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Abstract 
In DNA microarray experiments, discovering groups of genes that share similar transcriptional 
characteristics is instrumental in functional annotation, tissue classification and motif identification. 
However, in many situations a subset of genes only exhibits a consistent pattern over a subset of conditions. 
Although used extensively in gene expression data analysis, conventional clustering algorithms that 
consider the entire row or column in an expression matrix can therefore fail to detect useful patterns in the 
data. Recently, biclustering has been proposed as a powerful computational tool to detect subsets of genes 
that exhibit consistent pattern over subsets of conditions. In this article, we review several recent patents in 
bicluster analysis, and in particular, highlight a recent patent from our group about a novel geometric-based 
biclustering method that handles the class of bicluster patterns with linear coherent variation across the row 
and/or column dimension. This class of bicluster patterns is of particular importance since it subsumes all 
constant, additive, and multiplicative bicluster patterns normally used in gene expression data analysis. 

Keywords: biclustering, cluster analysis, multidimensional data analysis, gene expression data, 
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Introduction 
In DNA microarray experiments, discovering groups of genes that share similar transcriptional 
characteristics is instrumental in functional annotation, tissue classification and motif identification [1, 2]. 
Traditional cluster analysis of gene expression data detects groups of genes that share similar expression 
patterns across all conditions (or time points). However, in many situations, an interesting cellular process 
is active only under a subset of conditions, or a single gene may participate in multiple pathways that may 
or may not be co-active under all conditions [3, 4]. In addition, the expression data to be analyzed often 
include many heterogeneous conditions from many experiments. In these instances, it is often unrealistic to 
require that related genes behave similarly across all measured conditions or time points. Conventional 
clustering algorithms, such as the k-means clustering [5], hierarchical clustering [6] and the self-organizing 
map [7], therefore, cannot produce a satisfactory solution.  
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By relaxing the constraint that related genes must behave similarly across the entire column, “localized” 
groupings can be discovered readily. Biclustering allows us to consider only a subset of conditions when 
looking for similarity between genes. The goal of biclustering is to find submatrices in the dataset, i.e. 
subsets of genes and subsets of conditions, where the subset of genes exhibits significant homogeneity 
within the subset of conditions according to some homogeneity criteria. Fig. 1 shows the conceptual 
difference between traditional clustering and biclustering. Traditional clustering considers the entire set of 
conditions when clustering similar genes, whereas biclustering considers subset of genes and subset of 
conditions simultaneously. In Fig.2, we present an example where conventional hierarchical clustering fails 
but biclustering works. Fig.2a shows a data matrix, which appears random visually even after hierarchical 
clustering. However, if we permute the rows and columns appropriately as in bicluster analysis, a hidden 
pattern embedded in the data would be uncovered as shown in Fig.2b. 

 

 
Fig.1 Conceptual difference between cluster analysis (left) and bicluster analysis (right) 

 

 
 (a)   (b) 

Fig.2 An example where conventional clustering fails but biclustering works: (a) a data matrix, which 
appears random visually even after hierarchical clustering. (b) A hidden pattern reviewed by appropriate 

permutation of subset of rows and columns 

 

Bicluster Analysis of Gene Expression Data 
In the past decades or so, many algorithms have been proposed for gene expression bicluster analysis [8-
28]. The class of distance based biclustering is among the earliest biclustering algorithms proposed for gene 
expression data analysis [8-10]. In distance based biclustering, iterative search for the subsets of row and 
column indices that minimizes certain residual sum of squares cost is typically employed and the quality of 
the biclusters is measured by certain distance based metric. For example, in the δ-biclustering algorithm of 
Cheng and Church (CC) [8], a bicluster is one that minimizes the mean squared residue H score 
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are the row and column means and the mean in the submatrix B=(X, Y), respectively. A bicluster is called a 
δ-bicluster if H(X, Y)≤δ for some δ>0.  

Another class of biclustering algorithms assumes a probabilistic model of biclusters and applies statistical 
parameter estimation techniques to search for the biclusters [11, 12, 13]. For example, Gu and Liu [13] 
proposed a Bayesian biclustering algorithm (BBC) for gene expression data which is based on a generative 
data model given by 

  ( )( ) ⎟
⎠
⎞

⎜
⎝
⎛ ∑−+∑ +++=

==

K

k
jkikij

K

k
jkikijkjkikkij ea

11
1 κδκδεβαμ    (2) 

where K is the total number of clusters (unknown), μk is the main effect of cluster k, αik and βjk are the 
effects of gene i and sample j respectively in cluster k, εijk is the noise term for cluster k, and eij models the 
data points that do not belong to any cluster. Here, δik=1 indicates that gene i belongs to cluster k, and δik= 0 
otherwise. Similarly, κjk=1 indicates that sample j is in cluster k, κjk= 0 otherwise. Gibbs sampling method 
is used for statistical inference in BBC.  

