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Abstract  
 
The main problem posed by Polarimetric Synthetic Aperture Radar (PolSAR) image classification in remote 
sensing is the ability to develop classifiers that can substantially discern the different classes inherent in natural 
and man-made targets. Emphasis has shifted from the use of conventional classifiers to modern non-parametric 
classifiers such as the Artificial Neural Network (ANN) and Support Vector Machine (SVM); and most recently 
the hybrid Deep Neural Network (DNN) which is a fusion of Deep Learning (DL) and ANN. This research 
therefore presents the novel application of Deep Support Vector Machine (DSVM) which is a fusion of DL and 
SVM to PolSAR image classification. Two PolSAR images of Flevoland region in Netherlands, and Winnipeg in 
Canada are used as test beds for the experiment.  The Lee filter is used to filter the images to suppress the speckle 
noise in the images. The Pauli decomposition is applied to decompose the images into |𝑆𝑆𝐻𝐻𝐻𝐻 + 𝑆𝑆𝑉𝑉𝑉𝑉|, |𝑆𝑆𝐻𝐻𝐻𝐻 − 𝑆𝑆𝑉𝑉𝑉𝑉|, 
|𝑆𝑆𝐻𝐻𝑉𝑉|  polarimetric channels. Then the Gray Level Co-occurrence Matrix (GLCM) texture feature for |𝑆𝑆𝐻𝐻𝐻𝐻 + 𝑆𝑆𝑉𝑉𝑉𝑉|, 
|𝑆𝑆𝐻𝐻𝐻𝐻 − 𝑆𝑆𝑉𝑉𝑉𝑉|, |𝑆𝑆𝐻𝐻𝑉𝑉| are extracted based on correlation, contrast, energy, and homogeneity statistics, using GLCM 
directions 00, 450, 900, and 1350 with an offset distance of 60. To enhance the efficiency of the model 8, 16, 32, 
64, 128, and 256 quantization levels are explored. The DSVM classifier is implemented with four kernel function: 
Exponential Radial Basis Function (ERBF), Gaussian Radial Basis Function (GRBF), neural, and polynomial.  
The first set of results is a comparison of the DSVM and SVM. The result of Flevoland image for ERBF, GRBF, 
neural, and polynomial kernels are 99.17 (73.39), 99.32 (74.62), 98.64 (71.28), and 99.34 (77.21) respectively; 
for the Winnipeg image for ERBF, GRBF, neural, and polynomial kernels are 98.65 (72.68), 98.67 (73.54), 98.27 
(70.15), and 99.46 (75.03) respectively. The second set of results is a comparison of DSVM, SVM, DNN, 
Gaussian Mixture Model (GMM), K Nearest Neighbour (KNN), and K Means (KM) classifiers; the results for 
Flevoland image for DSVM, SVM, DNN, GMM, KNN, and KM are 99.12, 74.13, 96.29, 75.06, 75.85, and 21.43 
respectively; while the results for Winnipeg image for DSVM, SVM, DNN, GMM, KNN, and KM are 98.76, 
72.85, 95.64, 73.20, 73.91, and 25.60 respectively. Since the Kappa coefficient is presumed to be a more accurate 
measure for accuracy estimation, it is used to evaluate the performances of all the models. The computed Kappa 
coefficients for of DSVM, SVM, DNN, GMM, KNN, and KM for Flevoland are 92.45, 70.71, 88.76, 68.59, 68.62, 
and 18.89 respectively; while the computed Kappa coefficients for DSVM, SVM, DNN, GMM, KNN, and KM 
for Winnepeg are 92.45, 70.71, 88.76, 68.59, 68.62, and 18.89 respectively. Based on the metrics used to evaluate 
the performances of the experiments; the results show that the DSVM outperformed the other classifiers. The high 
accuracy obtained with the DSVM shows it is a state-of-the-art algorithm for PolSAR image classification and a 
significant progress in the latest of DL applications. 
 
Keywords: Remote sensing; PolSAR image; deep support vector machine; gray level co-occurrence matrix; 
image classification   
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1. Introduction 
 
