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In the present work, it is aimed to derive exact formulations for skin friction coefficient (Cf) and convec-
tive heat transfer coefficient (h) for power law fluids with 0.8 < n < 1.2 flow over a semi-infinite plate and
with the constant wall temperature boundary condition. Similarity analysis was employed to solve the
problem for 410,000 cases with different power law indexes (n) and Prandtl numbers (0.1 < Pr < 1000).
Finally, based on the acquired data from similarity solutions, exact approximations (with R-
Square � 1) are proposed for Cf and also h. These exact formulations can be considered as replaces for
the former ones in the literature for Newtonian fluids (n = 1).
� 2016 Karabuk University. Publishing services by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction the physical chemistry at the molecular level. Therefore, the power
Since many fluids follow non-Newtonian behavior [1–3], it is
worth to conduct researches which aim to extend studies on this
class of fluids. Among many works in this field, some of them
can be found in [4–10]. These works are mainly referred to similar-
ity solution in which the method has been widely employed in the
literature for solving boundary layer problems. It must be also
cited that similarity procedure has proved itself efficient even for
providing solutions for verity of complex fluid flows [11–14].

The goal of the present research is specialized to study a class of
power law fluids (0.8 < n < 1.2) flow over a semi-infinite plate with
constant wall temperature boundary condition in a detailed way.

Here, we mention that among the many models for non-
Newtonian fluids, power law model is applicable mainly because
of its simplicity, and it only approximately predicts the treatment
of a real non-Newtonian fluid. As an example, if the power law
index (n) is less than one, the power law predicts that the effective
viscosity would decrease with the increase of shear rate indefi-
nitely, which requires a fluid with infinite viscosity at rest and zero
viscosity as the shear rate gets close to infinity. But a real fluid has
both a minimum and a maximum effective viscosity that rely on
law stands as only a suitable description of fluid behavior across
the range of shear rates to which the coefficients could be fitted
to the experiments [3].

Beside the limitations of power law model, there are many flu-
ids which follow a power law behavior with power law indexes
close to unity. This class of fluids can simply include variety of sus-
pensions (Ex. nanofluids (2016) [15]). Furthermore, the value of
power law index equal to unity stands as an exception in the nat-
ure; so, many assumed Newtonian fluids (especially in higher tem-
peratures) may have power law treatments with values of ’’n’’ close
to 1 (see (2016) [16,17]). Therefore having specified information
for this class of fluids can subsequently benefit us in exact engi-
neering evaluations of this class of fluids.

Two main engineering factors (skin friction coefficient and con-
vective heat transfer) have been targeted in this work. These fac-
tors are evaluated and formulated as functions of Reynolds
number, Prandtl number and power law index. These formulations
are already derived for Newtonian fluids (n = 1) in the same condi-
tions; but the need for exact results in engineering problems led us
to extend these formulations to include much wider class of fluids.

Using power law model, two classes of Non-Newtonian fluids
can be relatively (but not completely) studied (pseudo-plastic
and dilatant which is less common). This model simply defines
the shear stress as:
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Nomenclature

Symbol Description (unit)
Re Reynolds number
Tw surface temperature (K)
t kinematic viscosity (m2/.s)
Pr Prandtl number
h convective heat transfer coefficient (W/m2.K)

l dynamic viscosity (kg/m.s)
q density (kg/m3)
n power law index
a diffusivity factor
Cf skin friction coefficient
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which K is the consistency factor and ‘‘n” is the power law index.
Which n < 1 covers a range of pseudo-plastic fluids and n > 1
includes a class of dilatant fluids [3]. Substituting this model for
predicting shear stress leads us to the following governing momen-
tum equations [5]:
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Note that y-momentum equation can be simply ignored with
respect to the order of magnitude.

Moreover using at ¼ a @u
@y

��� ���n�1
as the thermal diffusivity for

power law fluids [5], energy equation can be written as:
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Eqs. (2)–(4) are transformed into two ODEs by defining a simi-
larity parameter. Among the classic methodologies of solving these
ODEs (some of them are employed in [18]), Shooting Technique
procedure with a simple forward discrete scheme was employed
in the present research. After validating the code for the classic Bla-
sius case, it has been applied for numerous values of 0.8 < n < 1.2
and Pr > 0.1 (410,000 cases of different values of ‘‘n” and ‘‘Pr” were
solved in this research).