Recently, we proposed a class of geometric-based biclustering algorithms based on a spatial interpretation 
of biclusters [14, 15]. In geometric-based biclustering, the problem of identification of coherent sub-
matrices within a data matrix is formulated as the detection of linear geometric patterns (lines, planes, or 
hyperplanes) in a multidimensional data space [14]. For example, given a matrix DN×3 represented as N 
points in a 3D space, a bicluster is given by a plane in the 3D space as shown in Fig.3. Unlike many 
existing biclustering algorithms which can only handle one specific type of bicluster patterns, i.e. constant, 
additive, or multiplicative biclusters, the geometric-based biclustering algorithms could detect bicluster 
patterns with linear coherent variation across the row and/or column dimension. Fig.4 shows the types of 
linear bicluster patterns that could be detected by geometric-based biclustering. Linear coherent bicluster 
pattern is of particular importance since it subsumes all constant, additive, and multiplicative biclusters 
normally used in gene expression data analysis. The ability to detect linear coherent biclusters means that 
unlike CC and BBC which are unable to detect multiplicative biclusters, geometric-based biclustering can 
simultaneously detect constant, additive, and multiplicative biclusters in the data matrix. 

 

 
Fig.3 A plane formed by points in a bicluster in the three-dimensional data space where dark grey dots are 

data located on the plane 
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Fig. 4 Examples of different linear bicluster patterns: (a) constant values, (b) constant rows, (c) constant 
columns, (d) additive coherent values, (e) multiplicative coherent values, and (f) linear coherent values 

 

In bicluster analysis, the elements of a data matrix are usually of numerical values but they can also be 
transformed into symbols that reflect trends in the data. The symbols can be purely nominal, of a given 
order, or encode positive and negative changes relative to a normal value. In the class of algorithms that 
attempt to find biclusters of coherent evolution, one is actually not interested in the exact numerical value 
of the bicluster but is instead interested in finding subsets of genes and conditions that exhibit coherent 
trend of expression. Fig.5 shows some examples of biclusters with coherent evolution. Several biclustering 
algorithms have been proposed to find patterns with coherent evolutions [16, 17, 18]. For example, Tanay 
et al. [16] introduced SAMBA (Statistical-Algorithmic Method for Bicluster Analysis) to detect the 
biclusters of coherent evolution. The data matrix is modeled as a bipartite graph. Discovering the most 
significant biclusters is equivalent to the selection of the heaviest subgraphs in the bipartite graph. SAMBA 
assumes that regardless of its true values, aij can be represented by two symbols: S0 or S1, where S1 means 
change and S0 means no-change. As such, the model graph has an edge between a row and a column when 
the gene is significantly changed with the sample. A large bicluster is, in this case, one with a maximum 
number of rows whose symbol for aij is expected to be S1.  

 

 
Fig.5 Types of biclusters with coherent evolution. Considering the entries of a data matrix as symbols, (a) 

an overall coherent evolution, (b) a coherent evolution on the rows, (c) a coherent evolution on the columns, 
(d) a coherent sign change across rows. 

 

The intense research effort in biclustering analysis has resulted in many software packages being developed. 
Below is a list of some of the publicly available biclustering software.   

• BBC [13] from http://www.people.fas.harvard.edu/~junliu/BBC/ 
• FLOC [9] in ‘BicARE’ from http://www.bioconductor.org/packages/2.8/bioc/html/BicARE.html  
• Bimax [26], CC [8], Plaid model biclustering [11], Spectral biclustering [28], Xmotifs [18]  in the 

R package called ‘biclust’ from https://r-forge.r-project.org/projects/biclust/  
• CTWC [10] from http://ctwc.weizmann.ac.il/process.aspx 
• bioNMF biclustering [27] from http://bionmf.cnb.csic.es/ 
• SAMBA [16] from http://acgt.cs.tau.ac.il/expander/ 
• BiVisu [19, 20] from http://www.eie.polyu.edu.hk/~nflaw/Biclustering/ 

