no directly describe any biological attribute of the

molecules, but has proven to have a reasonable predictive power in various

quantitative structure-activity relationship (QSAR) tasks. In the SMILES vec-

torizer, we created a vocabulary based on the valid SMILES tokens. A total

of 64 unique tokens were determined based on the training data. The longest

SMILES string in the data considered for this study was 97. Each SMILES

string was converted into a one-hot encoded vector based on the SMILES

vocabulary.
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Fingerprints vectorizer

In the fingerprint vectorizer, SMILES string are converted into 1024 bit Mor-

gan (or circular) fingerprints with a radius of 2 via RDKIT [? ]. As per the

previously published technique [66], we extracted fingerprint indices which

were marked 1 in the fingerprint generated. Thus we obtained a vector of

length 93 which consisted of integers representing presence of specific sub-

structures in a molecule. The procedure for fingerprint embedding vector is

described in Figure 1 of FP2VEC [66].

6.2.4 Individual prediction stage

The individual prediction stage consists of base models which are trained on

respective base features from the featurization stage. All of the base models

were trained at a learning rate of 10e−4 with an Adam optimizer and 100

epochs with a batch size of 32. Selection of parameters, hyper-parameters

and network architecture of base models were inspired from the previous

published research in this area [45, 66, 68, 69, 70, 85, 120]. Each of these base

models produce an output which is a single probability of a molecule being a

hERG blocker. Here we describe each base model in the individual prediction

stage also shown in Figure 6.4b,c,d,e. The Keras deep learning framework

and Spektral package was used in developing base models for the individual

prediction stages [25, 52].

Fully connected neural network for descriptors (FCNND)

A fully connected deep neural network with 4 hidden layers was trained and

validated on 995 2D and 3D physicochemical descriptors. The input layer

consists of 995 nodes as per the number of total physicochemical descriptors

and an output layer with 1 unit. All the layers in FCNND are densely con-

nected and receives input from all the units present in the previous layer.
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The number of units in each hidden layer is decreased gradually and a ReLu

activation [51, 65] is applied at the end of each layer. Various regularization

parameters such as Kernel regularizer which applies penalties to the ker-

nel (main units in layer), bias regularizer which applies penalties to the bias

units to reduce the over-fitting during optimization [51, 54]. We also applied

a drop-out rate of 0.5 to the middle layers [130].

Graph convolutional neural network for graph features (GCNN)

A graph convolutional neural network (GCNN) was trained using the graph

features as shown in Figure 6.4c. GCNN consists of two graph convolution

layers [80], one global attention pool layer [87] and a dense layer before the

output. Each of the graph convolutional layers were initiated with 64 chan-

nels with a kernel regularization value of 0.01 and a ReLu activation. The

number of channels in the global attention pool layer was made equal to the

number of units in the following dense layer, i.e 1024.

Fully connected neural network for fingerprints (FCNNF)

A fully connected neural network was used with fingerprints (FCNNF) as

the base feature. Unlike FCNND, FCNNF uses a much smaller number of

units in each layer. Except the number of units, other parameters were kept

the same as in FCNND. The number of input nodes in the input layer were

kept at 1905 to match the sum of 1024 EFCP fingerprints and 881 pubChem

fingerprints as shown in part Figure 6.4d.

Convolution 1D neural network for SMILES and fingerprint embedding

vectors (C1D)

For models where SMILES and fingerprint embedding vectors were used as

base features, we used a variant of a Convolution 1D Neural Network (C1D)
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as base model as shown in Figure 6.4e. The only difference was in the number

of input-layer nodes which was 97 for SMILES embedding vectors and 93 for

fingerprint embedding vectors. Input vectors were converted to a trainable

embedding matrix of the size [97 or 93 x 200] which was then fed into a series

of three 1D convolution layers. Each of these 1D convolution layers used

ReLu activation, 192 filters with a kernel size of 10, 5 and 3 respectively. Two

densely connected layers with the parameters shown in Figure 6.4e are also

used to before the output layer.

6.2.5 Meta ensemble stage

The outputs of each of the base models in the individual prediction stage

were concatenated to produce meta features for the meta ensemble model.

