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with COVID-19 incidence in NSW was
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The 2020 COVID-19 outbreak in New SouthWales (NSW), Australia, followed an unprecedented wildfire season
that exposed large populations to wildfire smoke. Wildfires release particulate matter (PM), toxic gases and or-
ganic and non-organic chemicals that may be associated with increased incidence of COVID-19. This study esti-
mated the association of wildfire smoke exposure with the incidence of COVID-19 in NSW. A Bayesian mixed-
effect regression was used to estimate the association of either the average PM10 level or the proportion of
wildfire burned area as proxies ofwildfire smoke exposurewith COVID-19 incidence inNSW, adjusting for socio-
demographic risk factors. The analysis followed an ecological design using the 129 NSW Local Government Areas
(LGA) as the ecological units. A random effects model and amodel including the LGA spatial distribution (spatial
model) were compared.
A higher proportional wildfire burned area was associated with higher COVID-19 incidence in both the random
effects and spatial models after adjustment for sociodemographic factors (posterior mean = 1.32 (99% credible
interval: 1.05–1.67) and 1.31 (99% credible interval: 1.03–1.65), respectively). No evidence of an association be-
tween the average PM10 level and the COVID-19 incidence was found. LGAs in the greater Sydney and Hunter re-
gions had the highest increase in the risk of COVID-19. This study identified wildfire smoke exposures were
associatedwith increased risk of COVID-19 inNSW. Research on individual responses to specificwildfire airborne
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particles and pollutants needs to be conducted to further identify the causal links between SARS-Cov-2 infection
and wildfire smoke. The identification of LGAs with the highest risk of COVID-19 associated with wildfire smoke
exposure can be useful for public health prevention and or mitigation strategies.

© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

The 2020 COVID-19 outbreak affected all Australian states and terri-
tories, with New South Wales (NSW) having a notification rate of 57.3
per 100,000 persons in the context of the national rate of 110.4 per
100,000 persons in 2020 (Australian Department of Health, 2021). The
NSW COVID-19 outbreak began in March 2020, after an unprecedented
wildfire season wheremore than 18million ha of landwere burned be-
tween September 2019 and March 2020. Air pollution has been associ-
ated with a higher risk of COVID-19 in other wildfire affected regions
such as California with a 57% increase in cases after about 4 million ha
of forest were lost in the 2020 wildfires (Meo et al., 2021). Previous re-
search has identified the transmission of coronaviruses via dust parti-
cles and particulate matter (Sedlmaier et al., 2009; Zhao et al., 2019),
and a recent study evidenced the presence of SARS-CoV-2 RNA on out-
door PM, suggesting that it can enhance the persistence of the virus in
the atmosphere (Setti et al., 2020). Wildfire smoke typically contains a
complex mixture of particulate matter (PM), toxic gases, inorganic ele-
ments and ionic constituents, and organic compounds such as polycyclic
aromatic hydrocarbons,methoxyphenol, alkanes and levoglucosan gen-
erated from the burning of biomass fuels (Rager et al., 2021). Many of
these agents have been associated with altered immune responses
that can play a role in increasing the risk of coronavirus infections
(Velazquez-Salinas et al., 2019).

An increased incidence of respiratory infections has been associated
with exposures to pollutants occurring inwildfire smoke, including par-
ticulate matter (PM) and nitrogen dioxide (NO2) (Cohen et al., 2017;
Forouzanfar et al., 2016). Wildfire pollutants also include gases such as
methane (CH4) and carbon dioxide (CO2), and precursors of ozone
(O3), secondary inorganic aerosols and carbonaceous particles that are
potentially associated with respiratory infections (Yang et al., 2021b;
Zhang et al., 2019; Zhang et al., 2013). Recent studies have found a
higher risk of SARS-Cov-2 transmission in areas with exposure to high
levels of CO, PM and O3 in the United States (Meo et al., 2020; Meo
et al., 2021). These exposures are associated with increased number of
COVID-19 cases during and after the wildfires with a higher risk of
COVID-19 infection after two weeks of exposure to PM2.5, and a
cumulative lag-effect of PM10, PM2.5, carbon monoxide (CO) and NO2

(Wang et al., 2020; Zhu et al., 2020). The mechanisms to explain the
higher incidence of COVID-19 after weeks of exposure are not yet
known although multiple studies have found altered levels of leuko-
cytes and immunoregulators such as interleukin 6 and interferon beta
in people and animals weeks and or months after exposure to wildfire
smoke and PM (Chu et al., 2019; Ma et al., 2017; Zhu et al., 2021).

