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Summakry.

1. Therge are/strongonceptualinks between riparian zones and freshwater Vigh
riparian.influences on water quality, habitat quality and availability, and trophic
dynamies. Many of the world’sparian zones ardioweverseverely degrade@and
the key functions they provide for fish lost or compromised. In response to their on-

going degradation, extensive works are underway globalgstorehe structure and
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function of riparian zone®espite intenseffort, welack clear empirical evidenc#
howfishesrespond tahanges to riparian zones.

2. We conducted a systematic review and ragtalysis to explore how trout
(specificallybrook, brown, cutthroat, rainbow astkelheay] fishes with globally
important'social, cultural, economic and ecological value, respond to key drivers of
riparian alterationWe also identified where and with which species current research
is being undertaken armkamned thebroad characteristics of different studies (e.g.
location,focal species, length of study, study design) to better understand potential
knowledge gaps iour understanding dfowtroutrespond tachanges imiparian

zones.

3.1SI Webfof,Sciencand Google Scholavere searched for relevant peeviewed
studiesandfrom an initiab514 papers, 55 were included in the formal meta-
analysisFrom these, we extracted data to calculate response ratios comparing
biological attributesit sites with altered riparian characteristicsutable
unmanipulated control sites. We used linear mixed effects models to gesessl

and speeiespecific troutresponses to eight key ‘drivers’ of change in riparian
condition.

4. Maost studies were undertaken in North America using cemtipact designsie
found little-evidence fospeciesspecific responsds riparian changeand
surprisingly,manydriversdeemed important in the literatueg. revegetation,
managed canopy meoval, grazing, and forestry clearindjji notconsistently
influencetrout population- or individualevel metrics Nonethelessyout populations
did respond positively to increasing woody debris arestock exclusiorf+87. %%

and +66.660 respectively)and negatively to bushfire and afforestation (-67.4% and -
88.24%, respectively We found some evidence that positive riparian changegusgay
attract fish(i.e. increased abundance or dengiggher than enhan@etualpopulation
production<(i;e. individual size and growthYhilst this conclusion necessarily needs
to be interpreted with cautigiit does suggest that targeted research on the
‘production vsattraction’ hypothesis would be beneficial.

5. Several key drivers of riparian change, sucteasgetation activitiedjave been

the focus of onlyimited researchMore generally, longerm dataarelacking for

most driversBoth of these key information gaps liroiir ability to predict the likely
timing and trajectory of responsesrijgarian managemenRobust monitoring

programs in aas with altered riparian zoneparticularlyusing BACI designs to
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allow changes to be attributed to managemererequired The knowledge gaps
presenfor fishes asecologically, socially and environmentally importastroutare
likely to be even more pronouncém the majority oflessstudiedfreshwater fish
species

| ntr oduction

Riparian zones are the interface between terrestrial and lotic envirorandnts
play a criticalrole in modulating a range of ecosystem processes that affect aquatic
organisms, includingjsh (Gregoryet al., 1991; Naiman & Decamps, 1997; Pusey &
Arthington, ,2003) The multitude of patwayslinking fish toriparian zonesan be
categorisednto threemaingroups:riparian influences owater quality, habitat
quality @and diversity, and trophic dynamisee Puse§ Arthington, 2003) Fish are
likely to be affected by processes in the riparian zone that have resultactsimpa
bank stability:and erosion, stream flow, water temperature and quality, and inputs of
sedimentsnutrients and organic matt&vhilst many studies have demonstrated clear
links between fish and the condition of riparian zones (e.g. Baxter, Fausch &
Saunders;:2005; Kawaguchi & Nakano, 2001), a solid understanding of the spatial
and tempaoral scales of fish response to riparian chaggsisvell understood.