Polarimetric Synthetic Aperture Radar (PolSAR) is an enhanced version of the basic Synthetic Aperture Radar 
(SAR) system; by transmitting and receiving in multiple polarizations it can better discern unique and distinct 
features of natural and man-made targets (Chen et al., 2014; Shang et al., 2019; Ferreira et al. 2021). The advent 
of PolSAR data has immensely improved remote sensing application to land cover mapping because it can present 
different polarizations for different characteristics of land surfaces that are vital for the categorisation of the 
different land cover types (Reisi-Gahrouei et al. 2019; Imani, 2021). PolSAR transmits and receives 
electromagnetic waves in diverse polarimetric states and thereby able to deliver high-resolution remotely sensed 
imagery in all weather conditions (Coelho et al., 2018; Liu et al., 2021). PolSAR images have wide range 
applications in mapping natural and man-made targets, for example, land cover and land use, topography, 
oceanography, geology, forestry, oil spill, flooding, urban change etc. (Wurm et al., 2017; Sui et al., 2018; Gui et 
al. 2021). PolSAR images are degraded by speckle noise caused by coherent imaging mechanism that affects the 
discrimination of the classes of the target (Mahdianpari et al., 2019; Yahia et al., 2021). The PolSAR images also 
have a complex data format when compared with the single polarization SAR images (Du et al., 2015; Ferreira et 
al., 2021). These drawbacks make the classification of PolSAR images extremely cumbersome (Zhang, 2008; 
Zhou et al., 2016; Wang et al., 2021). The classification of PolSAR images is usually challenging (Han et al., 
2020; Parikh et al., 2020; Shang et al., 2020; Gopal Singh et al., 2021).  To overcome these challenges, many 
prominent machine learning algorithms like Artificial Neural Network (ANN), Support Vector Machine (SVM), 
K Means (KM), K Nearest Neighbour (KNN), Gaussian Mixture Model (GMM), Ensemble Learning (EL), Linear 
Discriminative Laplacian Eigenmaps (LDLE) have been applied to PolSAR image classification (Attarchi, 2020; 
Parikh et al., 2020; Wang et al., 2021).  
     The processing of the PolSAR image commences from the despeckling of the image using speckle filters 
(Mullissa et al., 2021). The scalar and adaptive filters are basically the two categories of speckle filters (Joel & 
Sivakumar, 2013). The scalar filters include the mean and median filters. In the mean filter the pixel value is 
replaced by the mean value of the intensity of the pixels in the mask window (Gonzales & Woods, 2002); while 
in the median filter the centre pixel is replaced by the median value of all the pixels (Loupas et al., 1989). The 
mean and median filters hence yield a less blurring image and therefore preserve the image edges. Prominent 
adaptive filters include Lee, Frost, Kuan, and Weiner filters. The Lee filter is based on the multiplicative speckle 
model capable of using local statistics to preserve edges and features. Lee filter achieves image denoising by 
lowering the variance over the image area (Lee, 1980; Lee, 1981). In the Frost filter, a weighted sum of the values 
within the moving kernel is replaced by the pixel of interest with a weighted sum of the values. The Frost filter 
being an adaptive and exponentially-weighted averaging filter is based on the coefficient of variation, which can 
be expressed as the ratio of the local standard deviation to the local mean of the noisy image. The Frost filter 
assumes the multiplicative noise and stationary noise statistics such that the weighting factors decrease with 
distance from the pixel of interest. In order words, the weighting factors increase for the central pixels as variance 
within the kernel increases (Frost et al., 1982). The Kuan filter transforms multiplicative model into signal 
dependent additive model and thereafter applies the minimum mean square criterion to the model (Kuan et al., 
1985). The Wiener filter denoises the image by minimising the error between the estimated signal and the ideal 
signal. Wiener filter denoises the image by computing the local image variance. The efficiency of the Wiener 
filter increases when the computed local variance of the image is large, and its efficiency decreases when the 
computed local variance is small (Wiener, 1949; Jain, 1989; Gonzalez & Woods, 2008).  
     Polarimetric decomposition is a common method of extracting information from the PolSAR data. Before 
texture features are extracted from PolSAR images they are decomposed into different polarimetric channels   
(Ponnurangam & Rao, 2018; Shi et al., 2021). PolSAR images can be used to map the environment through 
measurements of polarimetric properties of natural and man-made scatters (Nguyen et al., 2021; Ramya & Kumar, 
2021). PolSAR imaging uses the scattering matrix to identify the scattering behaviour of real-world objects after 
their interaction with the electromagnetic wave. This scattering matrix is represented by a combination of 
horizontal and vertical polarization states of transmitted and received signals (Mahdianpari et al., 2018). To 
process the PolSAR image, this scattering matrix is decomposed into smaller components. This process of 
decomposing PolSAR images is called “polarimetric decomposition.” The decomposition of the scattering matrix 
can be done using notable PolSAR decomposition methods. There are coherent and incoherent methods of 
decomposition. Examples of coherent decomposition methods are Pauli decomposition, Krogager decomposition, 
and Cameron decomposition. Examples of incoherent decomposition methods are Freeman decomposition, 
Phenomenological Huynen decomposition, and eigenvector-eigenvalue based decomposition (An et al., 2011; 
Ahishali et al., 2021).  
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     The products of polarimetric decomposition are images used by texture models to derive statistical vector data 
of the PolSAR image (Kourgli et al., 2012; Liu et al., 2021; Zhai et al., 2021). Prominent examples of texture 
models are Gray Level Co-Occurrence Matrix (GLCM) (Haralick et al., 1973), Laplace filters (Marr & Hildreth, 
1980) and Granulometric analysis (Mering & Chopin, 2002). GLCM is a matrix that depicts different 
combinations of gray levels located in an image (Numbisi et al., 2019). The GCLM is used to extract textures that 
represent different regions in the image for better image interpretation (Soh  & Tsatsoulis, 1999; Özcan et al., 
2020). Laplace filters use a convolution to detect edges of objects in an image; typically, areas in the image with 
high texture with considerable high spatial frequency (Kupidura, 2019). Granulometric analysis is based on a 
classical sequence of opening and closing operations that measure the differences between successive images 
(Salazar et al., 2020). 
     Using the extracted textures features, conventional parametric statistical classifiers such as KM, KNN, GMM 
have been used to classify PolSAR images. However, these techniques mainly rely on the supposition that the 
probabilities of class memberships can be modelled by a specific probability distribution function (Fränti & 
Sieranoja, 2018; Tavallali et al., 2021). This assumption compromises the performance of the algorithm. Recent 
machine learning algorithms such as ANN (Rollet et al., 1998; Del Frate et al., 2003; Xia et al., 2018; Araujo et 
al., 2020; Linka et al., 2021) and SVM (Cortes & Vapnik, 1995) have overcome this shortcoming since they are 
non-parametric and need no requirement for assumptions for statistical frequency distributions. These non-
parametric models can yield far higher accuracies than their counterpart conventional parametric methods 
(Alberga et al., 2008; McNairn et al., 2009; Waske & Braun, 2009). Traditional classifiers such as KM, KNN, 
GMM have been applied to PolSAR image classification. Gadhiya and Roy (2019) proposed a fast PolSAR image 
classification algorithm that utilised the global KM algorithm and the superpixel-driven optimized Wishart 
network. KM was crucial for deriving the optimal cluster centres within each class. Richardson et al. (2010) 
applied the KNN graph technique for PolSAR image classification. This technique was used to resolve the 
nonlinear structures inherent in a typical PolSAR data. Gao et al. (2014) applied a complex GMM and Wishart 
mixture model for land cover classification of PolSAR Images from the RADARSAT-2 sensor of the Canadian 
Space Agency (CSA), the AIRSAR sensor of the Jet Propulsion Laboratory (JPL), and the EMISAR sensor of the 
Technical University of Denmark (DTU). Because of the complexity of PolSAR images contemporary classifiers 
like Artificial Neural Network (ANN) and Support Vector Machine (SVM) top the list of contemporary classifiers 
proven to be robust for SAR image classification. Hara et al. (1994) applied the ANN to PolSAR image 
classification. The results were compared to those of the conventional methods. The results showed that the ANN 
outperformed the conventional classifiers. Fukuda and Hirosawa (2001) proposed an SVM based classification 
scheme of land cover from PolSAR data using the polarimetric feature vectors, the intensity of each channel, 
complex correlation coefficients and textural information were the input into the SVM. The model yielded 
satisfactory classification results. Rostami and Kaveh (2021) introduced a hybrid biogeography-based 
optimization SVM to classify PolSAR images of RADARSAT 2 in band C acquired from San Francisco, USA, 
by feature minimization to maximize classification accuracy. Three steps were implemented: pre-processing, 
feature selection and classification. It was found that the proposed method outperformed other algorithms.  
     Current trends in machine learning have demonstrated significant improvement in classification accuracy by 
integrating Deep Learning (DL) and contemporary classifiers (Lussier et al., 2020; Kotsiopoulos et al., 2021). In 
recent times DL has revolutionised image classification/pattern recognition (Milošević et al., 2020; Shao et al., 
2021). The fusion of DL and ANN is largely called “Deep Neural Network (DNN).” The DNN has been highly 
effective in PolSAR image classification than the traditional ANN (Liu et al., 2018; Zhang et al., 2018; Shen et 
al., 2020; Boulila et al., 2021).  Zhou et al. (2016) investigated the efficacy of Deep Convolutional Neural 
Network (DCNN) in supervised classification of PolSAR images of San Francisco, USA and Flevoland, The 
Netherlands. The model outputs were significantly improved. Geng et al. (2017) applied Deep Supervised and 
Contractive Neural Network (DSCNN) for PolSAR image classification. The texture features were extracted using 
GLCM, Gabor, and histogram of oriented gradient descriptors. The model yielded improved classification 
performance when compared with related known techniques. Chen and Tao (2018) implemented the classification 
of PolSAR image using polarimetric feature driven DCNN. The new model incorporated expert knowledge of 
target scattering mechanism interpretation and polarimetric feature mining to assist the polarimetric feature driven 
DCNN in achieving both training efficiency and classification accuracy. Classical roll-invariant polarimetric 
features and hidden polarimetric features in the rotation domain were used to improve the robustness of the new 
model. They found that the proposed model outperformed the convolutional ANN model. Ma and Zhu (2019) 
presented a novel land cover classification scheme for a PolSAR image using the Convolutional Neural Network 
(CNN) and superpixel. The new model used both the intensity and phase information to determine the label of 
each pixel based on the inherent spatial relations. Then the superpixel generating algorithm is used to determine 
the superpixel representation of Pauli decomposition image as well as the contour information that showed the 
boundary of each category. The final map label is a fusion of the original label map and contour information. The 
new model was able to accomplish enhanced performance by correcting label misclassification. Shang et al. 
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(2020) proposed a new network, the densely connected and Depthwise Separable convolutional Neural network 
(DSNet) for PolSAR image classification to improve the performance of the traditional CNN. The DSNet model 
achieved better results when compared with the traditional method on three different datasets. They inferred that 
apparently, conventional methods such as the CNN are restricted because they do not consider the spatial 
neighbourhood information that may lead to the  misclassification of target labels. Ahishali et al. (2021) 
implemented the classification of PolSAR images using compact CNNs. The proposed method helped to mitigate 
the problem of “curse of dimensionality” by applying a compact and adaptive implementation of CNNs using a 
sliding-window classification approach. The advantages of the new model are: (i) there was no need for an 
extensive feature extraction procedure (ii) computational efficiency (iii) the model required a smaller window size 
to implement classification. The model achieved a range between 92.33–99.39% classification accuracy.  
     Notably, DL frameworks are emerging as more sophisticated routines and PolSAR observations have 
necessitated new DL hybrid methods. The deep learning techniques so far applied to PolSAR image classification 
are ANN based. Therefore, in the quest for improving PolSAR image classification accuracy, this work seeks to 
experiment a novel integration of DL and SVM, called “Deep Support Vector Machine” (DSVM) for PolSAR 
image classification. The input into the DSVM will be the extracted feature vectors obtained from the GLCM via 
Pauli decomposition. The concept of DSVM is new, evolving, and at its infancy. The application of the hybrid 
DSVM for hyperspectral image classification has recently been demonstrated by Okwuashi and Ndehedehe 
(2020), highlighting its efficacy as a state-of-the art routine, amongst other DL hybrid formations. While spectral 
information can directly be used for hyperspectral image classification, the PolSAR image cannot easily be 
classified using direct spectral data because it is often degraded by speckles present in the image and also its 
complex data nature. It is expected that PolSAR image classification will pose a considerable challenge when 
compared to hyperspectral image classification. We argue that overcoming this challenge requires the 
decomposition of the PolSAR image and the textural extraction of the PolSAR image features. The hybrid DSVM 
imitates the DNN that consists of numerous hidden layers. The numerous hidden layers are connected by series 
of weights, which are replaced by several SVM functions being initialised with the SVM regularisation parameter. 
The optimal DSVM is outputted by updating the connecting SVM functions in the hidden layer. GLCM being a 
renounced feature texture model has found application in several PolSAR image applications. More recently, 
Parida and Mandal (2020) retrieved the textural measures from a decomposed ALOS L‑band PolSAR image in 
Western parts of Mizoram, Northeast India using the GLCM. Here, we present for the first time the classification 
of PolSAR imagery using Deep Support Vector Machine (DSVM) based on Gray Level Co-occurrence Matrix 
(GLCM) texture feature. Two PolSAR images of Flevoland regions in Netherlands and Winnipeg in Canada are 
used as experimental test beds for this study. To assess the robustness of the hybrid DSVM model, its results are 
compared against those of the SVM, DNN, GMM, KNN, and KM.  
 
 
2. Models  
 
2.1        Filtering, image decomposition and texture feature extraction models  
 
2.1.1     Lee filter 
 
Lee filter is based on the minimum square error criterion that uses the local statistics technique. By applying the 
Lee filter the speckle noise is reduced while the edges in the image are preserved. The Lee filter reduces the 
speckle noise by applying a spatial filter to every pixel using the following formula, 
 
 )( MCM LMPKLLF ∗−∗+= .                                                                                                                          (1) 
 
Where ))((( VMMV LMMMVLLLMK ∗∗∗∗∗=  and NLooksMV 1= . PC is the centre pixel value of 

window. ML is the local mean of filter window. VL is the local variance of filter window. M is the multiplicative 
noise mean. MV is the multiplicative noise variance. NLooks is the number of looks (Lee, 1980; Lee, 1981). 
 