Whereas the exposure towildfire smoke can determine an increased
risk of viral infections, the association of wildfire air pollution with the
outbreak of COVID-19 after the 2019–2020 wildfires in NSW has not
yet been investigated. Previous studies in Australia have estimated an
increased rate of respiratory emergency attendances and hospital ad-
missions during and after wildfires (Chen et al., 2006; Crabbe, 2012;
Ryan et al., 2021; Tham et al., 2009). These studies used data from air
quality monitoring stations that is limited in terms of the range of air
pollutants measured and the few areas covered. NSW has only 57 high
standard air monitoring stations for PM10 and gases occurring in
wildfire smoke, covering an area of 801,150 km2. Despite the
geographical extension of the state, air monitoring stations are located
mostly in highly populated areas. Although air monitoring measures
in NSW are limited in terms of the relatively small number of
2

monitoring stations, the geographic extent of the wildfires can be used
as an alternative indicator of wildfire smoke exposure. Satellite images
can be used to predict PM concentrations using nonlinear models
(Yang et al., 2021a), and have been incorporated to develop satellite-
derived air pollution and climate indicators by efforts that include the
Lancet Commission on Pollution and Health and the NASA Health and
Air Quality Applied Science Team (Anenberg et al., 2020; Reid et al.,
2015). This study aims to investigate whether there was an association
between either PM10 levels or the geographic extent of the 2019–2020
wildfires with the incidence rate of COVID-19 infection in NSW.

2. Methods

The study followed an ecological design, using the NSW Local Gov-
ernment Areas (LGA) as the ecological units. A cross-sectional analysis
was used to assess the association of the LGA-level COVID-19 incidence
rate (ir-COVID-19) with either the percentage of wildfire burned area
(WBA) or the average concentration of PM10 (avg-PM10) in the
2019–2020 bushfire season, as two different proxies of wildfire
exposure.

2.1. Data

The ir-COVID-19 was calculated as the number of new locally ac-
quired COVID-19 cases in the first 5 months of the outbreak (March
2–August 4, 2020) per 100,000 people per LGA of residence, using
data from the NSW Department of Health. Data on PM10 from
monitoring stations using the National Environment Protection
Measure standard, for the period Sept-2019–March-2020 was obtained
from the Department of Planning Industry and Environment, DPIE
(DPIE, 2021). The levels of PM10 associated with wildfires in Australia
are highly correlated with other PM, especially PM2.5, and have been
identified as a consistent indicator of the effects of wildfires (Guo
et al., 2021). In addition, PM10 is the most measured air pollution
indicator in NSWwith significantlymoremonitoring stations compared
to those measuring PM2.5. The avg-PM10 was calculated with an inverse
distance weighting interpolation model in ArcMap v10.6.

TheWBAwas calculated in ArcMap using high resolution raster data
(satellite images, pixel size: 10 m) from the fire extent and severity
mapping data for the same period (DPIE, 2020). The COVID-19 records
did not include individual characteristics therefore the ir-COVID-19
could not be age standardised. To adjust for age and sex, the percentage
of population by sex, and age groups 0–15 years and 65+years was cal-
culated per LGA using the Australian Bureau of Statistics (ABS) census
data (ABS, 2021). Population density was estimated as the proportion
of total population per km2 per 100,000 people per LGA. Other sociode-
mographic data included the Index of Relative Socioeconomic Disad-
vantage (IRSD) per LGA (ABS, 2021) to adjust for socio-economic
status that is considered a significant confounder in analyses of air pol-
lution associated with COVID-19 (Chakrabarty et al., 2021). There were
129 LGAs with an average size of 6208 km2 (quartile-1: 334 km2,
quartile-3: 7141 km2).