 
Evaluating the performance of biclustering algorithms and validating the biclustering results is a 
challenging problem due to the different bicluster patterns to be detected, the different criteria used, and the 
different goals in biclustering. Common validation strategies for biclustering results include index based 
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validation, validation using domain knowledge, and statistical testing. In index based validation, a 
performance index that measures the compactness of the biclusters (if ground truth is unknown) or a score 
that measures the agreement between the detected biclusters and the ground truth (which is available in 
simulation study) is often used. In validation using domain knowledge, the p-values can be computed for 
validation to see whether a detected bicluster is statistically enriched with respect to some known facts 
about the data. The p-value measures the probability of including objects of a given category in a bicluster 
by chance. Thus, an overrepresented bicluster, for example, a bicluster with a high proportion of genes 
engage in a particular biological process, is a bicluster of objects which is very unlikely to be obtained by 
chance. In statistical testing, the statistical significance of a biclustering result is evaluated by comparing 
the result to a random partitioning of the data matrix. To date, there is a lack of comprehensive evaluation 
study on the performance of different biclustering algorithms, and no algorithm clearly stands out among 
the others [26]. This is perhaps due to the difficulty of defining what is meant by the “best” algorithm, 
similar to the situation in traditional clustering techniques [32]. Further work is clearly needed here. 
 
 
Recent Patents on Biclustering Algorithm 
In the 2006 US patent application by Parida [21], a method that detects fuzzy biclusters in DNA microarray 
data was presented. The method aims to detect maximal biclusters with column elements that do not 
deviate from each other by more than a given threshold δ. In this method, two elements x1 and x2 in a data 
matrix M is deemed to be “equal” if their different is smaller than δ. In Parida’s method, a bicluster is 
parameterized by a pattern m and a location list  Lm as follows. A pattern m is a collection of columns of the 
form m = {Cj1=X1, Cj2= X2, …, Cjl= Xl } occurring at row i if the elements M(i, ja) are equal to Xa for all ja 
∈ { j1, j2, …, jl}, where M(i, ja) denotes element of the data matrix M at row i and column ja. The value Xk at 
column Cjk  are given by the average of all values in that column at row indices given by Lm, where Lm is 
defined as the collection of rows which satisfy the pattern m. In other words, the elements of each column 
of Parida’s bicluster do not deviate from the mean value of that column by more than ±δ/2, or equivalently, 
the difference between the maximum and minimum value in the column does not exceed δ. One can see 
that Parida’s fuzzy bicluster is a generalization of the noisy constant bicluster (i.e. where every element in 
the bicluster cannot deviate by more than ±δ/2 from the global mean of the bicluster) in that each column in 
Parida’s bicluster is allowed to have its own mean. Obviously, Parida’s biclustering method is capable of 
discovering the constant and additive bicluster patterns shown in Figs.4a-4d but not the patterns shown in 
Figs.4e and 4f. 

In the 2008 US patent application by Lepre [22], a method that detects biclusters in a data matrix using a 
three phase process is described. The main idea behind Lepre’s method is to find subset of rows that allows 
partition of columns into clusters using a conventional clustering algorithm. Given a data matrix of, say, 
genes (row) and samples (column), in phase one of Lepre’s method, an estimate of the probability density 
function (pdf) of each gene is done by fitting a mixture of Gaussians components to the histogram of 
samples in the gene. To illustrate Lepre’s idea, in Fig.6 top panel we show a 1D signal generated by the 
following model: a values of 10 from samples 1 to 300, a value of 5 from samples 301 to 900, and a value 
of 15 from samples 901 to 1000, and finally, the sample points are corrupted with Gaussian noise of N(0,1) 
and randomized in position to give the signal shown in the middle panel. The bottom panel shows the 
normalized histogram of the randomized signal. From the histogram, we see that its samples formed 3 
clusters, with the cluster means at 5, 10, and 15. The histogram could in fact be approximated by a mixture 
of 3 Gaussians of N(10,1), N(5,1), and N(15,1). After fitting a mixture of Gaussians components to the 
histogram, each sample in the gene is assigned to the Gaussian cluster (i.e. the Gaussian component) that 
maximizes the probability. In the second phase, subsets of related genes are group together as follows. 
Suppose the pdf of a gene g consist of 3 Gaussian mixtures, i.e. 3 Gaussian clusters, from phase 1. Three 
elementary patterns, π1, π2, and π3, that correspond to the 3 Gaussian clusters are generated by setting the 
entries in the πk pattern to 1 if the samples of g at those positions belong to cluster k, or 0 otherwise. 
Effectively, these elementary patterns are indicator functions (i.e. vectors of 1’s and 0’s) that indicate 
whether the samples belong to the particular Gaussian cluster or not. Fig.7 shows the 3 elementary patterns 
that correspond to the 3 Gaussian clusters detected in the signal of Fig.6. The elementary patterns are 
shown as images for ease of visualization. 
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Fig.6 Top panel: A generated 1D signal, middle panel: the randomized signal, bottom panel: the histogram 
of the randomized signal.  