2.1.2     Pauli decomposition 
 
Pauli decomposition is one the methods used to analyse coherent targets. Coherent decomposition handles the 
decomposition of the scattering matrix, while incoherent decomposition handles the decomposition of the 
covariance matrices.  Pauli decomposition is used to extract the polarisation characteristics of objects (Wei et al., 
2014; Zhai et al., 2021). The polarimetric information in a single SAR image in the measured complex scattering 
matrix [𝑆𝑆] using Pauli decomposition is expressed as a linear combination of the scattering responses of simpler 
objects (Zhang et al., 2008; Imani, 2021). Pauli decomposition represents the measure of scattering in the Pauli 
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basis, considering an orthogonal linear (H,V) basis (Liu et al., 2021). The Pauli basis {[𝑆𝑆]𝐴𝐴, [𝑆𝑆]𝐵𝐵, [𝑆𝑆]𝐶𝐶 , 𝑆𝑆𝐷𝐷} can be 
expressed by the following 2 X 2 matrices, 
 
 
[𝑆𝑆]𝐴𝐴 = 1

√2
�1 0
0 1�                                                                                                                                                    (2) 

 
[𝑆𝑆]𝐵𝐵 = 1

√2
�1 0
0 −1�                                                                                                                                                 (3) 

 
[𝑆𝑆]𝐶𝐶 = 1

√2
�0 1
1 0�                                                                                                                                                    (4) 

 
[𝑆𝑆]𝐷𝐷 = 1

√2
�0 −1
1 0 �                                                                                                                                                (5) 

  
Using matrices 2, 3, and 4 the Pauli basis can be reduced to basis, 
 
 {[𝑆𝑆]𝐴𝐴, [𝑆𝑆]𝐵𝐵, [𝑆𝑆]𝐶𝐶}                                                                                                                                                   (6) 
 

Therefore, a given scattering matrix [𝑆𝑆] can be expressed as, 

[𝑆𝑆] = �𝑆𝑆𝐻𝐻𝐻𝐻 𝑆𝑆𝐻𝐻𝑉𝑉
𝑆𝑆𝑉𝑉𝐻𝐻 𝑆𝑆𝑉𝑉𝑉𝑉

� =∝ [𝑆𝑆]𝐴𝐴 + 𝛽𝛽[𝑆𝑆]𝐵𝐵 + 𝛾𝛾𝑆𝑆𝐶𝐶                                                                                                         (7) 

Where,  

𝛼𝛼 = 𝑆𝑆𝐻𝐻𝐻𝐻+𝑆𝑆𝑉𝑉𝑉𝑉
√2

                                                                                                                                                           (8) 

𝛽𝛽 = 𝑆𝑆𝐻𝐻𝐻𝐻−𝑆𝑆𝑉𝑉𝑉𝑉
√2

                                                                                                                                                           (9) 

𝛼𝛼 = √2𝑆𝑆𝐻𝐻𝑉𝑉                                                                                                                                                           (10) 

From equations 8, 9, and 10 the SPAN of [𝑆𝑆] can be written as,  

SPAN =  |𝑆𝑆𝐻𝐻𝐻𝐻|2   +  |𝑆𝑆𝑉𝑉𝑉𝑉|2   +  2|𝑆𝑆𝐻𝐻𝑉𝑉|2   =  |𝛼𝛼|2   +   |𝛽𝛽|2   +  |𝛾𝛾|2                                                                   (11)   

The polarimetric information of [𝑆𝑆] is expressed by simply the combination of intensities  

|𝑆𝑆𝐻𝐻𝐻𝐻|2, |𝑆𝑆𝑉𝑉𝑉𝑉|2, and 2|𝑆𝑆𝐻𝐻𝑉𝑉|2 in a single image Red-Green-Blue (RGB) image, though the most used codification 
of RGB is is normally expressed in terms of equations 12, 13, and 14 as, 
 
|𝛼𝛼|2 = Red                                                                                                                                                            (12) 

|𝛽𝛽|2 = Green                                                                                                                                                        (13) 

|𝛾𝛾|2 = Blue                                                                                                                                                           (14) 

Pauli decomposition can yield a colour image to visualise PolSAR data based on the three primary scattering 
mechanisms. By introducing a vector 𝐾𝐾, Pauli decomposition can be described as, 
 
𝐾𝐾 = [𝑆𝑆𝐻𝐻𝐻𝐻 + 𝑆𝑆𝑉𝑉𝑉𝑉 𝑆𝑆𝐻𝐻𝐻𝐻 − 𝑆𝑆𝑉𝑉𝑉𝑉 2𝑆𝑆𝐻𝐻𝑉𝑉].                                                                                                               (15) 
 
Where 𝐾𝐾denotes coherent polarimetric vector,  𝑆𝑆𝐻𝐻𝐻𝐻, 𝑆𝑆𝐻𝐻𝑉𝑉, 𝑆𝑆𝑉𝑉𝐻𝐻, 𝑆𝑆𝑉𝑉𝑉𝑉 are the complex backscattering coefficients of 
the four polarised channels. The representation in a RBG image is given as: Red = |𝑆𝑆𝐻𝐻𝐻𝐻 + 𝑆𝑆𝑉𝑉𝑉𝑉|, Green = 
|𝑆𝑆𝐻𝐻𝐻𝐻 − 𝑆𝑆𝑉𝑉𝑉𝑉|, and Blue = |𝑆𝑆𝐻𝐻𝑉𝑉| (Aghababaee et al., 2013).  
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2.1.3     Gray level co-occurrence matrix 
 
GLCM was introduced by Haralick et al. (1973). GLCM is a matrix that represents the distribution of co-occurring 
grayscale levels in an image at a given offset (Haralick et al., 1973; Khojastehnazhand & Ramezani, 2020). The 
GLCM is a statistical method of depicting the texture of an image by considering the spatial relationship of the 
image pixels (Delibaş & Arslan, 2020). The GLCM is a second order statistical tool used for characterising the 
texture of an image (Zhang et al., 2020; Khan et al., 2021). These statistical measures are extracted from the image 
by characterising the texture of the image based on the calculation of pairs of a pixel with specific values and a 
specified relationship reoccurring in an image. The GLCM is calculated by recording how often pairs of pixel 
with specific values and in a specified spatial distance occur within an image. We can create the GLCM for an 
image with p pixel values, therefore the pp×  GLCM G can be defined over an mn× image I with an offset 

x∆ , y∆ as, 
 

∑∑
= =

∆∆


 =∆+∆+=

=
n

i

m

j
yx otherwise

jyyxxIandiyxIif
jiG

1 1 ,0
),(),(,1

),( .                                   (16)  

 
Where i  and j  denote the pixel values, x  and y represent the spatial positions in the image I , the offsets ( x∆
, y∆ ) represent the spatial relation for which the matrix is calculated, and ),( yxI  represent the pixel value at 
pixel ),( yx . The operation of the GLCM can be simplified by simply applying the distance d and an angle θ  
instead of an offset ( x∆ , y∆ ). The resulting GLCM is,  
 
 



























−−⋅⋅⋅−−
⋅⋅⋅
⋅⋅⋅
⋅⋅⋅
−⋅⋅⋅
−⋅⋅⋅

=

)1,1()1,1()0,1(

)1,1()1,1()0,1(
)1,0()1,0()0,0(

NNpNpNp

Nppp
Nppp

GCLM                                                                  (17) 

 
 
     Our PolSAR image is an 8 bit image (28) that can store 256 (0-255) possible colours or gray levels. The GLCM 
describes the conditional joint probabilities of all pairwise combinations of the gray levels ),( ji  restricted by 
inter-pixel distance or offset distance d  and orientation θ  in an nn× spatial window. The common four angular 
orientations of the GLCM are 0p , 45p , 90p , and 135p  (θ = 00 , 450, 900, 1350) (Figure 1). The distances of these 
angular orientations are given as the following, 
 
θ = 00  : ⇔ ]0[ d ⇔ 10 ; 20 ; 30 ; 40 ; ⋅⋅⋅  
θ = 045  : ⇔ ][ dd− ⇔ 11− ; 22− ; 33− ; 44− ; ⋅⋅⋅  
θ = 090  : ⇔ ]0[ d− ⇔ 01− ; 02− ; 03− ; 04− ; ⋅⋅⋅  
θ = 0135  : ⇔ ][ dd −− ⇔ 11 −− ; 22 −− ; 33 −− ; 44 −− ; ⋅⋅⋅  
 
Figure 1 shows the spatial relationships of pixels defined by the array of offsets. Figure 2a is first order image, 
while Figures 2b, 2c, 2d, 2e are second order images. Given a hypothetical 2-bit (22) image with quantization level 
of 4 (0-3 gray levels) (Figure 2a), let us compute the GLCM for θ = 00 , 450, 900, and 1350 (Figure 2). For 00 
(Figure 2b) in the first row there are three instances of the (0,0) therefore its value is 3. There are no instances of 
(0,1), (0,2), and (0,3) therefore their value is 0. Row 2 to row 4 were computed in like manner. For 450 (Figure 
2c) in the first row there are two instances of (0,0) therefore its value is 2. There are is one instance of (0,1) 
therefore its value is 1. There are no instances of (0,2) and (0,3). Row 2 to row 4 were computed in like manner. 
For 900 (Figure 2d) in the first row there two instances of (0,0) therefore its value is 2. There are two instances of 
(0,1) therefore its value is 2. There are no instances of (0,2) and (0,3) therefore their values are both 0.  Row 2 to 
row 4 were computed in like manner. For 1350 (Figure 2e) in the first row there is one instance of (0,0) therefore 
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its value is 0. There are two instances of (0,1) therefore its value is 2. There are no instances of (0,2), and (0,3) 
therefore their values are both 0. Row 2 to row 4 were computed in like manner.  
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The following statistics were used to extract vector data from the computed GLCM: (i) correlation (ii) contrast 
(iii) energy, and (iv) homogeneity, 
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where ∑ ∑=

i j
jipii ),(µ , ∑ ∑−=

i j
i jipii ),()( 2µσ  , ∑ ∑=

j i
jipij ),(µ ,  

and ∑ ∑−=
j i

j jipjj ),()( 2µσ . 