Human population expansi@md associateidtensificaton of land clearing,
forestryand-agriculturdnave allimpacted on waterways and their riparian zonigls
resultantserious consequences for freshwater fi§Mesyer & Turner, 1992; Tilman,
1999; Jonest al., 2010). For examplencreass instream sdimentation and
turbidity can affect instream primary and secondary productivity, and when coupled
with reductionsn terrestrial foodnputsdue to lost riparian vegetatiotan severely
limit food resources fostream fishe¢Meehan, 1991; Saunders & Fausch, 2012;
Wipfli, 1997). In addition, the riparian canopy playsimportant role in regulating
the temperature of lotic systems and its removal may result in indneaser
temperatures beyond levels fishn tolerat¢Broadmeadovet al., 2011). Conversely,
for cold=climatestreams the removal of riparian shading raye positivempacs
on fish.assemblages through increasing solar radiation and/#teistemperature,
primary and.secondary productivity, and increasing feeding efficigRitgy et al.,

2009; Wilzbactet al., 2005; Bilby & Bisson, 1992; Wipfli, 1995)s these
examples demonstrate, there is a strong concdpaisad for predicting that fistre

likely to respond taiparian restoration
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Efforts have increasingly been directed towards management activétes t
attempt torestore the ecological function of damagi@rian zonegNaiman &
Latterell, 2005). Most commonly, these activities involve adding woody debris,
replantingriparian vegetatioyor erecting fenceto exclude livestock (Leharetal.,
20025 Rydeet al., 2011; Summers, Giles & Stubbing, 2008). Many of these
activities are implemented on the presumption they will teatesired ealogical
outcomes. However, concurrent monitoring to assess progress toheses
outcomess generally lacking, as is the empirical research necessanderstand the
potential. pathways of effe@Palme et al., 2005).Without this informationit is
impossibleto‘evaluate the efficacy of different riparian management activties i
meeting'their desired outcomes.

In"this study, wesystematicallyassess evidence fbow trout respond to key
drivers of riparian change. Trout are one of the most important and charismatic
freshwater fish, and are now distributed throughout most of the globe where they
form importantcomponents of both recreational and commercial fish@@iesvford
& Muir -2008; MacCrimmon, Marshall & Gots, 1970). Trout also fulfill key
ecological roles such as beinwjor predators in their native and introduced range
(Quinn, 2011) antinking terrestrial and aquatic food webs and nutrient flows
through interactions with riparian zongegies (Baxteet al., 2004; Epanchin, Knapp
& Lawler, 2010; Courtwright & May, 2013).

Trout declinesicrosgheir native range have belmked to polltion, exotic
speciesntroductions forestryand agricultural practicesatchmenmodification,
river regulation, oveexploitation and climate changeslated temperature and
hydrological changeClewset al., 2010; Marschall & Crowder, 1996; Kovaeh
al., 2016).Many of these factors directly impact riparian zoardhaveprompted
targeted. riparianehabilitation and restoration programs, along witkhannel
focussedrestoration efforfg/hitewayet al., 2010). For example, managing grazing
regimes=and constructing fences to exclude livestock from streams can enhance trout
populations through the preservation and regrowth of riparian vegetation, a reduction
in bank erasion, and the promotiontefrestrial invertebrates inpuiSummers, Giles
& Stubbing, 2008; Saunders & Fausch, 2012). Despite widespread implementation of
riparian management activitibased on our conceptual understandinfisbfriparian
linkages, ve still lack a broad quantitativend comparative assessmehhow trout

respond to changes to riparian zones. Suchssessment would help us better
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understand the links between trout and riparian zones, and more specifically how
riparian management might affect trout.

We use a systematic review and maialysis to asses®w trout(specifically
brook, brown, cutthroat, rainbow and steelhead) respond to eight common and
ubiquitous-drivers of riparian change: woody debris addifamsty clearing,
grazing, stock exclusion, managed canopy removal, afforestation, bushfire and
revegetationSystematic reviews and metaalyses provide the framework and tools
to quantitatively summarise the resuirom many empirical studi€Bullin &
Stewart,.2006) and examine the potential generality of responses to environmental
changeMetaanalysis provides an opportunity to increase statistical power, determine
largesgale patterns across geographical regions, and greatly assist elidsede
conservation and managent(Stewart, 2010)The use of metanalysis in ecology
has progressed rapidly (Kettenring & Adams, 2011; MantyRengle, Martin &
Rhodes2012; RodriguezZCagdareda, 2013) as appreciation of the benefits have
becomenappare(®tewart, 2010). Usinguch an approadirereallows us to make
broadscale assessmeait how trout respontb riparian managemerdand provides a
ready meanfor identifying which restoration strategies are likely to be most
successiul

We had three aimg1.) extract and analyse published data to quantify how
trout respond to different drivers of ripariaradige, (2.)dentify where and with
which species current research is being undertaken to exaoumeesponses to
changes.in.riparian zoneand (3) evaluate theharacteristics oftudy designs (i.e.
time since riparian changdesigntype Before After/Controtimpactvs. Control-
Impactvs=Beforéifter) implemented to measure trout responses to riparian changes.
We useourresults to evaluate evidence linking trout responses to riparian
management, and to identify knowledge gapsliimat current understanding of these

responses.