2.2. Statistical analysis

Amixed effects Bayesian regression model was used to measure the
association of the ir-COVID-19 with either the avg-PM10 or WBA,
adjusting for sociodemographic and environmental covariates. Bayesian
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models are a robust approach to produce reliable estimates in epidemi-
ological studies that consider health outcomes distributed at geograph-
ical area levels and can provide unobserved parameters of interest using
the posterior probability distribution (Kang et al., 2016). The models
were run in R using the R-INLA package that implements a computa-
tionally efficient approach comparable to Markov Chain Monte Carlo
methods (Rue et al., 2009). Collinearity between the predictors can af-
fect the prediction of the ir-COVID-19 therefore a variance inflation fac-
tor test was used to verify there was no multicollinearity (Menard,
1995). For the i-th LGA, the number of new COVID-19 cases was
modelled as

yi � Poisson λið Þ

with the linear predictor defined on the logarithmic scale for each expo-
sure (avg-PM10 and WBA):

ηi ¼ log λið Þ ¼ α þ βexp exp i þ log popið Þ þ βxXi

þ υi Random Effects modelð Þ

where α is the intercept; exp is either the avg-PM10 orWBA percentage;
pop is the population, included as the offset; υi~N(0,σ2) is the random
effect (i-th LGA); and X represents the list of independent variables
(population density, IRSD, and percentages of females, population 0–
15 years and 65+ years) with their respective regression coefficients
βx. Population density was included on the logarithmic scale to
facilitate the interpretation of the regression coefficients.

As there is important variability in thedistribution of the LGAswith a
higher concentration of smaller and densely populated LGAs in the
greater Sydney region (Fig. 1a), amodel accounting for the spatial struc-
ture of the LGAs was defined as

ηi ¼ log λið Þ ¼ α þ βexp exp i þ log popið Þ þ βxXxi þ si
þ ui Spatial modelð Þ

where s represents the spatial structure and u represents the unstruc-
tured (i.e. random effects) component according to the Besag-York-
Mollie specification (Besag et al., 1991). The spatial structure was de-
fined as an adjacency matrix using a queen specification
(i.e., including all neighbours sharing a borderwith each LGA). This spa-
tial specification is considered optimal (Duncan et al., 2017) and has
been tested for Australian LGAs (Cortes-Ramirez et al., 2021). Allmodels
implemented the default minimally informative priors (Blangiardo
et al., 2013; Rue et al., 2009). Associations were identified if the regres-
sion coefficient credible intervals (CI) did not cross the null value 1. In a
preliminary analysis, the Poisson regression was compared against a
negative binomial and a zero inflated Poisson regressions to assess
overdispersion and zero inflation. All predictors were scaled and the
models were compared using predictive information criteria to identify
the best fit (Millar, 2009; Morales-Otero and Núñez-Antón, 2021).
There were no differences in the associations found in all models com-
pared. Both Poisson models (Random Effects and Spatial models) had
the best fit compared to all other models therefore the Poisson regres-
sion was identified as the best model to estimate the association of ir-
COVID-19 with either avg-PM10 or WBA, adjusting for sociodemo-
graphic covariates (Supplementary material).

Finally, the LGA-specific relative risk compared to thewhole of NSW
and the probability of the risk to be greater than 1 were mapped using
the R-package T-map (Tennekes, 2018) since area-specific estimates
are often mapped to assess the spatial distribution of risk and the prob-
ability of increased risk in specific geographical areas (Richardson et al.,
2004). This study was approved by the Queensland University of Tech-
nology Human Research Ethics Committee (11-11-2020).
3



Table 2
Exponentiated posterior meanwith 95% credible intervals (CI) for the fixed effects of both
the Random Effects and Spatial models.

Random Effects model Spatial model

Posterior mean
(95% CI)

SD Posterior mean
(95% CI)

SD

avg-PM10 1.13 (0.89–1.44) 1.13 1.01 (0.73–1.4) 1.18
Population density 1.47 (1.26–1.73)a 1.06 1.23 (1.01–1.5)a 1.08
IRSD 1.27 (1.02–1.57) 1.12 1.15 (0.9–1.45) 1.13
Percentage females 0.88 (0.68–1.16) 1.15 0.97 (0.75–1.27) 1.14
Percentage 0–15 years 1.11 (0.93–1.31) 1.09 1.02 (0.86–1.2) 1.09
Percentage 65+ years 1.11 (0.85–1.46) 1.15 1.11 (0.85–1.44) 1.14
DIC 470.79 470.70

Wildfire burned area (WBA) 1.32 (1.05–1.67)a 1.09 1.31 (1.03–1.65)a 1.09
Population density 1.50 (1.30–1.76)a 1.06 1.48 (1.24–1.75)a 1.07
IRSD 1.24 (1.01–1.52) 1.11 1.23 (0.99–1.52) 1.11
Percentage females 0.88 (0.68–1.16) 1.14 0.89 (0.69–1.17) 1.14
Percentage 0–15 years 1.14 (0.97–1.35) 1.09 1.14 (0.97–1.35) 1.09
Percentage 65+ years 1.04 (0.81–1.35) 1.14 1.05 (0.81–1.37) 1.14
DIC 467.95 468.18