It is well-known that for Newtonian fluids (n = 1), Cfx ¼ 0:664ffiffiffiffiffiffi
Rex

p and

hx ¼ 0:332 k
xRe

1
2
xPr

1
3; but there are not yet the same formulations

(approximations) for power law fluids. So, power law forms of
these equations are introduced in here for 0.8 < n < 1.2.

Applying the transformed ODEs for 410,000 cases of
0.8 < n < 1.2 and 0.1 < Pr < 1000 and using Least Square Regression
Techniques, skin friction coefficient and convective heat transfer
are accurately formulated (R-Square � 1). As previously men-
tioned, these new formulations can be considered as replaces for
evaluation of these two important factors in the literature.

2. Deriving the transformed ODEs for power law fluids

Using order of magnitude technique, the governing PDEs for
power law fluids flow over a semi-infinite plate can be obtained
as Eqs. (2) and (3):

In which t ¼ K
q.

As the classic Blasius solution, here we assume that the x-
component of velocity is self-similar. So, this component of veloc-
ity can be written as:

u
U0

¼ FðgÞ ð5Þ
By assuming similarity parameter as g ¼ ayxb (a > 0), stream
function can be obtained as follows:

w ¼
Z

udy

w ¼
Z

U0FðgÞdy
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Z
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axb

dg ¼ U0

axb
f ðgÞ : f ¼ f ðgÞ

ð6Þ

By definition of stream function, the continuity equation (Eq.
(2)) will be automatically satisfied. Furthermore, the velocity com-
ponents can be obtained as:

u ¼ @w
@y

¼ U0f
0 ð7Þ

v ¼ � @w
@x

¼ �1
a
x�bf ð�bx�1U0Þ � U0x�1ybf 0 ð8Þ

The derivatives of x-component velocity are then obtained as:
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Substituting Eqs. (7)–(11) into x-momentum equation (Eq. (3))
results in:

ff 00
bU2

0

x

 !
¼ tna2U0x2bf
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00axbÞn�1 ð12Þ

Eq. (11) can be re-written as:

�ff 00 ¼ f 000f 00ðn�1Þ � tnanþ1Un�2
0 xbðnþ1Þþ1

b

 !
ð13Þ

The similarity solution exists if only bðnþ 1Þ þ 1 ¼ 0.
So, b ¼ � 1

nþ1. By this definition of b, the multiplying factor in the
right-hand side of Eq. (13) would be a constant. For simplification,
this constant can be assumed as to be unit in value. Therefore:

� tnanþ1Un�2
0

b
¼ 1 ð14Þ

Note that in the left hand side of Eq. (14), all the parameters
except b, is positive; so the right hand side of Eq. (14) must be
either positive. Moreover, selecting the right hand side of Eq.
(14) equal to 1, is just a simplifying assumption. Therefore, math-
ematically, it may take any value arbitrarily.

From Eq. (14), the constant factor of ‘‘a” can be obtained as:

a ¼ U2�n
0

nðnþ 1Þt

 ! 1
nþ1

ð15Þ
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Finally the governing PDEs for continuity and momentum will
be reduced into the following ODE:

f 000f 00ðn�1Þ þ ff 00 ¼ 0 ð16Þ
The above equation is a third order ODE; so it requires three

conditions to be solved. These conditions are just as those for clas-
sic Blasius equation which are denoted as:

f ð0Þ ¼ 0

f 0ð0Þ ¼ 0

f 0ð1Þ ¼ 1

ð17Þ

Continuing the same procedure for Eq. (4) and with the defini-
tion of h ¼ T�T1

Tw�T1
, the final transformed ODE for energy equation

can be obtained as:

h00f 00n�1 þ h0ððn� 1Þf 00n�2 þ nPrf Þ ¼ 0 ð18Þ
In Eq. (18), Pr ¼ t

a.
Since Eq. (18) is a second order ODE for h; so it requires two

thermal conditions. As the classic Blasius case, these conditions
are:

hð0Þ ¼ 1
hð1Þ ¼ 0

ð19Þ

In the next section, the applied methodology for solving Eqs.
(16) and (18) is presented.