M ethods
Literature search
We conducted literature searches usiBigWeb of Science and Google
Scholar on 8 August 2016 (see Table S1 in Supporting Information). Google Scholar

results were restricted to the first 50 papers for each of the searchliteaadgition,

This article is protected by copyright. All rights reserved



10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

we examined the available gréterature and reference lists of selected papers,
including related metanalyses and revievisr additional studiedt should be noted
thatour grey literature search was not exhaustive due to the complexities of finding
and obtaining unpublished government and consulteaqoyrts. Nonethelessur
focusswasprimarily on understanding research efforts rather than monitoring more
generallywhigh is often the focus of grey literature studigscluding duplicates,
6514papers were systematically screened for inclusion in the- ametigsis(Figure
1). Fourcriteria determined study inclusiofi) focused orthe followingspecieof
‘trout’ (and their variants; family Salmonidadéyook troutcharr(Salvelinus
fontinalis), brown trout §almo trutta), cutthroat trout@ncorhynchus clarkii), or
rainbowor steelheadrout (Oncorhynchus mykiss), (ii) published quantitativelata on
trout responses to riparian change) (itilised a beforeafter (BA), controlimpact
(CI) or beforeafter controlimpact (BACI) designand(iv) the effects of individual
drivers of riparian change could be isolated from other changes that weatakan
place

Defining the question and outlining the scope for a quantitative review is an
essential step and necessarily involves comprise between holistic and reductionist
approaches(Pullin & Stewart, 2008)e selectedrout’ species because they have
strong cultural, economic and environmental values and are the focus of major

management actions across their native and introduced ranges. Some studies pooled

observed responses across species; in these cases the data were categorized as ‘genus

Oncorhynchus' (if rainbow, cutthroat and steelhead combined)contbined species

(if combinations of brown, brook, rainbow or cutthroat). We did not include studies
focusing onAtlantic and Pacific salmon (migrating or landlocked) as we were
primarily interested in how trowespond to riparian change, and resources did not

permita larger scoped study.

Data extraction, classification and effect-size calculation

Humaninduced changes to riparian zones can occur via numerous pathways,
and sudiesawere only included if there was a referendbedalriver directly affecting
the riparian zoneéWe defined eight ‘drivers’ of riparian chan(gee Table for driver
desciptionsand what we classified as a treatment and control for) eatcick
exclusion and grazingere analysed as separdtesersasthey differ in what

constitutes the relevant control site for comparison. For grazing studies, treétme
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grazed) sites were compared to controls that had never been grazed, while for stock
exclusion currently grazed siteftrol) were compared to treatmesites that are

fenced and currently ungrazed but with a history of grazing. Although the addition of
woody delis is not technically an alteration to the riparian zone, we included it as a
driverduetto’itcommonalityas a restoration technique, and the fact that wood
entering streams and rivers often comes as inputs from the ripariaarmbiti®uis is
impacted by riparian change (reviewed in Reiral., 2015).

We extracted aange of information from each study, including: geographic
location(continent,country), study design (i.e. BACI vs. Cl vs. B&Aput species
the driver ofriparian change, how long ago the change ocojyeads) the
biological response type measuradlividual: sizeor survivat population: density,
biomass or'abundanc&nd also the life stage which these responses were
measuredsimplified to juvenie or adult).

We extractedreatment and contrgiroupdatafrom the text, tables or figures
(using graphical digitiser software) of each paper, allowing&haulaton of log
response.fatio®llowing published method@Hedges, Gurevitch & Curtis, 1999)1
BA and.Cl studiesRR = In[l or A] - In[C or B], and ér BACI studies: RR=In[lA /

Ca] =In[I's 7 Cz], where RR is the response ratio, | is the impactedrstn, C is the
control sitesmean, A is the after mean, and B is the before mean.