 

 

Pixel of interest  00  ]0[ d  

 045  ][ dd−   090  ]0[ d−   0135  ][ dd −−  

1 1 1 0 0 
3 0 0 0 0 
3 2 3 2 2 
3 1 1 1 1 
3 1 1 2 3 

 

 0 1 2 3 . . . 255 
0 3 0 0 0     
1 1 4 1 0     
2 0 0 1 2     
3 1 2 2 0     
.         
.         
.         

255         
 

 0 1 2 3 . . . 255 
0 2 1 0 0     
1 0 2 2 1     
2 2 1 0 0     
3 2 2 1 0     
.         
.         
.         

255         
 

:00  :450  

 0 1 2 3 . . . 255 
0 2 2 0 0     
1 0 2 3 1     
2 3 1 0 0     
3 1 2 0 2     
.         
.         
.         

255         
 

 0 1 2 3 . . . 255 
0 1 2 0 0     
1 0 1 2 3     
2 2 1 0 1     
3 1 1 0 0     
.         
.         
.         

255         
 

:900  :1350  

jn  

in  

jn  

jn  jn  

in  

in  
in  

(a) (b) (c) 

(d) (e) 

Figure 1: Spatial relationship of pixels and array of offsets. 

Figure 2: Illustration on how to compute the GLCM from an image: (a) hypothetical image 
(b) 0o GLCM (c) 45o GLCM (d) 90o (e) 135o GLCM.  
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The correlation measures the joint probability occurrence of the specified pixel pairs with a range of [-1 1]. The 
correlation returns a measure of how correlated each pixel is with its neighbours. The contrast also known as 
variance and inertia measures the local variations in the gray level co-occurrence matrix with a range of [0 
(size(GLCM,1)-1)^2]. The contrast returns a measure of the intensity of contrast between each pixel and its 
neighbours. Energy also known as uniformity or the angular second moment computes the sum of squared 
elements in the GLCM with a range [0 1]. Energy returns a measure of the sum of squared elements in the GLCM. 
Homogeneity measures the closeness of the distribution of the GLCM elements to the GLCM diagonal with a 
range of [0 1]. Homogeneity returns the measure of the closeness of how the elements in the GLCM are distributed 
with respect to the GLCM diagonal (Wang et al., 2020). For computational efficiency and enhancement in 
classification accuracy our original 8-bit (28) image (0-255) gray levels can be quantized to other levels; this 
process is called quantization. The quantization level for (0-255 gray levels) is 256. Our 8-bit image can be 
quantized to 7-bit (27) (0-127), 6-bit (26) (0-63), 5-bit (25) (0-31), 4-bit (24) (0-15), and 3-bit (23) (0-7) images. 
The quantization levels for 7-bit, 6-bit, 5-bit, 4-bit, and 3-bit images are 128, 64, 32, 16 and 8 respectively. The 
size of the computed GLCM is equal to the quantization level of the image. For example Figure 2a is an image of 
(0-3) gray levels, therefore its quantization level is 4 because it consists of four elements 0, 1, 2, and 3. 
Automatically a 4 X 4 GLCM image (Figure 2b) will be computed from Figure 2a. Conventionally 8, 16, 32, 64, 
128, 256 quantization levels are usually used in remote sensing image classification.  
 
 
2.2       Deep support vector machine model   
 
Given a binary problem that the training set has n-training samples, that is, ),(),...,,(),,( 2211 nn yxyxyx , where 

N
ix ℜ∈  is an N dimensional vector that belongs to one of classes }1,1{ +−∈iy   SVM will classify this binary 

problem using a linear hyperplane (Cortes & Vapnik, 1995;  Guyon et al., 2002; Maulik & Chakraborty, 2017; 
Pirra & Diana, 2019). The given binary classification problem can be separated using a linear decision function, 

 
bxwxf +⋅=)(                                                                                                                                                   (22) 

 
where Nw ℜ∈ denotes a vector that determines the orientation of the desired hyperplane required for the 
separation, and ℜ∈b  is the bias. The optimal hyperplane required to separate the two objects is, 
 

1)( ≥+⋅ bxwyi                                                                                                                                                    (23) 
 
By solving the following constrained optimization problem or primal problem, the solution to this problem can 
be found, 
 

minimise ∑
=

+⋅
n

i
iCww

12
1 ξ                                                                                                                                  (24) 

 
subject to: ii bxwy ξ−≥+⋅ 1)( , 0>iξ , and for ni ,...,1=∀ ; where C , ∞<<C0 , is the penalty value or 

regularisation parameter; while iξ  are the slack variables (Zendehboudi et al., 2018). For a nonlinear case the 
optimisation problem is given as,  
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=
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n
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1
0α , and, Ci ≤≤α0 , for ni ,...,1= . The resulting decision function is, 

 

( ) 







+= ∑

=

n

i
iii bxxKysignxf

1
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0
iα  is the support vector and ),( xxK i  is the kernel function or kernel trick (Okwuashi  & Ndehedehe, 2017). 

DSVM can be created by using a multi-layer architecture with multiple hidden layers (Figure 3).  
 
 
 
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 

1X , 2X , …, nX  are the input layer data points. The multiple hidden layers consist 11SVM , 12SVM , …, kSVM1

, 21SVM , 22SVM , …, kSVM 2 , and 1nSVM , 2nSVM , …, nkSVM ; while )(1 XF , )(2 XF ,…, )(XFn  denote the 

output layer points. For 1X , the output for training  11SVM , 12SVM , …, kSVM1  is )(1 XF . For 2X , the output 

for training  21SVM , 22SVM , …, kSVM 2  is )(2 XF . For nX , the output for training  1nSVM , 2nSVM , …, 

nkSVM  is )(XFn . The network weights are represented as )(xf . All the various )(xf  are evaluated in the 
hidden layers, which are multiple layers that connect all the input neurons with the output neurons. The total net 
input to each hidden layer neuron can be expressed as, 
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                                                                                  (27) 

 
The logistic activation function is used to compute the output for each input neuron as,  
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Figure 3: Architecture of the DSVM. 
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The output of the hidden layer neurons are used as input to compute the output layer neurons 

noo netnet 11 ...,
1

, 

noo netnet 22 ...,
1

, and 
nonon netnet ...,

1
 as,  
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     For simplicity let us consider only the case of 

noo netnet 11 ...,
1

. Its output can be computed with the logistic 
activation function as,  
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     The error for computing the output 1ooutput for only 1X  , can be calculated by subtracting the computed output  

1ooutput  from the known value of )(1 XF  as,  
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In like manner the total error can be computed by summing all the computed errors 1oE , 2oE ,…, onE  as,  
 

onoototal EEEE +⋅⋅⋅++= 21 .                                                                                                                        (34) 
 
     By applying the method of backpropagation we can update each )(xf  in the network so that they will ensure 
that the actual output becomes closer to the target output )(XF , thereby minimising the error for each of the 
output neurons as well as the entire network. For example, )(

111 xf can be computed as the gradient of totalE∂  as,  
 

 
                                                                                                    (35) 
  
 

The updated function )()(
11 xf new  can be computed as,  
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Where λ  denotes the learning rate for adjusting the weights of the network. In like manner all the weights in the 
network that is )(xf  will be updated and the process will be repeated iteratively from equation 12 until totalE  
becomes zero or infinitesimal (Okwuashi & Ndehedehe, 2020).  
 
 
3.         Implementation 
 
The first experiment was an L-band fully PolSAR image of Flevoland region in Netherlands, obtained by AIRSAR 
system of NASA laboratory in 1989. The SAR image has a resolution of range and azimuth of 6.7m and 12.1m 
respectively, and scene size of 750 X 1024 pixels. It is a farmland PolSAR data that consist of 11 classes as 
follows: water, forest, wheat, rapeseed, beet, grassland, potato, alfalfa, bare land, stem bean, and pea. The Pauli 
RGB image and Ground truth are shown in Figures 4a and 4b. 
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                 (a)                                                   (b) 

Figure 4: (a) Pauli RGB image of Flevoland. (b) Ground truth of Flevoland.  
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      In order to suppress the speckle noise in the image, a 5 X 5 window size Lee filter was applied. The Pauli 
RGB image of the filtered image is shown in Figure 5. Using Pauli decomposition the image was decomposed 
into |𝑆𝑆𝐻𝐻𝐻𝐻 + 𝑆𝑆𝑉𝑉𝑉𝑉|, |𝑆𝑆𝐻𝐻𝐻𝐻 − 𝑆𝑆𝑉𝑉𝑉𝑉|, |𝑆𝑆𝐻𝐻𝑉𝑉|  polarimetric channels shown in Figure 6. GLCM texture features for 
|𝑆𝑆𝐻𝐻𝐻𝐻 + 𝑆𝑆𝑉𝑉𝑉𝑉|, |𝑆𝑆𝐻𝐻𝐻𝐻 − 𝑆𝑆𝑉𝑉𝑉𝑉|, |𝑆𝑆𝐻𝐻𝑉𝑉|  polarimetric channels were extracted for correlation, contrast, energy, and 
homogeneity statistics. For example the computed correlation, contrast, energy, and homogeneity statistics for 
|𝑆𝑆𝐻𝐻𝐻𝐻 + 𝑆𝑆𝑉𝑉𝑉𝑉| based on directions 00, 450, 900, and 1350 an offset distance of 60 is shown in Figure 7, while the 
correlation plot for directions 00, 450, 900, and 1350 is shown in Figure 8. 
 