3. Solving methodology

Eq. (16) can be converted into the algebraic form by a forward
discrete scheme as follows:

Using Taylor expansion, the second and the third derivatives of
similarity function can be defined as:

f 00ðiÞ ¼ f ðiþ 2Þ � 2f ðiþ 1Þ þ f ðiÞ
Dg2 ð20Þ

f 000ðiÞ ¼ f ðiþ 3Þ � 3f ðiþ 2Þ þ 3f ðiþ 1Þ � f ðiÞ
Dg3 ð21Þ

Substituting Eqs. (20) and (21) into Eq. (16) results in the final
algebraic form of:

f ðiþ 3Þ ¼ �f ðiÞf 00ðiÞ
f 00ðiÞn�1 Dg3 þ 3f ðiþ 2Þ � 3f ðiþ 1Þ þ f ðiÞ ð22Þ

Coming to the boundary conditions, we have f ð0Þ known; so in
the algebraic form f ði ¼ 1Þ ¼ 0. Also, f 0ð0Þ ¼ 0 yields that
f ði ¼ 2Þ ¼ 0: For starting the numerical procedure, the value of
f ði ¼ 3Þ must be known as well. Here we applied Shooting Tech-
nique to reach the exact value of f ði ¼ 3Þ: In this research g ¼ 1
was set as g ¼ 10 (which is most applicable for similarity solutions
of Newtonian fluids).

Using 1000 points in the numerical procedure yields that:

Dg ¼ 10
1000� 1

� 0:01 ð23Þ

As for the terminal boundary condition we have f 0ðnÞ ¼ 1; in the
numerical procedure, the error relation can be simply defined as:

Error ¼ jðf ðnÞ � f ðn� 1Þ � DgÞj ð24Þ
Therefore, setting the above relation to be less than 10�5 as the

breaking condition in the numerical procedure, corresponds to this
that f 0ðnÞ ¼ 0:999 is assumed as a favorable correspondence of
f 0ðnÞ ¼ 1: This means that the absolute error has been set to be
10�3.
In the present work, an iterative procedure has been done in
order to find the best guess of f ði ¼ 3Þ which meets the condition
of the above-defined error. Based on the outcome numerical results
(which are based on applying the forward discrete scheme, 1000
points and the above-mentioned error scheme), this simple and
user-friendly developed code is highly accurate for all the values
of 0.8 < n < 1.2. This code is provided in the appendix section of this
paper.

When, the solutions are reached for Eq. (16), the transformed
ODE for energy equation can be re-written as:

hðgÞ ¼
Z g

0
h0ð0Þe

R g
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In which h0ð0Þ is expressed as:
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0 e
R g

0
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f 00n�1 dg
dg

ð26Þ

Eqs. (25) and (26) can be simply solved by a numerical integrat-
ing procedure.

In this research, the variation of power law index was set to be
between 0.8 and 1.2 with the change step of 0.01. Also, Prandtl
number was changed between 0.1 and 1000 with the change step
of 0.1. This means that the final formulations are based on the
results of 410,000 similarity solutions.

Formulating Skin Friction Coefficient and Convective Heat
Transfer Coefficient for 0.8 < n < 1.2

According to the previous discussions, the variation of power
law index has been assumed to be between 0.8 and 1.2. The devel-
oped code has been first validated for the classic Blasius case (New-
tonian fluids). In this case, gj0:99 was calculated to be 3.5207.
Because of using a different similarity constant (compared to the
classic Blasius solution), this value should be multiplied by

ffiffiffi
2

p
in

order to be corresponded to the former Blasius results. So,ffiffiffi
2

p
� 3:5207 falls into about 0.42% error with the historical value

of 5 as gj0:99. This validation is shown in Fig. 1. Some results for
the solutions of Eq. (16) for 0.8 < n < 1.2 are shown in Fig. 2. It
can be understood from Fig. 2 that by having lower values of ‘‘n”
as the power law index, the second derivative of similarity function
gets closer to zero and besides, gj0:99 rises to greater numbers.