CI: credible interval|SD: standard deviation|avg-PM10: average PM10 level|IRSD: Index
Socioeconomic Disadvantage|DIC: Deviance Information Criterion.

a 99% CI.
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3. Results

The ir-COVID-19 was higher in most LGAs within the metropolitan
Sydney region and eastern LGAs alongside the coast, compared to the
rest of the state (Fig. 1a). Fig. 1b and c shows the distribution of the
2019–2020 wildfires, the WBA, and the avg-PM10, per LGA. The
descriptive statistics of the ir-COVID-19 and the predictors included in
the analysis are shown in Table 1.

Table 2 shows the fixed effects estimated in the regression models.
An association between WBA and the ir-COVID-19 was found in both
the Random Effects and Spatial models. No association of avg-PM10

with the ir-COVID-19 was identified. Using the unscaled mean of
WBA, the regression coefficients are interpreted as that each 1.8% in-
crease in the WBA was associated with 32% and 31% increased risk of
COVID-19 in the Random Effects and Spatial models respectively, after
adjusting for sociodemographic factors. Therewere no important differ-
ences in the goodness-of-fit between the models with WBA and avg-
PM10, and very small goodness-of-fit differences between the Random
Effects and Spatial models for either WBA or avg-PM10 (DIC values
were close). A higher population density was associated with increased
ir-COVID-19 in all models.

Fig. 2 shows the spatial distribution of the LGA-specific relative risk
of COVID-19 compared to the whole of NSW after adjustment for avg-
PM10 and WBA and sociodemographic risk factors respectively (a and
c); and the probability of the risk to be greater than 1, in the Spatial
Models with PM10 and WBA (b and d). A greater ir-COVID-19 increase
(LGA-specific risk >2.5 and CI not crossing 1) associated with avg-
PM10 was found in LGAs in the greater Sydney region (Blue
Mountains, Penrith, Waverley) and the Hunter region (Mid-Coast). An
increased probability of a positive association of avg-PM10 with ir-
COVID-19was identified in LGAs close to coastal areas, with the highest
probability (>98%) in Shoalhaven, Liverpool, Penrith, Waverley, Blue
Mountains and Mid-Coast. A greater association of WBA with ir-
COVID-19 (LGA-specific risk >2.5 and CI not crossing 1) was found in
LGAs in the greater Sydney region (Penrith, Waverley) and the Hunter
region (Mid-Coast). A higher probability of a positive association be-
tween WBA and ir-COVID-19 was identified in LGAs in the Southeast
and Tablelands, greater Sydney, Hunter and New England Norwest re-
gions with the highest probability (>98%) in Liverpool, Penrith,
Waverley and Mid-Coast.

4. Discussion

Weestimated an increase of the COVID-19 incidence rate (ir-COVID-
19) associated with a higher percentage of wildfire burned area (WBA)
in NSW, after adjusting for sociodemographic factors. We did not find
evidence of an association between higher average PM10 levels and
the ir-COVID-19. Using a spatial regression, we identified the local gov-
ernment areas (LGAs) in the greater Sydney and Hunter regions show-
ing a stronger association between WBA and ir-COVID-19 compared
with thewhole of NSW. Our findingsmay indicate that exposure to pol-
lutants in wildfire smoke increases the risk of COVID-19 infection. Toxic
Table 1
Summary of the COVID-19 cumulative incidence and sociodemographic risk factors.

Mean St. dev

ir-COVID-19a 13.4 24.9
Average PM10 concentration (avg-PM10) 33.2 4.6
Wildfire burned area (WBA)b 0.9 1.8
Population density 707.3 1568.0
Index Relative Socioeconomic Disadvantage (ISD) 976.6 73.9
Percentage females 50.3 1.3
Percentage 65+ years 18.8 2.4
Percentage 0–15 years 19.1 5.0

a Per 100,000 persons, in the period 02-03-2020–04-08-2020.
b Proportional burned area.
c Percentile.

4

gases and airborne particles released in wildfires have been associated
with higher incidence of COVID-19 in other regions severely affected
such as California (Meo et al., 2021). The increased risk of COVID-19 in
areas affected by the unprecedented 2019–2020 wildfire season in
NSW identified in our study concur with previous research that esti-
mates the association of wildfire pollutants with SARS-Cov-2 infection
(Meo et al., 2020; Meo et al., 2021).