 
 
 

                             
 
 
 
 
 
 
 

                       
 
 
 
 
 
 
 
 
     From Figure 7a, there is a stronger correlation among 450, 900, 1350, than between 450, 900, 1350 and 00. The 
correlation decreased steadily from offset 0 to 60. This implied that the larger the offset distance among the pixels 
the lower the correlation among the pixels.  From Figure 7b, the contrast estimated the variations in the gray levels 
over distance or offset. Figure 7b showed that the computed contrast of the four directions 00, 450, 900, and 1350 
increased as the offset increases. Figure 7c showed that the energy among pixels for directions 00, 450, 900, and 
1350 decreases as the offset increases. This implied that the pixels that are close to each other will exude higher 
energy. Figure 7d showed that the homogeneity among the pixels for directions 00, 450, 900, and 1350 decreases 
as the offset increases. This implied that the distribution of the elements within the diagonal of the computed 
GLCM is higher at low offset distances among the pixels and lower at high offset distances among the pixels.   
 
  
 

       (a)  |𝑆𝑆𝐻𝐻𝐻𝐻 + 𝑆𝑆𝑉𝑉𝑉𝑉|                            (b) |𝑆𝑆𝐻𝐻𝐻𝐻 − 𝑆𝑆𝑉𝑉𝑉𝑉|                                        (c)    |𝑆𝑆𝐻𝐻𝑉𝑉|                                  

Figure 6: Flevoland images of Pauli decomposition images for |𝑆𝑆𝐻𝐻𝐻𝐻 + 𝑆𝑆𝑉𝑉𝑉𝑉|, |𝑆𝑆𝐻𝐻𝐻𝐻 − 𝑆𝑆𝑉𝑉𝑉𝑉|, |𝑆𝑆𝐻𝐻𝑉𝑉|  
polarimetric channels. 
 
 

                 (a)   Original                                         (b) Filtered image 

Figure 5: Pauli RGB original and filtered image of Flevoland.  
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     A strong correlation is expected among directions 00, 450, 900, and 1350* (see Figure 8). The higher the r2 value 
the stronger the correlation while the lower the r2 value the weaker the correlation. The strongest correlation was 
between 900 and 1350 while the weakest correlation was between 00 and 1350. From Figure 9, the four statistics 
were extracted based on 8, 16, 32, 64, 128, and 256 quantization levels. For correlation, there is no significant 
difference among the six quantization levels, but most of the data range between 0.65 and 0.82. The median value 
for the six quantization levels range between 0.72 and 0.74. Conclusively the different quantization levels did not 
have a significant impact on the correlation feature.  
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Figure 7: Correlation, contrast, energy, homogeneity versus offset at directions 00 , 450, 900, and 
1350 of Flevoland for |𝑆𝑆𝐻𝐻𝐻𝐻 + 𝑆𝑆𝑉𝑉𝑉𝑉| polarimetric channel.  

 

45 degrees

0 0.5 1

0 
de

gr
ee

s

0

0.5

1
r2=0.9234

90 degrees

0 0.5 1

0 
de

gr
ee

s

0

0.5

1
r2=0.9273

135 degrees

0 0.5 1

0 
de

gr
ee

s

0

0.5

1
r2=0.9232

90 degrees

0 0.5 1

45
 d

eg
re

es

-0.5

0

0.5

1
r2=0.9808

135 degrees

0 0.5 1

45
 d

eg
re

es

-1

0

1

2
r2=0.9762

135 degrees

0 0.5 1

90
 d

eg
re

es

0

0.5

1

1.5
r2=0.9834

Figure 8: Correlation plot for directions 00, 450, 900, and 1350 of Flevoland for 
|𝑆𝑆𝐻𝐻𝐻𝐻 + 𝑆𝑆𝑉𝑉𝑉𝑉| polarimetric channel. 
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     The computed contrast increased as the quantization levels increased. This implied that the quantization levels 
had a significant impact on the contrast feature. The computed energy was highest at quantization level 8 but 
reduces steadily till quantization level 256. There was significant difference in the computed energy for all the 
quantization. This implied that the various levels of quantization had a significant impact in the computed energy 
feature. The computed homogeneity was highest at quantization level 8 but reduces steadily till quantization level 
256. There was significant difference in the computed homogeneity for all the quantization. Therefore, we can 
conclude that the various levels of quantization had a significant impact in the computed homogeneity feature.  
     The second experiment is a PolSAR image which was acquired by the fully polarimetric UAVSAR system, 
over an agricultural area in Winnipeg, MB, Canada, in July 2012. This agricultural area consists of 6 classes as 
follows: oats, soybeans, wheat, broadleaf, corn, and canola. The Pauli RGB image and ground truth are shown in 
Figures 10a and 10b. The speckle noise in the image was suppressed by applying a 5 X 5 window size Lee Filter 
over the image. The Pauli RGB image of the filtered image is shown in Figure 11. 
     Using Pauli decomposition the image was decomposed into |𝑆𝑆𝐻𝐻𝐻𝐻 + 𝑆𝑆𝑉𝑉𝑉𝑉|, |𝑆𝑆𝐻𝐻𝐻𝐻 − 𝑆𝑆𝑉𝑉𝑉𝑉|, |𝑆𝑆𝐻𝐻𝑉𝑉|  polarimetric 
channels shown in Figure 12. GLCM texture features for |𝑆𝑆𝐻𝐻𝐻𝐻 + 𝑆𝑆𝑉𝑉𝑉𝑉|, |𝑆𝑆𝐻𝐻𝐻𝐻 − 𝑆𝑆𝑉𝑉𝑉𝑉|, |𝑆𝑆𝐻𝐻𝑉𝑉|  polarimetric channels 
were extracted for correlation, contrast, energy, and homogeneity statistics. For example the computed correlation, 
contrast, energy, and homogeneity statistics for |𝑆𝑆𝐻𝐻𝐻𝐻 + 𝑆𝑆𝑉𝑉𝑉𝑉| based on directions 00, 450, 900, and 1350 an offset 
distance of 60 is shown in Figure 13, while the correlation plot for directions 00, 450, 900, and 1350 is shown in 
Figure 14. 
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Figure 9: Box plot of 8, 16, 32, 64, 128, and 256 quantization levels for 
correlation, contrast, energy, and homogeneity for Flevoland.  
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     From Figure 13a, there is a stronger correlation among 00, 450, 900, and 1350. The correlation values decreased 
steadily from offset 0 to 60. This implied that the larger the offset distance among the pixels the lower the 
correlation among the pixels.  From Figure 13b, the contrast estimated the variations in the gray levels over 
distance or offset and the computed contrast of the four directions 00, 450, 900, and 1350 increased as the offset 
increases.  
 
 
 

                                            

                            
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

  

 

(a)                                                     (b) 

Figure 10: (a) Pauli RGB image of Winnipeg. (b) Ground truth of Winnipeg. 
 
 

                 (a)   Original                                                  (b) Filtered image 

Figure 11: Pauli RGB original and filtered image of Winnipeg.  
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     Figure 13c showed that the energy among pixels for directions 00, 450, 900, and 1350 decreases as the offset 
increases. This implied that the pixels that are close to each other radiated higher energy than the pixels that are 
far apart. Figure 13d showed that the homogeneity among the pixels for directions 00, 450, 900, and 1350 decreases 
as the offset increases. This implied that the distribution of the elements within the diagonal of the computed 
GLCM is higher at low offset distances among the pixels and lower at high offset distances among the pixels. It 
is expected that there will be a strong correlation among directions 00, 450, 900, and 1350* (see Figure 14).  
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Figure 13: Correlation, contrast, energy, homogeneity versus offset at directions 00 , 
450, 900, and 1350 of Winnipeg for for |𝑆𝑆𝐻𝐻𝐻𝐻 + 𝑆𝑆𝑉𝑉𝑉𝑉| polarimetric channel.  
   

(a) (b) 

(c) (d) 

     (a)  |𝑆𝑆𝐻𝐻𝐻𝐻 + 𝑆𝑆𝑉𝑉𝑉𝑉|                                (b) |𝑆𝑆𝐻𝐻𝐻𝐻 − 𝑆𝑆𝑉𝑉𝑉𝑉|                                      (c)    |𝑆𝑆𝐻𝐻𝑉𝑉|                                  

Figure 12: Winnipeg images of Pauli decomposition for |𝑆𝑆𝐻𝐻𝐻𝐻 + 𝑆𝑆𝑉𝑉𝑉𝑉|, |𝑆𝑆𝐻𝐻𝐻𝐻 − 𝑆𝑆𝑉𝑉𝑉𝑉|, |𝑆𝑆𝐻𝐻𝑉𝑉| 
polarimetric channels.   
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     The higher the r2 value the stronger the correlation while the lower the r2 value the weaker the correlation. The 
strongest correlation was between 900 and 1350 while the weakest correlation was between 00 and 1350. From 
Figure 15, the four statistics were extracted based on 8, 16, 32, 64, 128, and 256 quantization levels. For 
correlation, there is no significant difference among the six quantization levels, but most of the data range between 
0.42 and 0.63. The median value for the six quantization levels range between 0.46 and 0.47. Conclusively the 
different quantization levels did not have a significant impact on the correlation feature.  
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
     The mean vectors of directions θ = 00, 450, 900, and 1350 and quantisation levels 8, 16, 32, 64, 128, and 256 
were used to calculate the vectors of the correlation, contrast, energy, and homogeneity data. These four statistical 
texture features were fed into the DSVM model for the image classification. Tables 1 and 2 consisted of the 
training and test datasets for Flevoland and Winnipeg. As shown in the tables each experiment consisted of 100 
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Figure 15: Box plot of 8, 16, 32, 64, 128, and 256 quantization levels for 
correlation, contrast, energy, and homogeneity for Winnpeg 
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Figure 14: Correlation plot for 0, 45, 90, and 135 of Winnipeg for |𝑆𝑆𝐻𝐻𝐻𝐻 + 𝑆𝑆𝑉𝑉𝑉𝑉| 
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different training datasets.  For Flevoland 1,070 training pixels and 10,822 test pixels were selected, while for 
Winnipeg 1,050 training pixels and 10,814 test pixels were selected.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 The learning result of the DSVM is the composite of individual SVM. Each SVM was trained using four kernel 

function, Exponential Radial Basis Function (ERBF) kernel ( ) 
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polynomial kernel d
jiji cxxxxK )(),( +⋅= . Let simplicity let us compute the kernels for )(
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for a 5 X 5 data,  
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We computed the ERBF kernel ( ) 