Here it is worth to note that as the power law index of ‘‘n” gets
closer to zero, the parameter of ‘‘a” goes to infinity (see Eq. (15)).
Infinite values of ‘‘a” simply makes infinite values of the similarity
parameter as well. Which means the assumption of self-similarity
would be invalid. Besides by having very small values of ‘‘n”, the
fluid tends to express an invisid behavior with no shear stress on
the wall. On the other hand, as the similarity parameter goes to
infinite values for n � 0;the assumption of g ¼ 10 as a correspon-
dence of g � 1will be no longer valid. And so, the terminal bound-
ary layer condition must be corresponded to very large values of g:
This means that there will be no exact numerical solutions for
n � 0: As there is neither numerical nor analytical solution in this
case, one cannot proceed in solving the governing ODEs in this
region. Fig. 3 indicates a validation for temperature distribution
in different Prandtl numbers. According to Fig. 3, gj0:99 was found
to be 3.506 for Pr = 1 and n = 1. This means that d

dt
� 1; which

was already expected according to the former approximation for

Newtonian fluids ( ddt � Pr
1
3).

Skin friction coefficient can be defined as:

Cf ðxÞ ¼ sw
1
2qU

2
0

ð27Þ

Using the following definition for Generalized Reynolds
number,



Fig. 1. Distribution of f 0ðgÞ and f 00ðgÞ as functions of g for Newtonian case (n = 1). Red line is for f 00ðgÞ and blue line is for f 0ðgÞ: A zoomed view.

Fig. 2. Distribution of f 0g and f 00g as functions of g for 0.8 < n < 1.2. X-axis is g: Red line is for f 00ðgÞ and blue line is for f 0ðgÞ: A zoomed- in view.
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ReðxÞ ¼ qxnU2�n
0

K
ð28Þ

And with assistance of Eq. (10), one can reach the following
form for skin friction coefficient:

Cfx ¼ 2½nðnþ 1Þ� �n
nþ1ðf 00jg¼0ÞRe

�1
nþ1
x ð29Þ

Therefore, it is seen that if f 00jg¼0 can be written as a function of
‘‘n”, Eq. (29) will become an explicit formulation as a function of
known parameters.

Reminding the previous discussions, we know that for n � 0 the
fluid tends to be invisid with no shear rate. Therefore, assuming
f 00jg¼0 as to be in the form of anb, has its physical correspondence.

Using Least Square regression, it was found that f 00jg¼0 can be
written as:

f 00jg¼0 ¼ 0:469n0:739 ð30Þ
R-Square for Eq. (30) was calculated to be 0.9999.
The validation for Eq. (30) is provided in Fig. 4.
Coming to convective heat transfer coefficient, subject to ther-

mal boundary layer (constant wall temperature condition) we
have:

q
A
¼ �k

@T
@y

����
y¼0

¼ hxðTw � T1Þ ð31Þ

In which, ‘‘k” is thermal conductivity. In the non-dimensional
form of Eq. (31), convective heat transfer coefficient can be written
as:

hx ¼ �k
@h
@y

����
y¼0

ð32Þ

Or

hx ¼ �kah0jg¼0x
b ð33Þ



Fig. 3. Distribution of hðgÞ as a function of g for n = 1 X-axis is g and Y-axis is. h ðgÞ. A zoomed-in view.

Fig. 4. f 00 jg¼0 (Y-axis) as a function of ’’n’’ (X-axis). Blue dots are from the similarity solutions and Red line is the correlation (Eq. (30)).