Response ratios greater than zénas,indicate a positivéndividual- or
populationtevel response within impacted/altered sites compared to control/reference
sites (Clstudies), or for post-alteration compared to giteration (BA studies)A log
response ratio cannot be defined for situations whenuh®rator or denominator is
zero(Hedges, Gurevitch & Curtis, 1999). Adding a constant to these values can
induce'serious bias (Rosenberg, Rothstein & Gurevitch, 2013), so we took the more
conservative approach of excluding these data from further andli@sesulted in
35 site 'lorttime observatiortf trout response to riparian change to be excluded from
our analysis’(5.8% of the total data).

Ifspapers recorded datar multiple years log response ratioserecalculated
for eachyeat. Similarly, if papers recorded data from multiple experimental sites
specieswe calculatedeparate response ratios for each. In some circumstarees,
swapped the sign of the response ratio to ensuré@ghaterpretation was consistent
with all studies in a categoiy.e. drivers are operating in tsame direction)This

wasonly done for one driver (woody debris addition) where the negative impacts of
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‘woody debris removakvere reversed so that they reflect the benefitvobdy
debris addition’ There was no significant difference in response ratio values between
these two types affloody debris study (p=0.691). We exponentiatsponse ratios
throughout® provide more easily interpretable percentage differences.
Dataanalysis

Initial'modelling(approach outlined belovguggested thahere was minimal
difference in‘the direction and magnitude of driver effects wighich individual or
populationtevel response typesée Figure §. These results, and the low sample size
for someresponse types (e.gistonepaper estimating surviveésponse ratios)
meant that for subsequent analysegooleddataunder ‘individual’ or ‘population’
groups¢’As such, throughout the manuscript changes to populaigintesponse’
refer togenéral changes mbundance, densities and biomass, whilst indivitkat
changesefertogenerakhanges irthe size, growth and survival of trout.

We used linear mixed effects modadsquantify overal(all species
combined) then speciespecific, responses of trout to each riparian driResponse
ratios pertaining to individual and population level data were modelled separatel
Driver (eight/levels) was fit asfexed effect and the modeéitercept was suppressed
so that we could estimate a separate coefficient for éragdr. We adopted two
stagemodelling approacHirst analysingall species pooled (with species fit as a
random effect, see below), then each species separately. We did this because not all
species were exposed to each driver, precluding the exploration of species by driver
interactions (i.e. formal comparison of species’ responses to each.dkiyanely
additive model (dver + species) isot informative because it igelevantto compare
absolute differences in speciggecific response ratias isolation (e.g. in general
brown trout have bigger response ratios than rainbow trout)

Inourfirst suite of models &fit a compex randomeffect structureo the
combinedspeciegiata for individual and population level responsgpecies’ (7
levels based olowest possibléaxonomicresolution:brown, minbow, brook,
cutthroat; steelhea@ncorhynchus combined, undefined trout) was nestgthin
‘site’ (unique.identifier) which in turn was nested within ‘study’ (i.e. paper).
‘Species’ nested within ‘site’ inducedcorrelation amongst RRs from the same
species collected at the same tiamelsite (e.gbetweerrainbowtroutsize and
density) or through time at a sifiee. repeated surveysypite’ nested within ‘study’

induceda correlation amongst all observations (across speati@syiven site and
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accounted for commadocal environmental or contextueffects The ‘study random

effect accountetbr any systematic differences due to, for example, comm@gional

environmental conditions or studypecific methodologies or biasés our second

suite of speciespecific models, & used the same random effect structure illustrated

aboverbutdropped the redundéspecies’ random effecOverall, our model

structure allowed us t@nalyse the specific response ratio data from spebies,

site or time point within a given study rather thanihgto simplify data to a single

meanvalue per studyremovng the need to weighesponse ratio estimates by

sample size as is commonly done in other aggrdgsgted methodsf metaanalysis.
Where appropriate, competing modeith different fixed effects structures

were fittusingmaximum ikelihood (ML) and compared using Akaike’s Information

Criterion corrected for small sample sif8$Cc; Burnham & Anderson, 2002). These

values were rescaled as the difference between each model and the model with the

lowest AIC. (AAIC,) for a given data set. The optimal response ratio maslel

selected bWAIC . wasthenre-fit using REML to produce unbiased parameter

estimates../Analyses were performed using the Ime4 package €éBalte2013)in

3.3.1 (R.Development Core Team, 2016).

