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Abstract

Background. Antimicrobial resistance (AMR) is an ever-increasing global health concern. One crucial facet in tackling the AMR 
epidemic is earlier and more accurate AMR diagnosis, particularly in the dangerous and highly multi-drug-resistant ESKAPE 
pathogen, Pseudomonas aeruginosa.

Objectives. We aimed to develop two SYBR Green-based mismatch amplification mutation assays (SYBR-MAMAs) targeting 
GyrA T83I (gyrA248) and GyrA D87N, D87Y and D87H (gyrA259). Together, these variants cause the majority of fluoroquinolone 
(FQ) AMR in P. aeruginosa.

Methods. Following assay validation, the gyrA248 and gyrA259 SYBR-MAMAs were tested on 84 Australian clinical P. aeruginosa 
isolates, 46 of which demonstrated intermediate/full ciprofloxacin resistance according to antimicrobial susceptibility testing.

Results. Our two SYBR-MAMAs correctly predicted an AMR phenotype in the majority (83%) of isolates with intermediate/full 
FQ resistance. All FQ-sensitive strains were predicted to have a sensitive phenotype. Whole-genome sequencing confirmed 
100 % concordance with SYBR-MAMA genotypes.

Conclusions. Our GyrA SYBR-MAMAs provide a rapid and cost-effective method for same-day identification of FQ AMR in P. 
aeruginosa. An additional SYBR-MAMA targeting the GyrB S466Y/S466F variants would increase FQ AMR prediction to 91 %. 
Clinical implementation of our assays will permit more timely treatment alterations in cases where decreased FQ susceptibility 
is identified, leading to improved patient outcomes and antimicrobial stewardship.
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BACKGROUND
The ESKAPE pathogen, P. aeruginosa, has a remarkable capacity to develop antimicrobial resistance (AMR) towards all clinically 
relevant antibiotic classes [1]. This bacterium can cause life-threatening infections, particularly in people with wounds, cancer, or 
chronic respiratory diseases such as cystic fibrosis (CF) or chronic obstructive pulmonary disease (COPD) [2].

Rapid, affordable, accessible, and accurate AMR diagnosis is crucial in the battle against ESKAPE pathogens [1]. However, few diagnostic 
tests exist [3] for rapidly and inexpensively characterizing AMR-conferring single-nucleotide polymorphisms (SNPs) in P. aeruginosa, a 
striking knowledge gap given that SNPs confer AMR towards anti-pseudomonal drugs such as fluoroquinolones (FQs) [4].

FQs [predominantly ciprofloxacin (CIP)] have proven clinically useful for treating P. aeruginosa infections [5]. Yet, upon exposure, P. 
aeruginosa often develops FQ resistance (FQr). Codon-altering mutations within the GyrA quinolone resistance-determining region 
(QRDR) can confer an intermediate (CIPi) or fully resistant (CIPr) phenotype [6, 7]; in contrast, gyrB, parC, parE and nfxB typically 
require ≥2 mutations to impart CIPi/CIPr [8]. Alteration of treatment, either by shifting to a different antibiotic or increasing CIP 
dosage, is recommended for patients infected with CIPi/CIPr strains. Importantly, the correct choice of initial antibiotic therapy is 
known to result in decreased patient mortality [9, 10].

Due to the single-step nature of QRDR mutations in conferring CIPi/CIPr, and their prevalence in clinical isolates [11], we targeted 
the two most common QRDR SNPs, gyrA248 [4] and gyrA259 [12], for assay development. These two SNPs occur frequently in P. 
aeruginosa isolates across the globe and demonstrate little, if any, geographical bias [13]. To interrogate these two SNPs, we chose SYBR 
Green-based mismatch amplification mutation assay (SYBR-MAMA), an inexpensive (~AUD $1–2/assay when run in duplicate), 
simple, rapid (~1 h turnaround time) and scalable method [14–18] that exploits the differential efficiency of allele-specific amplification 
for SNP interrogation; this efficiency disparity can be observed in real time by measuring the difference in cycles-to-threshold (ΔCT) 
[15, 17, 18].

METHODS
Isolates examined in this study
Eighty-four P. aeruginosa isolates from Queensland, Australia, were examined: 42 from sputum derived from adults with CF and 
chronic P. aeruginosa infection admitted to The Prince Charles Hospital between 2017 and 2019 [19]; 35 bloodstream isolates retrieved 
from adults admitted to several public and private hospitals in Brisbane between 2008 and 2011 [20]; 3 from COPD sputum, collected 
during in-home community nurse visits in the Sunshine Coast region [19]; 1 from an adult with non-CF bronchiectasis collected 
in 2017; and 1 from an adult with urinary tract infection collected in 2018, both during admission to the Sunshine Coast University 
Hospital (Table 1). One ulcer and one ear infection isolate, both from Brisbane, were obtained from the 1000 International P. aeruginosa 
Consortium collection [21]. Strains were isolated from clinical specimens using MacConkey agar (Oxoid, VIC, Australia), incubated 
at 37◦C for 24 h, and confirmed as P. aeruginosa by ecfX real-time PCR [22].