A. Jafarimoghaddam, S. Aberoumand / Engineering Science and Technology, an International Journal 20 (2017) 1115–1121 1119
In which, ‘‘a” and ‘‘b” are the previous-defined factors of simi-
larity parameter. So, from Eq. (33), if h0jg¼0 can be found as a func-
tion of power law index and Prandtl number, convective heat
transfer coefficient will be an explicit function of known parame-
ters. Some results of similarity solutions for h0jg¼0 as a function of
Prandtl number and power law index are shown in Fig. 5. It seems
that in certain values of ‘‘n”, h0jg¼0 follows a power form of Prandtl.

Also, by increasing ‘‘n”, the values of h0 jg¼0, decreases for all the
Prandtl numbers.Similar to the previous procedure used for formu-
lating skin friction coefficient, here we assumed the following form
for formulating h0jg¼0:

h0jg¼0 ¼ anbPrcn
dþe ð34Þ

Using the data from all the studied cases, the constant factors of
Eq. (34) obtained and finally h0jg¼0 formulated as:

h0jg¼0 ¼ ð�0:47n2ÞPr�0:102n1:29þ0:432 ð35Þ
In Eq. (35), ‘‘n” is the power law index. This equation falls within
about 0.001% error with the acquired data On the other hand, R-
Square for Eq. (35) was the same as for Eq. (30).

Now, using the definition of generalized Reynolds number, the
final form of convective heat transfer coefficient can be achieved as:

hx ¼ 0:47n2ðnðnþ 1ÞÞ� 1
nþ1

k
x
Re

1
nþ1
x Pr�0:102n1:29þ0:432 ð36Þ

Eq. (36) can be simply considered as a replacement for the for-

mer formulation of hx ¼ 0:332 k
xRe

1
2
xPr

1
3. Note that for n = 1, Eq. (36)

is accurately the same as hx ¼ 0:332 k
xRe

1
2
xPr

1
3.
4. Summarizing the new results obtained by the present
research

For steady state, two dimensional and incompressible power
law fluids (0.8 6 n 6 1.2) flow over a semi-infinite plate with con-
stant temperature boundary condition (0.1 6 Pr 6 1000), we have:



Fig. 5. h0 jg¼0 (Y-axis) vs. ’’Pr’’ (X-axis) in different power law indexes.
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Cfx ¼ 2½nðnþ 1Þ� �n
nþ1ð0:469n0:739ÞnRe

�1
nþ1
x ðR-Square � 1Þ ð37Þ

The average skin friction coefficient can be subsequently
obtained as:

Cf ¼ 2ðnþ 1Þ½nðnþ 1Þ� �n
nþ1ð0:469n0:739ÞnRe �1

nþ1 ð38Þ
And,

hx ¼ 0:47n2ðnðnþ 1ÞÞ� 1
nþ1

k
x
Re

1
nþ1
x Pr�0:102n1:29þ0:432 ðR-Square � 1Þ

ð39Þ
Table 1
Deviations of skin friction coefficient in different power law indexes and Reynolds
numbers from Newtonian fluid.

Power Law Index Reynolds Number

10 100 1000 10000
Error% Error% Error% Error%

0.8 2.884 14.5454 24.8066 33.8356
0.85 2.1008 10.8259 18.7734 26.0126
0.9 1.3708 7.1697 12.6276 17.7647
0.95 0.6758 3.565 6.3702 9.0938
1 0 0 0 0
1.05 0.6706 3.5375 6.4861 9.5186
1.1 1.3481 7.0595 13.0928 19.466
1.15 2.0434 10.578 19.8264 29.8483
1.2 2.7659 14.1047 26.6946 40.6736

Table 2
Deviations of convective heat transfer coefficient in different power law indexes,
Reynolds numbers and Prandtl = 1 from Newtonian fluid.