Results

Fifty-five of theinitial 6514 papersere relevant at the futext level(see
AppendixS1), and we extracted 129 individual- and 370 populaléwel response
ratios (499 total) from these papers. The majority of stfdmssed on the effects of
adding woody debris and forestry clearing, and most studies were conducted in North
Americaand Europgewith a small number from South America and Australia (Figure
2). Many studies reported effects on multiple trout speéies) multiple impact sites
and/orfor. several years after the alteration.
Sudy design

Thesprimary experimental design used was corntnplact comparisons (Cl:
64%),fellowed by before-after controhpact (BACt 20%) and beforadter (BA
16%). Theoverallaverage time after the riparian alteration when trout monitoring
wasconductedbased on all RRyas8.28years (8.57 SE, range: 0.085 years)
although there was considerakbgiation among the primary drivers analygd@ble
1). Grazing studies hatthe longest (22.9 years) and revegetation studies the shortest

(1.5 years) average interval between riparian change and fish monitoring.

This article is protected by copyright. All rights reserved



10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

Overall responsesto drivers of riparian change

Our mode$ showed that overalltarationsto theriparianzonestrongly
affectedpopulationleveltroutresponse$AIC ;. null model(no driver effectk=5):
955.3 vs. AlG driver model (k=12): 931;1AAIC.: 24.2), but had little effect on
individuallevel responses (Al@wull model(no driver effeck=5): 156.8 vsAIC
driver model (k=10)160.4; AAIC.: 3.6; Figure 3).At a population levelrout
responded positively to increasagshe amount of large woody debris and livestock
exclusion(average increase 8¥7.7% and 66 %, respectivelyand responded
negatively to bushfire and afforestation (average decrease of 67.4% and 88.2%,
respectively)Despite reasonable sample sizea)(RR9, we detected no significant
directionaleffect (95% CI overlapping zero) of forgstlearing, grazingor maraged
canopy removal on trout populatiofiSgure 3). Limited data was available for
studies investigating the effects of revegetation (hhking it difficult to draw
conclusions on the effects ofgldriver. There was no clear effect of any riparian
driver on individual level responses, despite large sample sizes being present for
woody debris addition (20 RRs) and forestry clearing (72 RRS).
Species-specific responses

A'total of 384 of 49%esponse ratiowere resolved to the species lesdd
Table S2.and used in specispecific nodels of driver impact (Figure 4a,b). At the
individual level there was little evidenceaydriver affecting trout (baa negative

response of rainbow trout to bushfirejost likely due to small sample sizes. At the

population level, small sample sizes also resulted in decreased confidence of effect

size magnitude. We did however detect strong positive responses of brook trout

populations to stock exclusion and forestry clearing, positive impacts of woody debris

addition on cutthroat and rainbow trout populations, and negative effects of

afforestation/on brown and rainbow trout populations.

Discussion
Overallresponses to drivers of riparian change

Ourreviewprovides anmportant assessmeat how changes toparian
zones affect trout. In summary, trout populaticesponded positively timcreases in
woody debris and excluding livestock, negatively to bushfires and atitcesand
not consistently to the othdriversof riparian change.

Addinginstreamwoody debris is a common strategy to enhance fish
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populationgHowsonet al., 2012; Stewartt al., 2006; Ronet al., 2015), andan
increasehabitat complexity, provide food or habitat for prey speciealterthe

stream channddy reducing water velocity ahincreasing stream depth and pool
frequency (Keim, Skaugset & Bateman, 2002; Urabe & Nakano, 1088yesults

are consistent with previous work that has demonstrated the benefits of woody debris
to trout(Sweka & Hartman, 2006; Degermana/, 2004; Gustafssoireenberg &
Bergman, 2014; Whitewagt a/, 2010).