 

 
Fig. 7. Three elementary patterns for the 3 Gaussian mixture components of the randomly permuted signal 
shown in Fig.6. First pattern corresponding to the cluster centered at 5, second pattern corresponding to the 
cluster centered at 10, and the third pattern corresponding to the cluster centered at 15. White line at a 
location means that the sample at that location belongs to the cluster of concern while black line means 
otherwise. 
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In Lepre’s method, only the elementary patterns from Gaussian components that satisfy a tightness criterion, 
i.e., the standard deviation of the Gaussian component is smaller than a threshold, are retained. Each gene 
generates M elementary patterns that correspond to the M mixture components, and the elementary patterns 
from all genes in the data matrix collectively form the pattern space. Hierarchical clustering is then 
performed on the pattern space to find clusters of elementary patterns that have significant overlap in the 
positions of 1’s and 0’s. The genes that correspond to a cluster of elementary patterns then constitute a 
subspace for phase 3. In phase 3, each subspace (i.e. group of genes) undergoes a conventional multivariate 
Gaussian mixture analysis. Suppose one of these subspaces contains 5 genes where each gene contains 100 
samples, then the subspace is a matrix of 5×100 and the input data to the multivariate Gaussian mixture 
analysis is a 5D vector obtained from the columns of the 5×100 matrix. The multivariate Gaussian mixture 
analysis is done using the EM algorithm and the optimal number of mixture components K is determined 
using the BIC score. After multivariate Gaussian mixture analysis, the samples in the subspace are assigned 
to the cluster that maximizes the probability. Each of these K clusters in the subspace then defines a 
bicluster in the original data matrix. It can be seen that Lepre’s method is really a two stage clustering 
process and the biclustering is indirectly induced from performing conventional clustering in the subspace 
of related rows in the original data matrix. Lepre’s method assumes that the pdf of each gene in the data 
matrix can be approximated by a mixture of Gaussian components. Hence, only constant value biclusters or 
constant rows biclusters can be detected in the data matrix. Moreover, the gene has to have sufficient 
number of samples (i.e. the number of columns in the data matrix cannot be too small) in order for the pdf 
to be estimated adequately by a mixture of Gaussians. Finally, it is easy to see that the detected biclusters in 
Lepre’s method cannot overlap in position in the data matrix. Lepre did not provide any specific example to 
illustrate the performance of the algorithm in biclustering gene expression data although it was noted that 
the method can be applied to analyze gene expression data matrix. 

In 2009, a US patent was granted to Domany et al. on a biclustering algorithm called coupled two-way 
clustering (CTWC) [23]. CTWC is a framework that can be used to build a biclustering of a 2D data matrix 
base on iterative application of one-way clustering algorithm [10]. CTWC repeatedly performs one-way 
clustering on the rows and columns of the data matrix using stable clusters of genes and samples from the 
previous iteration as attributes. The iterative procedure of CTWC runs as follows. First, clustering is done 
row-wise and column-wise using the full data matrix, i.e., the full set of genes (g0) and the full set of 
samples (s0), to identify stable clusters of genes (g1

i) and samples (s1
j). A cluster is considered stable if it 

meets certain criteria such as how well it corresponds to a known classification or how well separated the 
level of expressions of the cluster is to other clusters according to some test statistics such as t test [10]. 
These stable clusters of genes {g0, g1

i} and samples {s0, s1
i} are recorded in the gene cluster list G or the 

sample cluster list S accordingly. Then at the next iteration, every pair of (gm
i, sn

j) ∈ (G × S) where m, n ∈ 
(0,1), which defines a submatrix of the expression data consisting of subset of genes gm

i and subset of 
samples sn

j, undergoes row-wise clustering to obtain further stable gene clusters (g2
k) and column-wise 

clustering to obtain further stable sample clusters (s2
l). Whenever a clustering operation generates new 

stable gene clusters or new stable sample clusters, these new clusters are added to the gene cluster list G or 
the sample cluster list S accordingly. Together with the new clusters, information about the pair of parent 
clusters (gm

i, sn
j) that were used to generate them was recorded as well.  These steps are iterated further, 

using pairs of all previously found clusters until no new clusters that satisfy some criteria of stability and 
minimum size can be found.  