Power Law Index Reynolds Number (Prandtl Number = 1)

10 100 1000 10000
Error% Error% Error% Error%

0.8 5.5017 7.3939 22.0492 38.7045
0.85 4.4235 4.928 15.1946 26.4657
0.9 3.1349 2.9161 9.345 16.1756
0.95 1.6551 1.2913 4.3261 7.4517
1 0 0 0 0
1.05 1.8173 1.002 3.7432 6.4085
1.1 3.786 1.7507 6.9921 11.9539
1.15 5.897 2.2763 9.8188 16.7791
1.2 8.1425 2.6039 12.2823 20.999
The average convective heat transfer coefficient can be subse-
quently obtained as:

h ¼ 0:47ðnðnþ 1ÞÞ n
nþ1

k
L
Re

1
nþ1Pr�0:102n1:29þ0:432 ð40Þ

In which, Pr ¼ t
a (a is the constant in definition of thermal diffu-

sivity for power law fluids).

at ¼ a @u
@y

� �n�1
(at is the thermal diffusivity for power law fluids).

t ¼ K
q (K is the consistency factor for power law fluids).
Table 3
Deviations of convective heat transfer coefficient in different power law indexes,
Reynolds numbers and Prandtl = 10 from Newtonian fluid.

Power Law Index Reynolds Number (Prandtl Number = 10)

10 100 1000 10000
Error% Error% Error% Error%

0.8 0.216 13.8919 29.434 47.097
0.85 0.0823 9.694 20.4269 32.2099
0.9 0.2002 6.0341 12.6578 19.6953
0.95 0.1651 2.826 5.9067 9.0797
1 0 0 0 0
1.05 0.2757 2.5009 5.2007 7.8256
1.1 0.6455 4.7237 9.8065 14.6181
1.15 1.0954 6.7073 13.9077 20.5525
1.2 1.6133 8.4842 17.5783 25.7688

Table 4
Deviations of convective heat transfer coefficient in different power law indexes,
Reynolds numbers and Prandtl = 100 from Newtonian fluid.

Power Law Index Reynolds Number (Prandtl Number = 100)

10 100 1000 10000
Error% Error% Error% Error%

0.8 6.2797 20.783 37.2655 55.9973
0.85 4.4561 14.6765 25.8969 38.2151
0.9 2.8235 9.2467 16.0711 23.3218
0.95 1.3476 4.384 7.5113 10.7324
1 0 0 0 0
1.05 1.2426 3.9772 6.6361 9.2213
1.1 2.4 7.6067 12.5357 17.2017
1.15 3.4884 10.9373 17.8113 24.1547
1.2 4.5217 14.0096 22.5546 30.2505



Table 5
Deviations of convective heat transfer coefficient in different power law indexes,
Reynolds numbers and Prandtl = 1000 from Newtonian fluid.

Power Law Index Reynolds Number (Prandtl Number = 1000)

10 100 1000 10000
Error% Error% Error% Error%

0.8 12.7103 28.0912 45.571 65.4361
0.85 9.2007 19.8853 31.6153 44.493
0.9 5.9387 12.5565 19.5877 27.0581
0.95 2.8831 5.9655 9.1403 12.4102
1 0 0 0 0
1.05 2.738 5.4311 8.0497 10.5958
1.1 5.3533 10.4025 15.1823 19.7071
1.15 7.8644 14.9755 21.5378 27.5937
1.2 10.2863 19.2013 27.2305 34.4617
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Although the deviation of power law index was at the most 0.2
from Newtonian fluids, but according to Eqs. (38) and (40), the
deviations of skin friction coefficient and also convective heat
transfer coefficient from those of Newtonian fluids were highly
considerable especially in higher Reynolds and Prandtl numbers.
These deviations are calculated for some power law indexes, Rey-
nolds and Prandtl numbers and collected in Tables 1–5.

5. Conclusions

Skin friction coefficient and convective heat transfer coefficient
are formulated based on the acquired data from 410,000 analytical
solutions for power law fluids with the power law indexes between
0.8 and 1.2. As expected, these formulations stand as functions of
power law index (n), Reynolds and Prandtl numbers and fall within
about 0% error with the data of similarity solutions. This research
was done because there are many fluids that have a power law
behavior with the power law indexes close to unity and conse-
quently, we need exact results for related engineering problems.
By this research, it is shown that even slight changes in the power
law index, may result in significant deviations in Cf and h from
Newtonian assumption of fluids. For the best of your knowledge,
these formulations have not yet been introduced in the literature
and can be simply considered as replacements for former ones
which are currently available for Newtonian fluids.
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