The Meta ensemble model is a fully connected neural network (FCNNM)

with an input, output and two hidden layers as shown in Figure 6.4f. It is

trained at a learning rate of 10e−3 with an Adam optimizer and 300 epochs

with a batch size of 32.

6.3 Results and discussion

Our proposed framework employs step-wise training to produce the final

classification of molecules as hERG or non-hERG blockers. For this purpose,

data was divided into four sets, base training set: 70% for training base mod-

els , base validation set: 10% for validating base models, meta training set:

10% for training meta-ensemble model and meta validation set: 10% for val-

idating the meta-ensemble model. In the first step of training, all the base

models were trained on the base training set and validated using the base

validation set. In the second step, the outputs of the best performing base

models for the base validation set were used as meta features to train the
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meta ensemble model with the meta training set. We used the meta vali-

dation set to obtain the best meta ensemble model and also to select which

combination of the base models ensembling produces better results. We re-

peated this process for 10 fold times and report the results as follows.

6.3.1 Validation of base model performance

The 10 fold cross validated results for individual base models of our frame-

work on base validation set are shown in Table 6.2. Each base model is

trained and validated with its own respective base features independently.

In the Table 6.2, DESC refers to high level features such as 2D and 3D de-

scriptors feeding the FCNND, MGF refers to intermediate molecular graph

features fed into GCNN, MFP refers to low level molecular fingerprints fed

into FCNNF, SeV refers to one of the low level variant i.e, SMILES embed-

ding vectors when used with C1D and FPeV refers to low level variant i.e,

fingerprint embedding vectors when used with C1D.

TABLE 6.2: 10 fold cross validated performance of the base
models in individual prediction stage on base valid set using

their respective base features

Base features MCC NPV ACC PPV SPE SEN AUC
DESC 0.689 0.813 0.845 0.870 0.868 0.822 0.911
MGF 0.620 0.805 0.810 0.817 0.794 0.826 0.888
MFP 0.683 0.830 0.841 0.855 0.837 0.845 0.915
FPeV 0.638 0.814 0.818 0.826 0.802 0.835 0.899
SeV 0.636 0.811 0.817 0.827 0.809 0.826 0.889

As shown in Table 6.2, DESC performed better in MCC, ACC and PPV

whereas MFP performed better in NPV, SEN and AUC. The possible rea-

son might be the the direct biological relevance of these base features (de-

scriptors and fingerprints) to the activity prediction. Interestingly, SeV and

FPeV showed better performance than MGF despite no biological relevance

of the features used. FPeV and SeV achieved almost similar performance in
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most the of performance metrics. MGF legs behind in most of the metrics ex-

cept SEN where it achieved slightly better performance than DESC. Table 6.3

shows standard division for each split of base validation set in training the

individual base models.

TABLE 6.3: Standard deviation values for 10 fold cross vali-
dated performance of the base models in individual prediction
stage on base validation set using their respective base features.

Base features MCC NPV ACC PPV SPE SEN AUC
DESC 0.024 0.019 0.012 0.021 0.025 0.028 0.011
MGF 0.020 0.022 0.010 0.025 0.034 0.024 0.006
MFP 0.016 0.023 0.008 0.026 0.035 0.027 0.007
MFP 0.016 0.031 0.008 0.026 0.042 0.038 0.007
FPeV 0.024 0.028 0.012 0.024 0.040 0.034 0.010
SeV 0.018 0.021 0.009 0.019 0.036 0.037 0.007

6.3.2 Validation of meta model performance

The overall goal of this study is to aggregate the chemical information ex-

tracted from various base features for cardio-toxicity data set so that the clas-

sification performance can be improved over a wide range of metrics. For

that purpose, the outputs of the base models are concatenated to produce

meta features for the use of a meta ensemble model as shown in Figure 6.4a.

A separate meta training set and meta validation set is used for training

and validating the meta ensemble model. Table 6.4 demonstrates 10 fold

cross validation results for the meta validation set for ensembling all possible

unique combinations of base features ranging from 1 to 5. For instance, M1

represents single type of base features used in creating meta features whereas

M2, M3, M4 and M5 represents any two, three, four and 5 different types of

the base features with no repetitions.