We found that trout responded positively to livestock exclusion, likely due to
subsequent.improvements in instream habitat condition. Bank erosion and bare
ground are typically higher in grazed riparian zonesclvbften also have less
woodyvegetation, and fewer shrubs and groundcover plants (Kauffman & Krueger,
1984; Robertson & Rowling, 200 abitat conditions adjacent ¢pazedriparian
zones catbe worse for trout (e.g. less nutrient filtration, less shading) and rédhce
growth and abundan¢®aunders & Fausch, 2012; Summers, Giles & Stubbing,
2005).'Removing livestocikayalsoalter channel geomorphology, improwater
guality and.increase terrestrial food supply (Opperman & Merenlender, 2004;
Kauffman;2002; Saunders & Fausch, 20T2ese changes mapnsequentlyead
to an overallimprovement in the condition of instream habitat for trout..

Trout responded positively to livestock removal, intgrestinglywe did not
observe dogical negative response to grazing. One possibility is that trout respond
differenty to alternativegrazing practices, for example, some less intense methods
(e.g. rotational grazing) may even increase trout biomass relative to more intensively
grazed, or even ungrazed sites (see Saunders & Fausch, 2007; Saunders & Fausch,
2012). Alternatively, the pathways describing degradation and recovery from
livestock may be different (Sarr, 2002). For example, trout respamsgbemore
rapid.following livestock removal relative to the negatiwpactsof grazing. Our
results'provide some support for this notion, given that stock exclusion and grazing
studies«differed considerably in their length (&22.9 years, respectively; Table 1),
and several studies have shown shemtn (<5 years) responsetsstock exclusion
sites(Keller,& Burnham, 1982; Stuber, 1985; Bayley & Li, 2008). However, more
work is needed tavhy this difference in responses was observed

Trout populations responded negatively to afforestation, which typically
involved streamssurrounded by coniferous plantations within the riparian Zbhis.

result was based amly three studies, but demonsésthat troutbiomass and
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densitymay be lower at afforested sitlesth shortly afteafforestationSmith, 1980),
and over longer time framé¢s 40 years; Laura Miserendimbal., 2011; Rees &
Ribbens, 1995). Shoterm responseamay be caused by tledirect effects of
reduced incident radiation on primary productivity, and reductions in terrestrial p
from (oftenexotic)monocultures relative toative vegetation (Smith, 1980; Tierney,
Kelly-Quinn'& Bracken, 1998). In the longtsrm,acidification may occur irstreams
with coniferousafforested riparian zones lovieg instreamproductivity and

impacing trout(Rees & Ribbens, 1995)

Trout populations responded negatively to bushfires, which have the capacity
to dramatically modify habitat conditions for fish (Lyon & O'Connor, 2008; Burton,
2005).Bushfires initially alter water temperatumhemistryand dissolved oxygen
levels and in the longetermreduce woody debris input and riparian cover, and
increasehe inputof sedimentgArkle, Pilliod & Strickler, 2010; Gesswell, 1999;
Bissonet al., 2003). Interestinglytrout populations may recover in the several years
following fire-induced hydrological events thedusedebris flows and shoterm
reductiongn.dissolved oxygefiBurton, 2005; Lyonst al., 2000).Following fire,
thesedisturbancenduced debris flowsay stimulate primary productivity and
subsequently enhance invertebrate biomagh,benefits for highetrophic taxa such
as fish(Harris, Baxter & Davis, 2015). @ bushfire dataset comprised just three
studies (1, 2 and 6 years post fire) but these provide anecdotal support for relatively
rapid poplation recovery. The largest change in average response ratio was between
1 and 2 years post fire (-2.355 to -0.664), with a more gradoaVerybetween 2 and
6 years postfire 0.664 to 0.272)Longer term monitoring isecessaryo better
assess howout respond to extensive bushfires.

No significant responses to managed canopy removatestryclearingwere
detected..Conceptually, these actiaresy modify instream conditiongia increases in
light penetration, water temperature or food availabflyhnson & Jones, 2000;
Wilzbachetal., 2005). In the shotierm, thesealrivers might be expected to have
somenegativeeffects for example, by reducingrrestrialfood resource inputs
(Dineen,"Harrison & Giller, 2007; Kawaguchi & Nakano, 20Gigwever, managed
canopy removal is also used to enhance primary and secondary productivity, and
subsequently fish abundance (e.g. Wootton, 2012). In addition, an opened canopy can
enhance foraging efficiency (Wilzbach, Cummins & Hall, 1986) and the quantity of
aquatic invertebrate food sourcgRiley et al., 2009).1t is likely that the overall lack
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of responses to these changeffects the compx, multi-directional wag that
riparian vegetation influencesstream habitat conditions for trout