 −
−= 22

exp,
γ

yx
xxK ji , given that 4.0=γ as,  

 
Class Name Training set Test set 

  𝑋𝑋1 𝑋𝑋2 ∙ ∙   ∙ 𝑋𝑋100  
1 Water 75 76     74 757 
2 Forest 56 55    55 435 
3 Wheat 101 99    102 1196 
4 Potato 199 198    200 2000 
5 Grassland 150 149    148 1673 
6 Bareland 138 138    136 1301 
7 Rapeseed 137 136    138 1359 
8 Alfalfa 60 63    61 582 
9 Pea 44 43    45 392 

10 Stem bean 46 47    48 497 
11 Beet 64 66    63 630 

Total  1070 1070    1070 10822 
 
 

Table 1: Training and test sets for Flevoland.  

Table 2: Training and test sets for Winnipeg.  
 

Class Name Training set Test set 
  𝑋𝑋1 𝑋𝑋2 ∙ ∙   ∙ 𝑋𝑋100  

1 Soybeans 352 354     353 3802 
2 Canola 236 237    238 2423 
3 Wheat 186 185    184 1788 
4 Corn 147 146    148 1443 
5 Oats 70 71    72 771 
6 Broadleaf 59 57    55 587 

Total  1050 1050    1050 10814 
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We computed the neural kernel  )tanh(),( bxaxxxK jiji +⋅= , given that 2.0=a and 4.0=b  as, 























=+×=+⋅

53.054.043.049.044.0
54.068.051.054.052.0
43.051.047.042.049.0
49.054.042.048.044.0
44.052.049.044.051.0

)4.0]][[2.0tanh(])(tanh[ T
ji AAbxaxK  . 

We computed the neural kernel  d
jiji cxxxxK )(),( +⋅= , given that 0=c  and 2=d  as, 
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     The output label of the SVM was labelled -1 and +1. The binary SVM was modified to a multi-class classifier 
by adopting the One Against All (OAA) technique. The OAA modifies a binary classifier for multi-class 
classification by classifying each of the classes of interest against the remaining classes. The OAA is one of the 
most widely applied methods of extending binary classifiers to multi-class problems. Our hybrid DSVM was 
designed to mimics the DNN in operation. Individual SVMs were constructed to function as interconnecting 
weights of the network. The results were compared against the target or output )(XF based on the 
backpropagation technique. One hundred distinct inputs 1X , 2X ,…, 100X were used to obtain one hundred 
distinct outputs. Starting with an initial weight with labels +1 and -1 for )(

111 xf , Tables 1 and 2 showed some of 
the results of the updated weights of )(

111 xf and some of the predicted results of )(1 XF for Flevoland and 

Winnipeg  images. Hence the initial weights of the network for )(
111 xf , )(

211 xf , )(
112 xf , )(

212 xf , …, )(xf
nkn , 

were initialised  using  the regularisation parameter values ∞≤≤ C0 . The next was the training of the network 
by the method of backpropagation, that simply updates the weights in the network )(xf . Since the DSVM process 

is an iteration process, an error function or loss function  ( )∑ −= outputXFE )(2
1  was used to determine 

when the iteration converges. Conventionally the learning of the network terminates when the loss function is 
zero or infinitesimal. With regards the computational cost of any algorithm that solves the SVM problem when 
considering arbitrary kernel matrices the two systemic complexities involved are the training and testing time.  
     Generically the experimental results would indicate that the training set will have a smaller running time than 
the testing set. The reality is that characterisation of the time complexity of the DSVM is fairly intricate in running 
a traditional SVM time and space complexity are linear with respect to the outputted number of support vectors. 
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Considering that the asymptotical number of support vectors grows linearly with the number of examples, the 
computational cost of solving the SVM problem realistically has both a quadratic and a cubic component. 
     For each SVM we selected the optimal parameter values based on a cross-validation procedure for ERBF, 
GRBF, neural, and polynomial kernels for Flevoland and Winnipeg  images as shown in Figures 16 and 17. The 
optimal parameter values for these kernels are the parameter value with the least error value. Since it is impossible 
to present the results of all the SVMs, let us present the results for  )(

111 xf . For Flevoland , the optimal gamma 
values for ERBF and GRBF kernels were 0.4 and 0.2 respectively. The optimal parameter values for the neural 
kernel were 0.2 and 0.4 for a and b respectively. The optimal parameter values for the polynomial kernel were 3 
and 4 for c and d respectively. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
     For the Winnipeg image the optimal gamma values for ERBF and GRBF kernels were 0.6 and 0.4 respectively. 
The optimal parameter values for the neural kernel were both 0.6 for a and b respectively. The optimal parameter 
values for the polynomial kernel were 2 and 3 for c and d respectively. 
     For each SVM we selected the optimal C values based on a cross-validation procedure for ERBF, GRBF, 
neural, and polynomial kernels for Flevoland  and Winnipeg images as shown in Figures 18 and 19 respectively. 
The optimal C values for these kernels are the values with the least error value. Since it is impossible to present 
the results of all the SVMs, let us present the results for )(

111 xf . The optimal C value for ERBF, GRBF, neural, 
and polynomial kernels was 100 for Flevoland and Winnipeg images.  
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Figure 16: Selection of optimal model parameter values for ERBF, GRBF, neural, and  polynomial kernels 
for Flevoland 

Figure 17: Selection of optimal model parameter values for ERBF, GRBF, neural, and  polynomial kernels for 
Winnipeg  
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     Tables 3 and 4 contained the DSVM training and test results for Flevoland and Winnipeg. From Tables 3 and 
4 classes +1 and -1 represent two distinct binary classes for )(

111 xf  and )(
121 xf .  The support vectors resulting 

from )(
111 xf  (1) and )(

121 xf  (1) are the non-zero values, and the predicted values for each support vector must be 
+1.0000 and -1.0000, while the non - support vectors will yield values other than +1.0000 and -1.0000 such as 
+2.2842,…, -0.5817…. The updated results of  )(

111 xf  (1) and )(
121 xf  (1) were )(

111 xf  (2) and )(
121 xf  

(2). From 

Tables 3 and 4,  )(1 xF  (predicted) were the predictions of )(1 xF  
(initial). The results in Tables 3 and 4 showed 

accurate predictions of the initial labels. In machine learning there are normally errors in prediction, therefore 
there is no perfect algorithm in machine learning.  The resulting outputs were compared against the target or 
output )(XF based on the backpropagation technique. One hundred distinct inputs 1X , 2X ,…, 100X were used 
to obtain one hundred distinct outputs. Starting with an initial weight from +1 to -1 for )(

111 xf , )(
121 xf …, the 

updated weights of )(
111 xf , )(

121 xf …, and the predicted results of )(1 XF were obtained. The eventual results of 

inputs 1X , 2X ,…, 100X were )(1 XF , )(2 XF ,…, )(100 XF . 
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Table 3: Some of the DSVM training and test results for Flevoland.   
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     Figure 20 depicted the classification results for the Flevoland image. The overall accuracy was calculated as 
number of correctly classified pixels divided by the sum of the incorrectly classified pixels and the correctly 
classified pixels. This result was for DSVM (ERBF), DSVM (GRBF), DSVM (neural), DSVM (polynomial), 
GMM, SVM (ERBF), SVM (GRBF), SVM (neural), SVM (polynomial), DNN, KNN, and KM classifiers. Table 
5 depicted the classification results from eleven classes:  water, forest, wheat, rapeseed, beet, grassland, potato, 
alfalfa, bare land, stem bean, and pea for ERBF, GRBF, neural, and polynomial kernels of the DSVM. The 
classification accuracy for water for the four kernels was 100%. For forest, ERBF kernel yielded the highest 
accuracy while GRBF yielded the lowest accuracy. For wheat, the accuracy for the four kernels was 100%. For 
rapeseed, ERBF and GRBF yielded the highest accuracy while the neural kernel yielded the lowest accuracy. For 
beet ERBF and GRBF yielded the highest accuracy while the neural kernel yielded the lowest accuracy. For 
grassland, neural yielded the highest accuracy while GRBF yielded the lowest accuracy. For potato, neural yielded 
the highest accuracy while ERBF yielded the lowest accuracy. For alfalfa, ERBF and polynomial yielded the 
highest accuracy while neural yielded the lowest accuracy. For bare land, ERBF, neural, and polynomial yielded 
the highest accuracy while GRBF yielded the lowest accuracy. For stem bean, ERBF yielded the highest accuracy 
while neural yielded the lowest accuracy. For pea GRBF yielded the highest accuracy while neural yielded the 
lowest accuracy. 
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Table 4: Some of the DSVM training and test results for Winnipeg. 
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      DSVM (ERBF)                  DSVM (GRBF)                  DSVM (Neural)                 DSVM (Polynomial)            