It can be seen from Table 6.4 that meta features in M3 and M4 show overall

better performance for most of the metrics. In the M4 meta-feature category,

M4-5 achieves the best results of MCC: 0.720, ACC: 0.860, PPV: 0.871 and
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TABLE 6.4: 10 fold cross validation results for various meta fea-
tures on meta validation set

Meta Features Base features MCC NPV ACC PPV SPE SEN AUC
M1-1 DESC, DESC 0.676 0.829 0.838 0.862 0.868 0.819 0.909
M1-2 MGF, MGF 0.599 0.784 0.799 0.815 0.792 0.806 0.878
M1-3 MFP, MFP 0.682 0.829 0.840 0.853 0.838 0.843 0.909
M1-4 FPeV, FPeV 0.636 0.820 0.817 0.819 0.795 0.839 0.897
M1-5 SeV, SeV 0.621 0.806 0.809 0.816 0.791 0.828 0.880
M2-1 MGF, MFP 0.691 0.826 0.846 0.864 0.850 0.842 0.919
M2-2 MGF, DESC 0.683 0.818 0.842 0.865 0.848 0.835 0.914
M2-3 MGF, SeV 0.685 0.837 0.842 0.848 0.830 0.854 0.916
M2-4 MGF, FPeV 0.682 0.828 0.841 0.854 0.833 0.848 0.916
M2-5 MFP, DESC 0.710 0.843 0.855 0.866 0.855 0.855 0.928
M2-6 MFP, SeV 0.698 0.838 0.849 0.861 0.844 0.853 0.921
M2-7 MFP, FPeV 0.690 0.831 0.845 0.859 0.840 0.850 0.920
M2-8 DESC, SeV 0.707 0.847 0.853 0.860 0.846 0.861 0.926
M2-9 DESC, FPeV 0.715 0.848 0.857 0.867 0.859 0.856 0.929

M2-10 SeV, FPeV 0.680 0.828 0.840 0.853 0.835 0.845 0.918
M3-1 MGF, MFP, DESC 0.707 0.851 0.853 0.857 0.841 0.866 0.924
M3-2 MGF, MFP, SeV 0.711 0.855 0.855 0.857 0.835 0.874 0.927
M3-3 MGF, MFP, FPeV 0.701 0.849 0.850 0.853 0.833 0.867 0.921
M3-4 MGF, DESC, SeV 0.710 0.847 0.855 0.864 0.849 0.861 0.926
M3-5 MGF, DESC, FPeV 0.706 0.853 0.852 0.855 0.831 0.874 0.928
M3-6 MGF, SeV, FPeV 0.697 0.844 0.849 0.854 0.838 0.859 0.925
M3-7 MFP, DESC, SeV 0.718 0.854 0.859 0.865 0.850 0.868 0.930
M3-8 MFP, DESC, FPeV 0.710 0.850 0.855 0.861 0.846 0.864 0.926
M3-9 MFP, SeV, FPeV 0.699 0.837 0.849 0.862 0.848 0.851 0.925

M3-10 DESC, SeV, FPeV 0.712 0.846 0.856 0.866 0.854 0.858 0.928
M4-1 MGF, MFP, DESC, SeV 0.711 0.850 0.855 0.861 0.841 0.869 0.927
M4-2 MGF, MFP, DESC, FPeV 0.719 0.851 0.860 0.869 0.853 0.867 0.929
M4-3 MGF, MFP, SeV, FPeV 0.705 0.846 0.852 0.859 0.846 0.859 0.921
M4-4 MGF, DESC, SeV, FPeV 0.707 0.849 0.853 0.859 0.841 0.865 0.926
M4-5 MFP, DESC, SeV, FPV 0.720 0.849 0.860 0.871 0.856 0.864 0.930
M5-1 MGF, DESC, SeV, FPeV, MFP 0.717 0.853 0.858 0.864 0.850 0.867 0.925