Antimicrobial susceptibility testing
Susceptibility towards levofloxacin (LEV; 5 µg), moxifloxacin (MFX; 5 µg) and ofloxacin (OFX; 5 µg) was determined by disc 
diffusion (Edwards Group, QLD, Australia; Table 2). Minimum inhibitory concentrations (MICs) towards CIP were determined 
by ETEST (bioMérieux, NSW, Australia). Isolates were classed as CIP sensitive, CIPi, or CIPr using the Clinical and Laboratory 
Standards Institute (CLSI) M100S-Ed32 : 2022 guidelines.

DNA extraction and sequencing
Isolates were DNA-extracted using the DNeasy kit (Qiagen, Chadstone Centre, VIC, Australia), followed by Illumina paired-end 
whole-genome sequencing (WGS) [23]. Quality-filtered reads [24] were assembled with MGAP v1.1 (https://github.com/dsarov/​
MGAP---Microbial-Genome-Assembler-Pipeline) or SPAdes [25]. AMR prediction was undertaken using a P. aeruginosa-specific 
[26] ARDaP [27] database. Assemblies were deposited in the PubMLST database (https://pubmlst.org/organisms/pseudomonas-​
aeruginosa). We also tested rapid DNA extraction of 10 representative strains using the 5 % chelex-100 rapid heat-soak method [28], 
followed by a 1 : 10 dilution in molecular-grade H2O prior to PCR.

GyrA SYBR-MAMA design
A blast database comprising 682 P. aeruginosa genomes [13, 29–32] was used to identify conserved regions for oligo design. SYBR-
MAMA primers were assessed in silico for dimer formation and specificity as described previously [33]. For the gyrA248 SYBR-MAMA, 
gyrA248_T_AMR amplifies the CIPi/CIPr-conferring T83I allele, whereas gyrA248_C_WT amplifies the wild-type allele (Table 3). For 
the gyrA259 SYBR-MAMA, gyrA259_D_AMR amplifies mutant alleles at position 259 (D87N, D87Y, D87H), all of which confer CIPi/
CIPr [4, 8], whereas gyrA259_G_WT amplifies the wild-type allele [12]. PCRs consisted of 1× SsoAdvanced Universal SYBR Green 
Supermix (Bio-Rad, NSW, Australia), 0.2 µM primers, 1 µl template, and PCR-grade H2O, to 5 µl. Thermocycling comprised 95◦C for 
2 min, followed by 40 cycles of 95◦C for 5 s and 60◦C for 5 s. The strains used to validate gyrA 248 and 259 alleles are listed in Table 2.

https://github.com/dsarov/MGAP---Microbial-Genome-Assembler-Pipeline
https://github.com/dsarov/MGAP---Microbial-Genome-Assembler-Pipeline
https://pubmlst.org/organisms/pseudomonas-aeruginosa
https://pubmlst.org/organisms/pseudomonas-aeruginosa
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Table 1. Pseudomonas aeruginosa isolates used in this study, and their DNA gyrase A (GyrA) SYBR-MAMA PCR genotypes, whole-genome sequencing 
(WGS) results, multilocus sequence types and treatment details

Strain Disease MIC (µg ml−1) gyrA248 allele 
(PCR)

gyrA259 allele 
(PCR)

GyrA AMR 
mutation (WGS)

Other CIP AMR-
conferring mutations 

(WGS)
Sequence type Treatment at time of 

collection

CIP resistant

SCHI0002.S.8 CF 4 WT WT None GyrB (Ser466Phe) ST4 Day 7 IV CAZ, 
MEM, TOB

SCHI0003.S.8 CF 2 WT AMR D87H None ST801 Day 4 IV ATM, 
MEM, TOB

SCHI0004.S.5 CF >32 AMR WT T83I None ST649 Day 14 IV MEM, 
TOB

SCHI0005.S.9 CF 2 WT AMR D87H None ST801 Day 10 IV MEM, 
TOB

SCHI0005.S.10 CF 2 WT AMR D87H None ST801 Day 10 IV MEM, 
TOB

SCHI0005.S.11 CF 2 WT AMR D87H None ST801 Day 10 IV MEM, 
TOB

SCHI0006.S.10 CF 2 WT AMR D87H None ST801 None

SCHI0008.S.3 CF 4 AMR WT T83I None ST649 Day 8 IV ATM, DOX

SCHI0010.S.1 CF >32 AMR WT T83I None ST4 Day 7 IV CAZ, TOB

SCHI0016.S.124 UTI >32 WT AMR D87N
MexR (Ile24fs; loss; 

upregulates MexAB efflux 
pump)