Two examples illustrating the benefit of using CTWC to analyze gene expression data were provided in the 
patent. In the first example, the leukemia dataset of Golub et al. [2] with 72 samples collected from acute 
leukemia patients at the time of diagnosis was analyzed. Using CTWC, it was possible to reveal the 
connection between T-cell related genes and allows the sub-classification of the ALL samples into T-ALL 
and B-ALL in an unsupervised manner. In addition, a stable partition of the AML patients into two groups 
was also found. The first group contained patients who were treated (with known results) and the second 
group contained all other patients.  In the second example, the gene expression profiles of 40 colon tumor 
tissues and 22 normal colon tissues from the dataset of Alon et al. [29] were analyzed. It was found that the 
samples readily partition into clusters of tumor and normal tissues. It was also revealed that when the 
expression profiles were considered over only the tumor tissues, a cluster of cell growth genes was found to 
be highly correlated with epithelial genes. 
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In the US patent granted to Fan et al. in 2009 [24], a method for detecting biclusters of shift pattern is 
described. The method attempts to find subsets of columns where the corresponding subsequences from a 
dataset exhibit similar shift pattern (see Fig.8). To measure the distance between two shifting patterns x and 
y, the following distance is used 

   )()(max),(, kkiiSiSk yxyxyxdist −−−=
∈

    (3) 

where S is the subset of columns over which the pattern similarity is evaluated, k ∈S is the dimension used 
for normalization. The intuition behind Eqn. (3) is illustrated in Fig.9 as follows. Let S = {k, a, b, c}. With 
respect to k, the distance between x and y in S is less than δ if the difference between x and y on any 
dimension in S is within Δ±δ, where Δ is the difference of x and y in dimension k. Although with a different 
choice of k, the distance between x and y in S will be different, it is bounded by 2δ. It is clear that Fan’s 
method attempts to find clusters of subsequences in S that are related by a constant shift in value. Hence it 
is capable of detecting constant and additive bicluster patterns shown in Figs.4a-4d but not the patterns 
shown in Figs.4e and 4f. 

 

 
Fig.8 A shifting pattern in subset of columns {B, C, H, J, L} 

 

 
Fig.9 The intuitive meaning of distk,S(x,y) ≤ δ in Fan’s method 

 

Fan’s patent proposes a tree structure that provides a compact summary of all of the frequent patterns in a 
dataset. The tree structure allows efficient determination of the frequency of occurrence of any specified 
pattern, which is equivalent to finding biclusters of objects sharing similar patterns in a particular subset of 
columns. The method has been shown to be able to handle very large dataset due to the efficient tree 
structure proposed. As an example, the method was applied to the yeast microarray dataset as well as the 
mouse microarray dataset. However, no analysis as to the biological significance of the discovered 
biclusters was given. 

In a 2010 US patent granted to Gan et al. [25] from our group, a new geometric framework for biclustering 
was proposed.  In this framework, each gene expression profile (i.e. each row) is viewed as a point in a 
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high dimensional data space, with the dimension of the space corresponds to the number of columns in the 
data matrix. In this viewpoint, the problem of biclustering becomes that of detecting dense clusters of 
points in the high dimensional data space. By restricting the class of bicluster patterns to be of the linear 
coherent model type, such as in the example shown in Fig.4, the dense clusters of points can be shown to 
lie on a linear structure, i.e. lines, planes, or hyperplanes, in the high dimensional data space. The problem 
of biclustering then becomes that of detecting hyperplanes in the data space. Unlike many existing methods, 
the geometric based biclustering can simultaneously detect constant, additive, and multiplicative biclusters 
in the data matrix. The geometric framework of the algorithm in [25] can be visualized easily using data 
matrix with only 3 columns: x, y, z. In a 3D space, if we denote the three measurements as x, y and z 
respectively, and assume a bicluster covers x and z only as shown in Fig.10, we can generate 3D geometric 
views for different patterns as shown in Fig. 11.  