Although we assessed the responses of trout to revegetation in our models, the
small number of available studies needs to be considered when interpreting these
results Restoring the function of riparian zones is impor{&diman, Decamps &
McClain, 2010), and suctifortsgenerally involve replantingegetation. However,
the lack of available data to assess the relationship between these efforts and
responses by trout most likely reflects that fact sitieamand ripariarrestoration
projects.are often not monitor@@almeret al., 2005; Brooks & Lake, 2007).

Qverall,we did not detect individudével responses of trout to riparian
drivers¢For several, thereasonly limited data availablgotentially due to the
relative difficulty of quantifying individualevel responses (e.g. survival and growth)
compared to populatiolevel responses (e.g. abundance). Howeaxgrn for those
drivers with adequate datagnesignificantly influenced invidual responseg-or
drivers'that enhanced trout populatioih$s possible thaindividual responses may be
negated.via.density dependent growth/size and survival (Jestkihs1999) It is
alsopossible that drivers of riparian alteration do not influence trout fitness, and any
changeso populations are due to fish moving into areas of new habitavay from
areas where habitat has become unsuitable.

It has traditionally been assumed that habitat is a major limit on fish
population growth and thagstoring habitatsiill increasepopulation size. However,
restorationcouldsimply attract fish frm elsewhergleading to a redistribution of
individuals rather than an increasengt population abundance. This ‘production vs.
attraction’ debate has receivatientionin themarineatrtificial reef literaturge.g.
Lindberg, 1997; Brickhill, Lee & Connolly, 2005pur results provide some
indication.that, at least in the shaéerm,fish productivity is likely to beinaffeced by
woody'debris addition and stock exclusion, and thus, the observed population
enhanecement may bedaectresult of migration and movement. However, the
responsesalmost exclusivelgizeandgrowth) we assessed may be poor indicators of
populationsproductivityandmore work is needed, especially incorporating the
collection of data on survival and reproduction, to examine if trout productivity can
be enhanced by changes to riparian zones.

Speci es-specific responses

In general, therout speciesve studied responded similarlyo each driver of
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riparian change, but we did detscmespeciesspecific variability.The most notable
of these responsésvolved brook trout populations respamglvery strongly to
forestry clearing, whilst albther specieshowed no responsghis resultcomes from
one study (Shepard, 2004), and the obsepesitive responsmay be due tthree
factors Firsly, the impacted siteeceivedmore instream large woody debris; an
alteration we have shown enhances trout populations. Secondly, temperatures in the
cleared streaswere 12 °C higher, potentially advantaging brook trout over native
cutthroat trouthatare weakecompetitos at higher temperatur¢see De Staso Il &
Rahel, 1994)Thirdly, and arguably most importantly, in this study area brook trout
are highly invasive and displace native cutthroat trout. Therefore, batictease in
brook trout and concurrent decrease in cutthroat trout within this region may have less
to do with foresry practices and more to do with these spedidsractions.
Management Iimplications

While efforts to restore or rehabilitate habitats for aquatic anianalsow
commonplacgsuccess stories in terms of changes in biodiversity are rare, even when
habitatcenditions are improvePalmer, Hondula & Koch, 2014; Roni, Hanson &
Beechie; 2008)Current evidence suggestst trout respond positively to some
managementracticesassociated witthe conditiorof riparian zones, especially
livestockexelusion and the addition of-stream woody debris. Documenting when
restoration fails can still be considered a form of success, if these fahakke us to
understand what went wrong and why, and use this to guide future éHaltseret
al., 2005). Oumetaanalysishighlights data limitations that hamper our ability
properly assess trout responses to riparian manageoémthich can be used to
guide future efforts

First, the paucity of experimental data for many of the key drivers of riparian
changemakes it hardo properly assess change anake clear conclusions and
recommendations. Wle our resultsuggestonsistencyamongspecis, life cycle
stagesmandresponggevariables, greataesearch effort angkplication will allow
this to.be'testethorespecifically Indeed, if observed trends hatde,our results
provide valuable evidence for the generalityrotit respoges to riparian change and
managemersctivities.