We used high resolution images (pixel size: 10 m) to calculate the
proportional burned area as an indicator of wildfire smoke, a known ap-
proach to estimate wildfire air pollution, different to other indicators
such as PM measures (Anenberg et al., 2020; Reid et al., 2015). Using
PM measures in NSW is challenging given the larger and uneven geo-
graphical extension of the LGAs and the scant and highly concentrated
distribution of monitoring stations around the most populated areas.
Ameasure such as theWBA is an alternative indicator of themix of pol-
lutants in wildfire smoke (Reid et al., 2015). Our findings identified an
increased incidence of COVID-19 in NSW areas where polluting agents
occurring in wildfires would have higher concentrations. Wildfires air
pollutants include gases and chemical compounds such as polycyclic ar-
omatic hydrocarbons, in addition to airborne particles, that can increase
the risk of respiratory infections (Rager et al., 2021). Epidemiological
studies have consistently estimated the association of COVID-19 with
wildfires air contaminants, especially PM (Chakrabarty et al., 2021;
Navarro et al., 2021; Wang et al., 2020). Although we did not find a sta-
tistical association of PM10 concentration with the COVID-19 incidence,
this might be because the PM10 levels were calculated with a spatial
interpolation model that could not provide highly accurate estimates,
while the WBA is an indicator of PM amid other air pollutants.
. Min Pctlc-25 Pctl-75 Max

0.0 0.0 18.8 217.0
22.5 29.0 36.9 40.5
0 0 0.4 8
0.01 1.5 304.3 7791.8

818 932 997 1166
43.2 49.9 51.1 53.7
6.7 17.1 20.5 23.9
8.2 14.9 22.3 30.6



Fig. 2. Spatial distribution of the LGA-specific relative risk and probability of excess risk of COVID-19 in NSW. LGA: local government area. WBA: wildfires burned area. Insetmap: Greater
Sydney region.
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The higher incidence of COVID-19 weeks after the occurrence of the
wildfires shows a lagged association between the wildfire smoke expo-
sure and the higher risk of SARS-Cov-2 infection. Previous research has
identified that multiple agents released inwildfires are linked to altered
biological mechanisms with potential effect on later viral immune re-
sponses (Rager et al., 2021; Velazquez-Salinas et al., 2019). For example,
higher levels of PM are significantly associated with increased blood
levels of interleukin-6 (IL-6) in people exposed to ambient air pollution
over short and long-term (Zhuet al., 2021). This cytokine is produced by
immune system cells such as macrophages, and B and T cells to start a
cascade of events promoting the transcription of genes linked to cellular
signalling processes in the inflammatory response to viral infections
(Velazquez-Salinas et al., 2019). In-vitro studies have identified that
PM also induces the production of other pro-inflammatory cytokines
such as IL-8 and Tumour Necrosis Factor alpha involved in signalling
events leading to necrosis or apoptosis and the initiation of chemotaxis
and phagocytosis (Shahbaz et al., 2021). If the exposure to wildfires
agents in NSW was associated with biological mechanisms linked to
the cytokine cascade and altered blood interleukin levels, the immune
5

response of people living in areas affected by the wildfires could have
been compromised (Wu et al., 2015).

Multiple epidemiological studies have shown that these immune re-
sponses are dose-related, with higher levels of pro-inflammatory cyto-
kines present after PM exposures ranging from 1 day to several years
(Zhu et al., 2021); and animal studies have identified increasing levels
of pro-inflammatory cytokines and cumulative lung damage after 15
to 90 days of exposure to PM and carbon black particles (Chu et al.,
2019; Ma et al., 2017). The severe and long-term exposure of the NSW
population to airborne pollutants in the 2019–2020 wildfires could
have played a role in the later spread of COVID-19 infections, linked to
immune mechanisms. Other chemicals occurring in wildfires such as
polycyclic aromatic hydrocarbons (PAH), methoxyphenol and alkanes
are also associated with abnormal immunological responses. Higher
PHA levels have been associated with incongruent immune response
against viruses such as measles and hepatitis B in studies of vaccine in-
duced immunity (Andrews et al., 2021; Nilamsari et al., 2020). Some
species of methoxyphenol and alkanes have been found to induce im-
munosuppression and enhance pathogenicity of some gram-positive