AUC: 0.930. In the M3 meta-feature category, M3-2 achieves the best results

for NPV: 0.855 and SEN: 0.874. M3-5 also achieves similar performance of

0.874 for SEN to that of M3-2. Similarly for AUC, M3-7 achieves a similar

performance of 0.930 compared to that of M4-5. For SPE however, none of

the base-feature combinations (ranging from M2 to M5) improves the perfor-

mance over M1-1 which is 0.868. Interestingly for SPE, the individual lower

performance of MGF, FPeV and SeV (M1-2: 0.792, M1-4: 0.795 and M1-5:

0.791) is improved substantially with meta features comprised of any of the

combinations (M2-3: 0.830, M2-4: 0.833 and M2-10: 0.835). This improve-

ment offers some perspective on potentially better ensembling performance

even if the individual performance is relatively lower for MGF, FPeV and
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SeV. Table 6.5 shows standard division for each split of meta validation set in

10 fold validation process.

TABLE 6.5: Standard deviation values for 10 fold cross valida-
tion results for various meta features on meta validation set.

Meta Features Base features MCC NPV ACC PPV SPE SEN AUC
M1-1 DESC, DESC 0.022 0.013 0.011 0.014 0.017 0.025 0.008
M1-2 MGF, MGF 0.023 0.018 0.012 0.020 0.034 0.022 0.008
M1-3 MFP, MFP 0.021 0.023 0.011 0.025 0.038 0.030 0.008
M1-4 FPeV, FPeV 0.034 0.025 0.018 0.028 0.044 0.028 0.011
M1-5 SeV, SeV 0.019 0.025 0.010 0.025 0.042 0.031 0.007
M2-1 MGF, MFP 0.019 0.015 0.009 0.014 0.017 0.012 0.007
M2-2 MGF, DESC 0.019 0.015 0.009 0.014 0.017 0.012 0.007
M2-3 MGF, SeV 0.015 0.019 0.008 0.020 0.025 0.023 0.005
M2-4 MGF, FPeV 0.019 0.013 0.010 0.021 0.029 0.017 0.004
M2-5 MFP, DESC 0.014 0.012 0.007 0.016 0.022 0.015 0.007
M2-6 MFP, SeV 0.025 0.017 0.012 0.017 0.032 0.020 0.006
M2-7 MFP, FPeV 0.024 0.023 0.012 0.018 0.023 0.021 0.006
M2-8 DESC, SeV 0.020 0.021 0.010 0.020 0.024 0.021 0.005
M2-9 DESC, FPeV 0.023 0.018 0.011 0.021 0.027 0.023 0.009

M2-10 SeV, FPeV 0.019 0.013 0.009 0.012 0.020 0.012 0.005
M3-1 MGF, MFP, DESC 0.017 0.014 0.009 0.011 0.019 0.017 0.006
M3-2 MGF, MFP, SeV 0.023 0.019 0.012 0.025 0.032 0.022 0.006
M3-3 MGF, MFP, FPeV 0.025 0.019 0.013 0.021 0.027 0.017 0.009
M3-4 MGF, DESC, SeV 0.021 0.026 0.011 0.023 0.029 0.029 0.008
M3-5 MGF, DESC, FPeV 0.015 0.014 0.007 0.009 0.022 0.016 0.009
M3-6 MGF, SeV, FPeV 0.016 0.013 0.008 0.018 0.019 0.009 0.008
M3-7 MFP, DESC, SeV 0.014 0.027 0.006 0.020 0.024 0.027 0.006
M3-8 MFP, DESC, FPeV 0.009 0.018 0.004 0.013 0.015 0.019 0.005
M3-9 MFP, SeV, FPeV 0.008 0.018 0.004 0.015 0.023 0.022 0.004

M3-10 DESC, SeV, FPeV 0.021 0.026 0.010 0.012 0.017 0.028 0.007
M4-1 MGF, MFP, DESC, SeV 0.021 0.022 0.010 0.017 0.023 0.021 0.008
M4-2 MGF, MFP, DESC, FPeV 0.025 0.021 0.012 0.020 0.024 0.020 0.007
M4-3 MGF, MFP, SeV, FPeV 0.020 0.017 0.010 0.016 0.020 0.018 0.009
M4-4 MGF, DESC, SeV, FPeV 0.012 0.017 0.006 0.015 0.023 0.020 0.005
M4-5 MFP, DESC, SeV, FPV 0.020 0.015 0.010 0.013 0.017 0.017 0.006
M5-1 MGF, DESC, SeV, FPeV, MFP 0.021 0.017 0.010 0.015 0.021 0.020 0.008

6.3.3 Effectiveness of meta features

In order to investigate the effectiveness of meta features (M2-M5) as com-

pared to the ones which use only single individual base features (M1), we

computed % improvement of each of the meta feature ranging from M2 to

M4 over best M1 on the meta validation set as shown in Figure 6.5a. An

overall improvement can be observed in MCC, NPV, ACC, SEN and AUC.