      SVM (ERBF)                    SVM (GRBF)                       SVM (Neural)                   SVM (Polynomial)           

               DNN                                     GMM                                        KNN                                       KM             

               Figure 20: The classified images for Flevoland           

Class Class name kernels 
  ERBF GRBF Neural Polynomial 
1 Water 100 100 100 100 
2 Forest 100 97.96 98.12 99.81 
3 Wheat 100 100 100 100 
4 Rapeseed 100 100 98.36 98.79 
5 Beet 100 100 95.91 97.93 
6 Grassland 97.99 97.28 100 98.75 
7 Potato 95.03 98.46 99.93 99.14 
8 Alfalfa 100 99.04 98.96 100 
9 Bare land 100 99.95 100 100 

10 Stem bean 99.82 99.80 98.67 99.29 
11 Pea 98.05 100 95.14 99.00 

 

Table 5: Classification accuracy for Flevoland for DSVM. 
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     Figure 21 depicted the classification results for the Winnipeg image. This result was for DSVM (ERBF), 
DSVM (GRBF), DSVM (neural), DSVM (polynomial), GMM, SVM (ERBF), SVM (GRBF), SVM (neural), 
SVM (polynomial), DNN, KNN, and KM classifiers. Table 6 depicted the classification results from six classes: 
oats, soybeans, wheat, broadleaf, corn, and canola for ERBF, GRBF, neural, and polynomial kernels of the DSVM. 
For oats, ERBF yielded the highest accuracy while neural yielded the lowest accuracy. For soybeans, polynomial 
yielded the highest accuracy while neural yielded the lowest accuracy. For wheat, GRBF yielded the highest 
accuracy while polynomial yielded the lowest accuracy. For broadleaf, polynomial yielded the highest accuracy 
while ERBF yielded the lowest accuracy. For corn, polynomial yielded the highest accuracy while GRBF yielded 
the lowest accuracy. For canola, ERBF yielded the highest accuracy while neural yielded the lowest accuracy.  
 
 

    
 
 
     

  
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

      SVM (ERBF)                  SVM (GRBF)                      SVM (Neural)                   SVM (Polynomial)            

      DSVM (ERBF)                  DSVM (GRBF)                  DSVM (Neural)               DSVM (Polynomial)           

             DNN                                     GMM                                        KNN                                       KM             

               Figure 21: The classified images for Winnipeg          

Class Class name kernels 
  ERBF GRBF Neural Polynomial 

1 Oats 100 98.48 96.20 99.56 
2 Soybeans 98.76 98.89 98.75 99.11 
3 Wheat 99.49 100 99.24 98.63 
4 Broadleaf 95.62 98.35 99.47 99.91 
5 Corn 98.13 97.80 98.25 100 
6 Canola 99.89 98.51 97.68 99.57 

 

Table 6: Classification accuracy for Winnipeg for DSVM. 
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Table 8: Comparison of the classification accuracies of DSVM, SVM, DNN, GMM, KNN, and KM. 

Images Classifiers 
 DSVM SVM DNN GMM KNN KM 

Flevoland 99.12 74.13 96.29 75.06 75.85 21.43 
Winnipeg 98.76 72.85 95.64 73.20 73.91    25.60 

 

Table 7: Comparison of the classification accuracy between DSVM and SVM 
(the SVM results are in parenthesis).   

Images kernels 
 ERBF GRBF Neural Polynomial 

Floveland 99.17 (73.39) 99.32 (74.62) 98.64 (71.28) 99.34 (77.21) 
Winnipeg 98.65 (72.68) 98.67 (73.54) 98.27 (70.15) 99.46 (75.03)_ 

 
 

Model Lower 
confidence 
bound 
⌊𝑋𝑋𝑚𝑚 − 𝑌𝑌𝑚𝑚⌋ 

 
 

Upper 
confidence 

bound 
⌊𝑋𝑋𝑚𝑚 − 𝑌𝑌𝑚𝑚⌋ 

tstat Standard 
deviation 

P value 

SVM 24.8808 
 

25.0326 
 

2.8362 0.0306 *0.0053 

DNN 2.7521 3.0346 -1.9960 0.0569 *0.0482 

GMM 23.9336 24.2998 3.8094 0.0737 *0.0002 

KNN 23.2129 23.4137 3.8439 0.0404 *0.0002 

KM 77.5528 77.9472 13.0373 0.0794 *0.0000 

  

Table 9: To test whether there is a significant difference between DSVM result and the rest  
models for Flevoland (*significant at p<0.05 or t>|1.96| )   
 
 

 

Model Lower 
confidence 

bound 
⌊𝑋𝑋𝑚𝑚 − 𝑌𝑌𝑚𝑚⌋ 

 
 

Upper 
confidence 

bound 
⌊𝑋𝑋𝑚𝑚 − 𝑌𝑌𝑚𝑚⌋ 

 

tstat Standard 
deviation 

P value 

SVM 25.7449 26.0484 2.9737 0.0611 *0.0035 
DNN 2.9550 3.2783 -2.2109 0.0651 *0.0289 

GMM 25.5103 25.6097 3.8800 0.0200 *0.0002 

KNN 24.6604 25.0129 3.8898 0.0709 *0.0002 

KM 72.9911 73.2822 12.7858 0.0586 *0.0000 

  

Table 10: To test whether there is a significant difference between DSVM result and the rest models for 
Winnipeg (*significant at p<0.05 or t>|1.96| ).   
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     Table 7 showed the results of the comparison between the DSVM and SVM models. The DSVM and SVM 
results for ERBF, GRBF, neural, and polynomial kernels for Flevoland were 99.17 (73.39), 99.32 (74.62), 98.64 
(71.28), and 99.34 (77.21); while the DSVM and SVM results for ERBF, GRBF, neural, and polynomial kernels 
for Winnipeg were 98.65 (72.68), 98.67 (73.54), 98.27 (70.15), and 99.46 (75.03). The SVM results are the results 
in parenthesis. The SVM and DSVM results given in Table 5 showed that the DSVM outperformed the SVM. 
The DSVM was compared to other classifiers as depicted in Figures 20 and 21. Given in Table 8 was a summary 
of the classification accuracies of the DSVM, SVM, DNN, GMM, KNN, and KM classifiers. The results for 
DSVM, SVM, DNN, GMM, KNN, and KM classifiers for Flevoland were 99.12, 74.13, 96.29, 75.06, 75.85, and 
21.43 respectively; while the results for DSVM, SVM, DNN, GMM, KNN, and KM classifiers for Winnipeg were 
98.76, 72.85, 95.64, 73.20, 73.91, and 25.60 respectively. From Table 8, the comparison of the DSVM with other 
classifiers showed that the DSVM outperformed the SVM, DNN, GMM, KNN, and KM classifiers; while the 
DSVM and DNN results were close. This comparison was necessary since the GMM and KNN are conventional 
supervised classifiers while the KNN is a conventional unsupervised classifier. The KNN yielded the lowest 
classification accuracy while the DSVM yielded the highest classification accuracy.   
      
 
 
 
 
 
 
 
 
 
     Tables 9 and 10 showed a student’s t test to test whether there is a significant different between the mean 𝑋𝑋𝑚𝑚  of 
the DSVM results and the mean 𝑌𝑌𝑚𝑚 rest of the models based on a two-tailed test at the 95% confidence level for 
Flevoland and Winnipeg images. The null hypothesis 𝐻𝐻0  was that 𝑋𝑋𝑚𝑚 = 𝑌𝑌𝑚𝑚; while the alternative hypothesis 𝐻𝐻1 
was that  𝑋𝑋𝑚𝑚 ≠ 𝑌𝑌𝑚𝑚. We will rejected 𝐻𝐻0 when t>|1.96|. The results of the test for the Floveland and Winnipeg 
showed that there were significant difference between the DSVM and the rest models’ results. The computed 
Kappa coefficients for of the DSVM, SVM, DNN, GMM, KNN, and KM models for Flevoland were 92.45, 70.71, 
88.76, 68.59, 68.62, and 18.89 respectively; while the computed Kappa coefficients for DSVM, SVM, DNN, 
GMM, KNN, and KM models for Winnepeg were 92.45, 70.71, 88.76, 68.59, 68.62, and 18.89 respectively (see 
Table 7). The computed Kappa coefficients corroborated the results presented in Table 6. It can be discerned that 
for both images the KM produced the lowest accuracy while the DSVM produced the highest accuracy. 
 
 
4.         Discussion and conclusion 
 
We presented the novel application of DSVM to PolSAR image classification. PolSAR imaging recently is among 
the most advanced remote sensing data source (Ferreira et al., 2021). They are capable of yielding high resolution 
remote sensing images that are not compromised by fight altitude and weather conditions, and they provide data 
about the object structure (Samat et al., 2018). They are extensively used for land cover classification because of 
their capacity to monitor objects’ structures (Salehi et al., 2013; Gopal Singh et al., 2021). Even though optical 
remote sensing images mainly serve as data source for land cover classification, contrary to optical images 
PolSAR images have been very attractive for being unaffected by cloud cover (Homayouni et al., 2019; Parikh et 
al., 2020). PolSAR images have tremendous applications in mapping numerous earth phenomena such as flooding, 
urban growth, deforestation, earthquake monitoring, monitoring of civil infrastructure stability e.g. bridges, and 
military surveillance. Land cover classification requires robust algorithms for both features selection and 
classification (Hänsch & Hellwich, 2018; Liu et al., 2021; Pourshamsi et al., 2021). The proper classification and 
interpretation of PolSAR images is crucial. The major challenge for geoscientists is the development of robust 
algorithms for the optimal classification of PolSAR images. Even though scientists have developed conventional 
classifiers such as KM, KNN, GMM, etc., the advent of modern non-parametric classifiers like ANN and SVM 
has relatively relegated these conventional classifiers to the background. Recently the fusion of DL and non-
parametric classifiers has quickly outclassed the use of standalone non-parametric classifiers such as ANN ad 
SVM. In recent times several DNN techniques have been developed and experimented for PolSAR image 
classification. Some of the notable DNN applications were presented in section one, outperformed those of the 
standalone ANN classifier.  The fusion of DL and SVM has been applied to a few studies e.g. Chui et al. (2020), 

Table 11: The computed Kappa coefficients of the DSVM, SVM, DNN, GMM, KNN, and KM models. 