Second, the longerm data necessary to fully evaluate the impacts of riparian
change aréargely unavailabldéor even the most well-studied drivers. Longgem

datasets allow the temporal trajectories of degradation, and potentially recovery
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following interventions, to be documexk(i.e. ‘degradatiomecovery’ pathways;

Sarr, 2002; Lake, Bond & Reich, 2007). Idealhgge longerm studieshould be
implemented usingeplicatedBefore After Control-Impact designgurrently most
(64%) of the studies madeomparisons between control and restored sites without
sampling-prior conditiongaising the potential that differences between these sites
simply freflect intrinsic betweesite variability.

Our study has provided an important summary of how trout, an economically
and ecologically important group fseshwateffish, respondo alterationgo riparian
zones. We show that there amme significanknowledge and data gaps that hinder
our ability to/properly asses®ut+iparian zondinks. These gapsould no doubt be
even more pronounced for other less charismatic and stindgtdvater fish species.
While fish have clear conceptual links to riparian zqfesey & Arthington, 2003),
many of these links, and how they might change following restoration/rehatuiitati
efforts, are assumed rather than tedtedther work is needed to explore how fish
respond to changes in the riparian zone, especially given that riparian restsrat
amongst.the’most common forms of stream remedigtmvally (Brooks & Lake,
2007), 'and.that humaressures on riparian zones are likely to increase as climate

change progress¢Saponet al., 2013).
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Tablelegends

Table 1uBescriptiors of theeight drivers of riparian change including the type of
controlland impact sitassed to calculate the response ratibe number of papers
(Npapery @nd response rati@Srgs) for eachdriver, and the average length of time

(Mean,.,y and rangeRangee.) Since the change occurred

Figureslegends

Figure 1. Flow diagram showing study selection for systematic review of studies on

the impact of riparian change on trout.
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Figure 2. Worldwide distribution of the location of studies examining trout responses

to changes in riparian zones. The number of papers investigating each driver of

riparian change based on the focal trout species, and the continent were the research

took place. Book trout Galvelinus fontinalis), brown trout §almo trutta), cutthroat
trout (©neorhynchus clarkii), rainbowor steelheatrout (Oncorhynchus mykiss) and
multiplé species (any combination of the previous species or unidentified étg. N
many studiesdcused on multiple (yebhdependentdrivers or multiple species, so
totals hased on the columns will not equal the total number of studies in the

systematic review/metanalysis.

Figure @ Forest plot ofrout individual and populatiolevel responseatios (and their
95% Clson log scalgfor eightdrivers of ripariarchange. Numbers in bracketsxt
to each driver indicate the numberesponse ratiestimategor individuals and
populationsncluded ineachmodel (observations within studies, not individual
papers). Percentages are exponentiated respatios to aid interpretation. See

methods.for.explanation of response ratio calculation.

Figure 4:Forest plot obpeciesspecificresponse ratios (and their 95% Cls on log
scalg for eightdriversof riparianchangedor (a) individual level responses (survival,
growth and size) and (b) population level responses (abundance, biomass and
density).Speciesbrook trout Galvelinus fontinalis), brown trout §almo trutta),
cutthroat trout ©ncorhynchus clarkii), steelheadrout (Oncorhynchus mykiss) and
rainbow trout Oncorhynchus mykiss), Note, not aldrivers areincluded under each
response type categos data was oftemot differentiated to species. See Table S1

for breakdown of sample size peesfes by driver combination.
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Table 1.

Driver Description Control site Impact site Npapers  Nrrs ~ Me€@Neas Ranggears
_ Afforested plantation (often coniferous) that incluc Natural forests _
Afforestation o Afforested sites 3 10 17965 1-435
the riparian zone. and meadows
Bushfire Bushfire that burnt the riparian zone. Before After 3 27 39x04 1-6
) Forestry practices that included harvesting up to ¢ Old growth /
Forestry clearing _ o Logged / cleared 15 170 13.8%1.2 0.1-50
including the riparian zone. natural forest
_ Streams and riparian zones currently impacted by _
Grazing , o Sites not grazed  Sites grazed 8 29 229+39 1-65
livestock (primarily sheep and cattle).
Woody debris -
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