J. Cortes-Ramirez, R.N. Michael, L.D. Knibbs et al. Science of the Total Environment xxx (xxxx) xxx
bacteria and to mediate oxidative stress during influenza A virus infec-
tion in insects and in-vitro studies respectively (Mollah et al., 2021;
Schivo et al., 2014). The above studies support the possibility of an in-
creased risk of viral infections after lagged exposures to airborne parti-
cles and chemicals occurring in wildfires via impaired immune
responses. However other potential factors mediating the SARS-Cov-2
infection such as social interaction and or mobility between at risk pop-
ulation groups, comorbidities and individual susceptibility can play a
determinant role in a COVID-19 outbreak. Although the association be-
tween wildfires smoke and COVID-19 incidence found in this study
might be partially explained by alterations in the immune response of
infected individuals, further research is required to assess individual
biomarkers associated with wildfires air pollutants to determine their
causal links with COVID-19 infection.

Our analysis also estimated the LGA-specific effects, a valuable addi-
tion to the fixed effects that can be used to identify spatial patterns of
risk of COVID-19 across NSW. A higher risk was found in LGAs in
north regions, beside LGAs with larger proportional area burned and
highly populated in the greater Sydney and Hunter regions. This repre-
sents the variability of the effect of the wildfire exposures between
LGAs, after considering the LGA spatial structure and adjustment for
sociodemographic factors. Since the whole posterior distribution can
be used to estimate the uncertainty associatedwith the LGA-specific re-
gression coefficients, we identified the LGAs in these regions with the
highest probability of excess risk (relative risk >1). These estimates
can be used as proxies of higher risk of COVID-19 incidence per LGA as
done in previous research to rank geographical areas and set disease
mapping decision rules to prioritize screening and detection
(Courtemanche et al., 2015). Although less conservative rules can be
set (Richardson et al., 2004), we highlighted LGAs with an excess risk
over 98% that match LGAs with a posterior mean greater than 2.5. An-
other important finding was the association of population density
with the COVID-19 incidence. This concurs with previous research
that identifies population density as a relevant factor to be included in
analyses to determine the risk of COVID-19 infection (Bhadra et al.,
2020; Coskun et al., 2021; Kadi and Khelfaoui, 2020; Rashed et al.,
2020). These studies found a significant association between population
density and SARS-Cov-2 infection although did not adjust for sociode-
mographic covariates. Our models were adjusted for important factors
such as relative socioeconomic disadvantage, sex, and younger and
older population groups (<15 and >65 years) to produce an estimate
of the COVID-19 incidence associatedwithWBA. Given the predicted in-
crease in severity and frequency of wildfires in Australia and globally
(Beggs et al., 2019), our findings can be used to inform policy making
and support public health strategies aimed at curbing COVID-19 and
other respiratory infections associated with wildfire pollution.

4.1. Limitations

A limitation of this study was the lack of covariates at the individual
level within the data available. The inclusion of these variables would
have allowed the identification of comorbidities and individual patterns
of exposure that have an important effect on the incidence of COVID-19
infection. An ecological studywas therefore used to address the absence
of individual level variables, using LGAs as the ecological units. This
allowed the estimation of spatial trends using spatial regressions for
some of the models. However, using LGA-aggregated data carries a
risk of ecological bias (i.e., the potential to miss confounding factors at
the group level that may produce spurious associations). To reduce
this risk of bias, we adjusted for known sociodemographic factors in-
cluding socioeconomic indicators and population percentages for sex
and relevant age groups. We also implemented a mixed effects model
that can reduce the risk of ecological bias (Wakefield, 2009) and in-
cluded a Bayesian spatial regression that incorporates a spatial compo-
nent to smooth estimates between geographical areas and increase
the robustness of the regression coefficients (Kang et al., 2016).
6

Nevertheless, our findings provide statistical estimates of association
but are not measures of causality between wildfire smoke exposures
and COVID-19 infection.

5. Conclusions

A proportional increase of the area affected by wildfires, used as a
proxy of the exposure to wildfire smoke, was associated with a higher
COVID-19 incidence in NSW. Local Government Areas in the greater
Sydney and Hunter regions were shown to have a higher increase in
COVID-19 incidence compared to thewhole of NSW. The use of wildfire
burned area as an alternative indicator of wildfire smoke exposure can
be helpful to identify patterns of higher risk in spatial epidemiological
analyses to support decisionmaking in the prevention and ormitigation
of future health impacts of wildfires. Further research on individual re-
sponses to specificwildfires chemicals is necessary to identify the causal
links between SARS-Cov-2 infection and wildfires air pollution.

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.scitotenv.2021.151158.
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