For PPV, more fluctuations across zero axis are observed for various meta

features. For SPE, there is overall decrease in performance with relatively
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bigger fluctuations on the negative side. It can be observed from Figure 6.5a

and Table 6.4 that for meta feature M4-5, 4 out of 7 metrics shows improve-

ment as compared to best M1. Thus we select meta feature M4-5 as the final

unique combination of base features for our CardioTox net framework for

further analysis and final evaluation against external test sets.

In Figure 6.5b, we show the % difference of CardioTox and DeepHIT from

their respective best base model performances for various performance met-

rics. The values in Figure 6.5b are retrieved from Table 2 of the DeepHIT

publication [120] and Table 6.4 for CardioTox. As shown in Table 2 of Deep-

HIT, the best performance is shown by Descriptor-based DNN for all met-

rics. DeepHIT is optimized for SEN and NPV with a substantial sacrifice of

MCC, ACC, PPV and SPE. It improves SEN by 12.48% and NPV by 9.59%

with a sacrifice of 4.47% MCC, 2.87% ACC, 10.63% PPV and 18.09% SPE.

On the other hand, CardioTox improves MCC by 5.7%, NPV by 2.34%, ACC

by 2.37%, PPV by 1.15% and SEN by 2.52% with a sacrifice of 1.39% in SPE

only. With an overall improvement in nearly all the metrics for a relatively

little sacrifice of SPE as compared to DeepHIT, CardioTox performance can

be considered more robust.

6.3.4 Comparative landscape using the external independent

test sets

We compared CardioTox net results with state of the art methods such as

DeepHIT [120], CardPred [85], OCHM Predictor-I and OCHM Predictor-II

[86] and Pred-hERG 4.2 [16] on two external test sets given in Table 6.6.

For both test sets, CardioTox achieves improved performance for all metrics

except SEN where its performance is the same as achieved by second best

method DeepHIT. This improvement is significant for MCC (25.84%, 13.56%),

PPV (7.20%, 9.11%) and SPE (22.23%, 12.57%) over DeepHIT. The SEN is
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0.833 for test set-I and 0.909 for test set-II which is the same as achieved by

DeepHIT. For ACC and NPV, the improvement over DeepHIT for test-sets

I,II is (4.78%, 4.71%), and (6.99%,0.64%). OCHM-Predictor I, II achieves bet-

ter performance for PPV and SPE but lags behind significantly in all other

metrics for both test sets. Pred-hERG 4.2 performs reasonably well for SEN

in both tests but performs worse in other metrics. Interestingly for test-set II,

OCHEM-Predictor I and II performs reasonably well for PPV and SPE with

less sacrifice in other metrics as compared to its performance on test set-I.

DeepHIT is specifically designed and trained to obtain better NPV and SEN

by using physicochemical descriptors, fingerprints and graph features with

three deep learning base models. CardPred used an individual neural net-

work model (out of six other models) with physicochemical descriptors and

fingerprints. OCHMI and OCHMII used range of machine learning models

trained on various types of high level physicochemical descriptors. Pred-

hERG 4.2 used fingerprints and molecular descriptors with support vector

machines to classify the molecules for hERG blocking activity. By using a

step-wise training strategy with base and meta ensemble models, CardioTox

shows robust performance against a range of accuracy metrics as compared

to the state of the art methods on two independent test sets.