Images Classifiers 
 DSVM SVM DNN GMM KNN KM 

Flevoland 0.92 0.70 0.88 0.68 0.68 0.18 
Winnipeg 0.91 0.69 0.86 0.65 0.67    0.20 
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Okwuashi & Ndehedehe (2020), Wang et al., (2020) etc. This research therefore experimented for the first time 
the use of the DSVM for PolSAR image classification.  
     This experiment was performed using a fully polarized SAR image of Flevoland region in Netherlands, and a  
fully polarimetric UAVSAR system, over an agricultural area in Winnipeg, MB, Canada (see Figures 4 and 10). 
PolSAR images are corrupted and adapted by a signal dependent multiplicative noise known as speckle. This 
speckle, by degrading the level of quality and detail contained in the acquired images decreases our potentiality 
to interpret the image. Although PolSAR observations can provide land cover information regardless of weather 
conditions, this speckle significantly affects the potential for accurate classification. Speckle noise is a common 
degrading factor in active remote sensing. In this work, the speckle noise in the images was suppressed by applying 
a 5 X 5 window size Lee filter. Texture analysis is the next vital component of our PolSAR image analysis. Texture 
analysis is the description of characteristic of the image properties by textural features (Guo et al., 2020; Liao et 
al., 2020; Garg & Garg, 2021). Texture is as a result of the local variations in brightness within a region of an 
image (Naseri et al., 2012; Delibaş & Arslan, 2020; Szychot et al., 2020; Farwell et al., 2021). To extract the 
texture features from the PolSAR images the Pauli decomposition was used to decomposed the images into 
|𝑆𝑆𝐻𝐻𝐻𝐻 + 𝑆𝑆𝑉𝑉𝑉𝑉|, |𝑆𝑆𝐻𝐻𝐻𝐻 − 𝑆𝑆𝑉𝑉𝑉𝑉|, |𝑆𝑆𝐻𝐻𝑉𝑉|  polarimetric channels. The Pauli decomposition used in this work is a coherent 
decomposition method. Coherent and incoherent methods have their advantages and disadvantages. Coherent 
decomposition is usually suitable for analysing natural targets like water, vegetation etc., while incoherent 
decomposition is usually suitable for analysis man-made targets like buildings (Zhang et al., 2008; Aghababaee 
et al., 2013; Parida & Mandal, 2020; Phartiyal et al., 2020; Ramya & Kumar, 2021).  In this experiment we chose 
the Pauli coherent decomposition method because it is expected to present a better distinction of the various 
vegetation classes and water.    
     Then the GLCM was computed from three polarimetric channels  |𝑆𝑆𝐻𝐻𝐻𝐻 + 𝑆𝑆𝑉𝑉𝑉𝑉|, |𝑆𝑆𝐻𝐻𝐻𝐻 − 𝑆𝑆𝑉𝑉𝑉𝑉|, |𝑆𝑆𝐻𝐻𝑉𝑉| based on 
correlation, contrast, energy, and homogeneity statistics. Four notable statistical texture features were used out of 
the numerous statistical texture features so as to reduce the dimension of the experimental data which is 
exponentially dimensionally large for efficient data processing and accuracy enhancement; and also to avoid the 
effect of “curse of dimensionality” (Bessa et al., 2017; Aremu et al., 2020; Hidalgo-Mompeán et al., 2021) since 
the experimental data are exponentially dimensionally large. GLCM directions 00, 450, 900, and 1350 based on an 
offset distance of 60 were used to obtain these four statistics. GLCM are derived from second order textural 
features (see Figures 2b, 2c, 2d, and 2e). Textural statistical measures such as mean, median, standard deviation 
are first order textural features calculated from first order brightness values (e.g. as given in Figure 2a).  
     A strong correlation is expected for the computed directions 00, 450, 900, and 1350 (see Figures 8 and 14). In 
order to enhance the accuracy of our PolSAR classification we explored 8, 16, 32, 64, 128, and 256 quantization 
levels to compute for correlation, contrast, energy, and homogeneity for the Flevoland and Winnipeg images. The 
four statistics, correlation, contrast, energy, and homogeneity were extracted based on 8, 16, 32, 64, 128, and 256 
quantization levels (see Figures 9 and 15). Quantization helps to improve the classification accuracy.  
     The main problem posed by PolSAR image classification is the ability to develop classifiers that can 
substantially separate the object classes present in the PolSAR image. To address this problem, this research 
explored a novel classification of  PolSAR imagery using DSVM. DSVM is a hybrid algorithm achieved through 
a fusion of DL and the traditional SVM. DSVM basically consists of numerous connecting SVM weights 
(Okwuashi & Ndehedehe, 2020). The resulting statistical features for correlation, contrast, energy, and 
homogeneity were used to learn the DSVM for the classification of the two SAR images. Our hybrid DSVM is a 
composite of several SVMs. We employed four notable SVM kernels: ERBF, GRBF, neural, and polynomial. 
Both ERBF and GRBF have a free parameter called ‘gamma.’ This free gamma parameter is a common parameter 
that both kernels share. The neural kernel has two free parameters a  and b ;  while the polynomial kernel also 
has two free parameters c  and d . The selection of the optimal model parameter values for ERBF, GRBF, neural, 
and polynomial kernels for the two images was done by ‘trial and error’ as shown in Figures 16 and 17. We also 
selected the optimal regularization parameter C for the four kernels as shown in Figures 18 and 19. The DSVM 
is abridged by individual SVMs representing the interconnecting weights of the network. The training of the 
network was based on the backpropagation technique. Therefore, instead of using one SVM to solve the problem, 
the problem was solved by several SVMs as expressed in Tables 3 and 4. Because the backpropagation technique 
is iterative, a loss function was used to ensure the convergence of the iteration. Tables 3 and 4 showed few results 
obtained from both images. The classification results of the two images with respect to the different land cover 
classes and kernel functions were shown in Tables 5 and 6. A comprehensive result of the DSVM with respect to 
the traditional SVM, DNN, GMM, KNN, and KM were shown in Table 8. The Student’s t test results for Floveland 
and Winnipeg given in Tables 9 and 10 showed that there was significant difference between the DSVM result 
and those of the rest models at the 95% confidence level. This implied that the DSVM outperformed the rest 
model. For a fair assessment of the proposed DSVM model its results were compared with the conventional SVM. 
The DSVM was also compared with the known DNN. The DSVM results were also compared with the GMM and 
KNN being two renowned conventional supervised classifiers. The DSVM was also compared with the KM for it 
being one of the most common conventional unsupervised classifiers.    
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     The accuracy of the models was also evaluated using the Kappa statistic or Kappa coefficient (see Table 11) 
(Cohen, 1960; Ma & Redmond, 1995; Lo & Yeung, 2007). Kappa coefficient measures the inter-rater reliability 
and the intra-rater reliability for qualitative items (Rajasekar et al., 2017). The Kappa coefficient is assumed to be 
a more accurate measure than the usually used percent agreement calculation, due to the fact that it accounts for 
the agreement occurring by chance (Anderson & Delahanty, 2020; Duc et al., 2021). According to Landis and 
Koch (1977) the Kappa results can be interpreted as follows: <0 (no agreemet), 0.0 – 0.20 (slight agreement), 
0.21– 0.40 (fair agreement), 0.41– 0.60 (moderate agreement), 0.61 – 0.80 (substantial agreement), 0.81 – 1.00 
(almost perfect agreement). Therefore the computed Kappa coefficients presented in Table 11 can be interpreted 
as follows. The DSVM results for both Flevoland and Winnipeg  images can be categorised as ‘almost perfect 
agreement.’ The SVM results for both Flevoland and Winnipeg  images can be categorised as ‘substantial 
agreement.’ The DNN results for both Flevoland and Winnipeg  images can be categorised as ‘almost perfect 
agreement.’ The GMM results for both Flevoland and Winnipeg  images can be categorised as ‘substantial 
agreement.’ The KNN results for both Flevoland and Winnipeg  images can be categorised as ‘substantial 
agreement.’ The KM results for both Flevoland and Winnipeg  images can be categorised as ‘sight agreement.’ 
The classification results showed that the DSVM outperformed the rest classifiers. A closer look at the results 
revealed that the difference between the DSVM and DNN results was the lowest; nonetheless the difference 
between the DSVM result and the SVM result was high. The high difference between DSVM/DNN results and 
those of the conventional classifiers GMM, KNN, and KM was expected. DSVM applications are extremely few 
and still nascent. The result from this experiment had shown that the DVSM is a very robust hybrid model for 
PolSAR image classification. DL is relatively new and highly evolving. DL is basically associated with ANN, but 
in recent times there have been integrations of DL with the traditional SVM as experimented in this work. The 
result of this experiment has shown that the DSVM can yield a better result than the DNN.  
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