 
Fig.10 Columns x and z constitute bicluster of: (a) constant values: x = z = 1.2, (b) constant rows: x = z, (c) 
constant columns: x = 1.2, y = 1.5, (d) additive coherent values: z = x − 1.0, (e) multiplicative coherent 
values: z = 0.5x, and (f) linear coherent values: z = 0.5x + 0.1, in 3D data space 

 

In the geometric-based biclustering algorithm, the Hough transform (HT) is used to detect hyperplanes that 
correspond to biclusters in the high dimensional data. The HT is a powerful technique for line detection in 
noisy 2-D images and for plane detection in noisy 3-D signals and is widely used in pattern recognition. In 
the HT, each feature point in the data space generates “votes” for a set of parameter space points.  An area 
in the parameter space containing many mapped points is suggestive of a hyperplane in the observed data 
space. The basic idea is as follows. Let {F1, F2, …, FM} denotes the coordinates of M arrays (samples). For 
each gene j {j = 1, 2,…, N}, the expression vector is given as [F1(j), F2(j), …, FM (j)]. Suppose that among 

all the observed data, there exists a target hyperplane with plane equation given by M

M

i
iiM FF ββ += ∑

−

=

1

1

, 

where {F1, F2, …, FM} are coordinates of points in observed data space and {β1, β2, …, βM} are the M 
parameters of the hyperplane. A set Ω is defined with all the indices of the genes which lie on this 

hyperplane. Then, for each Ω∈j , M
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The parameters {β1, β2, …, βM} are given by the intersection of many hyperplanes given by Eqn. (4). Since 
the HT can be computationally expensive for high dimensional data, the patent in [25] also proposed a 
divide and stitch strategy to handle very large dataset. 
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Fig.11 Different geometries (lines or planes) in the 3D data space for corresponding bicluster patterns. (a) 
A bicluster with constant values: represented by one of the lines that are parallel to the y-axis and lie in the 
plane x = z (the T-plane), (b) a bicluster with constant rows: represented by the T-plane, (c) a bicluster with 
constant columns: represented by one of the lines parallel to the y-axis, (d) a bicluster with additive 
coherent values: represented by one of the planes parallel to the T-plane, (e) a bicluster with multiplicative 
coherent values: represented by one of the planes that include the y-axis , and (f) a bicluster with linear 
coherent values: represented by one of the planes that are parallel to the y-axis. 

 

Performance of the geometric biclustering algorithm was evaluated in [25] by application to two gene 
expression datasets: the lymphoma dataset of Alizadeh et al. [30] and the human breast cancer dataset of 
van 't Veer et al. [31]. It was shown that the biclusters detected were statistically significant and were 
biologically relevant in that they have significant enrichment in the relevant GO terms. Further detailed 
analysis of the biclusters obtained from the lymphoma dataset was recently presented in [14] and interested 
readers are referred to it for details.  

 

Current & Future Developments 
Biclustering analysis is an important but challenging problem in gene expression data analysis. Many 
algorithms have been proposed and major advances have been made. However, the large varieties of 
bicluster patterns of interest and the computational complexity of the problem (biclustering analysis is a 
NP-hard problem) means that more research in this area is still needed. In this article, we presented an 
overview of the biclustering problem, the different bicluster patterns that are of interest to gene expression 
data analysis, and the different approaches that have been proposed to date. We surveyed recent patents on 
biclustering algorithms and discussed the methodologies and the bicluster patterns that could be detected by 
these algorithms. 

The geometric biclustering framework [14, 15, 25] proposed by our group is particularly useful as it unites 
many different bicluster patterns into a linear coherent model and offers a solution that can simultaneously 
detect all these bicluster patterns. In principle, any algorithm that could efficiently detect hyperplanes in a 
high dimensional data space can be used in this framework. Further development in this class of geometric 
biclustering algorithms would be to search for robust and efficient hyperplane detection algorithms that 
could handle very large datasets.  
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Although we focus on gene expression data analysis in this paper, biclustering algorithms have many 
applications in other fields, such as data mining, market research, and image analysis. We expect that 
application-dependent strategies will be developed in the future for bicluster pattern discovery and analysis 
in various real-world systems. Furthermore, efficient computer methods need to be studied to deal with 
massive amount of multidimensional data.  
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