TABLE 6.6: Comparison of CardioTox with other methods us-
ing two external independent test sets

Evaluation data Methods MCC NPV ACC PPV SPE SEN
CardioTox 0.599 0.688 0.810 0.893 0.786 0.833
DeepHIT 0.476 0.643 0.773 0.833 0.643 0.833

Test set-I CardPred 0.193 0.421 0.614 0.760 0.571 0.633
OCHEM Predictor-I 0.149 0.333 0.364 1.000 1.000 0.067
OCHEM Predictor-II 0.164 0.351 0.432 0.857 0.929 0.200
Pred-hERG 4.2 0.306 0.538 0.705 0.774 0.500 0.800
CardioTox 0.452 0.947 0.755 0.455 0.600 0.909
DeepHIT 0.398 0.941 0.721 0.417 0.533 0.909

Test set-II CardPred 0.049 0.750 0.527 0.294 0.600 0.454
OCHEM Predictor-I 0.372 0.800 0.648 0.666 0.933 0.364
OCHEM Predictor-II 0.310 0.794 0.632 0.571 0.900 0.364
Pred-hERG 4.2 0.146 0.813 0.580 0.320 0.433 0.727
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6.4 Conclusion

In this chapter, we introduced a deep learning based framework called Car-

dioTox for classifying drug-like molecules as hERG blockers and hERG non

blockers . Our approach is based on step-wise training of base and meta

ensemble deep learning models. In the first step, 5 deep learning base mod-

els are trained and validated. Each of these base models use different types

of base features ranging from high level to low level descriptors and their

variants. In the second step of training, the output of base models is concate-

nated to form meta features for training and validating the meta ensemble

model. We found that high level physicochemical, low level fingerprints,

SMILES embedding vectors and fingerprint embedding vectors when used

to create meta features for the meta ensemble model, enhance the perfor-

mance over a wide range of metrics for the cardio toxicity prediction task.

We evaluated our framework against various classification metrics using two

oppositely biased independent test sets and obtained a robust performance

compared to state of the art methods. Our framework is a robust method

for classifying small drug-like molecules as hERG blockers and hERG non

blockers. The software code along with data for this chapter can be found on

https://github.com/Abdulk084/CardioTox.
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Chapter 7

Conclusions

This chapter summarises the contributions of the research presented in this

thesis. It also covers the objectives and aims set at the beginning of this thesis.

We also outline a few possible potential future directions of this research and

conclude the thesis.

7.1 Toxicity predictions via deep learning

In pharmaceutical industries, molecular toxicity prediction plays a crucial

role in the process of drug design and development. Traditionally, quanti-

tative activity relationships methods such as decision trees, support vector

machines and random forests are used to screen molecules for their toxic

properties before performing experiments. In QSAR methods, recently deep

learning techniques have widely been used because of their ability to use non

linear interactions of features to predict toxicity of molecules. In this thesis,

we explore molecular toxicity prediction using deep learning techniques and

report state of the art performances. In first quarter of the thesis, we explored

joint optimization of decision tees and shallow neural networks for quanti-

tative and qualitative toxicity prediction tasks. This enabled us to interpret

the model prediction in the context of features importance values while still

achieving state of the art performance. In the later quarters of this thesis,

we proposed the idea of effectively aggregating various types of molecular
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features and their predictions using ensemble approaches. We used single

task and multi-task learning methods for quantitative and qualitative tox-

icity predictions. Most existing machine learning methods in toxicity pre-

diction utilise only one type of feature representation and one type of neu-

ral network; which essentially restricts their performance. Our motivation

was to effectively aggregate the information extracted from various molecu-

lar features to help in boasting the over all performance across a number of

accuracy metrics. These contributions are published/under revision/under

review [68, 70, 71, 72].

7.2 Joint optimization of Decision trees and shal-

low neural networks

Despite better prediction accuracy, deep neural networks are compute inten-

sive and black box in nature. On the other hand, classical machine learning

methods such as decision trees legs behind accuracy but wins with features

interpretability. We proposed the idea of joint optimization of decision trees

and shallow neural networks for various toxicity prediction tasks. We con-

clude that our hybrid model of a DT and an SNN can be used for toxicity

prediction or any similar tasks to achieve better or near similar accuracy in

comparably lesser time and lesser resources. This technique enabled us to

use certain features for rapid and prior toxicity estimation.

• It used very simple 2D physicochemical features which are easy to be

computed as compared to other complex 3D features.

• Decision trees with gini index are used to select effective number of

features for the shallow neural network.
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• We explored the idea using decisions trees as a coarse filter to feed the

shallow neural network with important features only.

• Individual rankings of these features were used to calculate average

ranking of each feature.

• The algorithm is tested for independent test data sets of three classifi-

cation and four regression toxicity tasks.

• Our method achieves state of the art performance in various classifica-

tion and regression toxicity tasks.

• The computational complexity of various toxicity end points can be re-

duced to a great extent with our hybrid algorithm while keeping the

accuracy level similar or relatively better than the state of the art meth-

ods.

• Using our commutative feature ranking method, we help the chemists

effectively screen out the toxic compounds with few features in hand.

7.3 Features specific performance restriction and

meta ensemble approaches

Molecular data can be expressed in various representations/features. Each

type of feature has its own pros and cons with respect to molecular toxicity

prediction. Usually, single type of features are used with a fixed prediction

model which restricts the performance. In this thesis, we proposed new set

of approaches involving meta ensembling of base model predictions to boost

the overall prediction accuracy of various toxicity tasks. Meta ensembling

also helped in obtaining robust models for a range of accuracy metrics for

cardiotoxicity data sets.
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• We proposed a method which uses various heterogeneous predictors

ensembling to achieve better performance in quantitative toxicity pre-

diction of four benchmark data sets. Thus, eliminating the restriction

of model and data representation bound approach, each of our model’s

predictor vary either on features level, deep learning architecture level

or both. Our motivation was to make a single model that utilizes dif-

ferent types of feature and architecture to obtain collective performance

that could go beyond the individual performance of a single predictor

type. We also performed experiments which showed that the heteroge-

neous ensembling method performs better than ensembling the homo-

geneous predictors.

• We introduced a novel two step training framework for toxicity predic-

tions. In the first step of training, base individual models are trained to

produce meta features. In the second step of training, a separate fully

connected neural network is trained on the meta features produced by

the base models to predict the final level or class of toxicity. In each

step of training, a separate validation set was used for optimization.

We applied our proposed framework on for quantitative toxicity end

points such as LD50, IGC50, LC50 and LC50-DM. We also proposed a

novel method of multi-task optimization for both base and meta en-

sembling model. In order to test the robustness our proposed frame-

work, we predicted the hERG channel blockade property of molecules

and achieved the state of the art performance over a range of classifi-

cation metrics. Our framework is a robust method for classifying small

drug-like molecules as hERG blockers and hERG non blockers.
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7.4 Future directions

In this thesis, each main chapter deals with a different kind of molecular tox-

icity problem and specific respective approaches. Thus, this research leads

to a number of possible future directions to solve these problems more effi-

ciently.

• In this thesis, we developed an algorithm based on joint optimization of

decisions trees and shallow neural networks for toxicity prediction. The

important features are selected by gini index of decisions trees which

are then used in training process of shallow neural network. These fea-

tures are effective in toxicity prediction but are not well optimized. In

future, heuristics methods instead of gini index can be used to select

optimized number of features to train shallow neural network. More-

over, this algorithm can be extended to activities other than toxicity

predictions such as absorption, distribution, metabolism and excretion.

It would be interesting to explore the model agnostic interpretability

methods to obtain the feature importance values as well.

• In case of heterogeneous predictors, we used simple averaging tech-

nique to obtain the final output. In future work, It will be interesting

to use max voting ensemble instead of simple averaging of the outputs.

For regression tasks, molecular chemistry inspired threshold can be de-

fined for maximum voting strategy.

• For meta ensemble approaches using in this thesis, we used two steps

training strategy. In the first step, base models are trained. In the sec-

ond step, the trained base models are used as it is while training the

meta ensemble model. In future, it would be very interesting to train

both base and meta models in an end to end fashion by optimizing both

in one go. Moreover, various ways of multi-tasking complimented with
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meta ensemble learning can be explored to find out the most optimum

method for any specific toxicity prediction task.

In the future, we plan to continue our investigation to improve the effec-

tiveness and prediction performances along with the interpretability of deep

learning in molecular toxicity predictions.
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