ST309 Unknown

SCHI0021.S.6 CF 2 WT AMR D87H None ST801 Day 5 IV CAZ, TOB

SCHI0021.S.8 CF 3 WT AMR D87H None ST801 Day 13 IV CAZ, TOB

SCHI0021.S.7 CF >32 WT AMR D87H None ST801 Day 13 IV CAZ, TOB

SCHI0021.S.11 CF 3 WT AMR D87H None ST801 Day 1 IV CAZ, TOB

SCHI0021.S.12 CF 3 WT AMR D87H None ST801 Day 1 IV CAZ, TOB

SCHI0021.S.14 CF 3 WT AMR D87H None ST801 None

SCHI0025.S.15 CF 8 WT AMR D87H None ST801 Unknown

SCHI0027.S.1 CF 3 WT AMR D87H None ST801 Day 1 IV CAZ, TOB

SCHI0027.S.2 CF 2 WT AMR D87H None ST801 Day 12 IV CAZ, TOB

SCHI0027.S.3 CF 3 WT AMR D87H None ST801 Day 9 IV CAZ, TOB

SCHI0027.S.5* CF 2 WT AMR D87H None ST801 None

SCHI0029.S.1 CF 3 WT AMR D87H None ST801 Day 1 unknown 
antibiotic(s)

SCHI0030.S.2 CF 3 WT AMR D87H None ST801 Day 6 IV ATM, TOB

SCHI0030.S.3 CF 3 WT AMR D87H None ST801 Day 13 IV ATM, 
TOB

SCHI0030.S.4* CF 4 WT AMR D87H None ST801 None

SCHI0032.S.32 Ulcer 4 WT AMR D87N None ST143† Unknown

SCHI0032.S.33 Ear infection 2 WT AMR D87Y None ST848‡ Unknown

SCHI0033.S.2 BSI >32 AMR WT T83I
ParE (Ala473Val), NalD 
(Met1del; upregulates 
MexAB efflux pump)

ST847  �  Unknown

SCHI0033.S.4 BSI 12 AMR WT T83I None ST244 Unknown

SCHI0033.S.14 BSI 2 WT WT None None ST571 Unknown

SCHI0033.S.15 BSI >32 AMR WT T83I ParC (Ser87Leu) ST532 Unknown

Continued
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Strain Disease MIC (µg ml−1) gyrA248 allele 
(PCR)

gyrA259 allele 
(PCR)

GyrA AMR 
mutation (WGS)

Other CIP AMR-
conferring mutations 

(WGS)
Sequence type Treatment at time of 

collection

SCHI0033.S.19 BSI >32 AMR WT T83I ParC (Ser87Leu) ST235 Unknown

SCHI0033.S.26 BSI 3 WT WT None None ST147 Unknown

CIP intermediate

SCHI0002.S.9 CF 1.5 WT WT None None ST683 Day 7 IV CAZ, 
MEM, TOB

SCHI0002.S.12 CF 1 WT WT None None ST683 Day 37 IV CAZ, 
MEM, TOB

SCHI0003.S.1 CF 1.5 AMR WT T83I None ST649 Day 4 IV ATM, 
MEM, TOB

SCHI0003.S.3 CF 1.5 AMR WT T83I None ST649 Day 4 IV ATM, 
MEM, TOB

SCHI0008.S.2 CF 1 AMR WT T83I None ST649 Day 8 IV ATM, DOX

SCHI0008.S.4 CF 1 AMR WT T83I None ST649 Day 8 IV ATM, DOX

SCHI0013.S.2 CF 0.75 WT WT None GyrB (Ser466Tyr), ParE 
(Ala473Val) ST775 Day 4 FOF, MEM

SCHI0013.S.12 CF 1 WT WT None GyrB (Ser466Tyr), ParE 
(Ala473Val) ST775 Day 4 FOF, MEM

SCHI0016.S.57 BE 1.5 WT WT None
GyrB (Ser466Phe), MexR 
(Gln25stop; upregulates 

MexAB efflux pump)
ST2601 >2 weeks MEM, 

GEN, CRO, FEP

SCHI0021.S.5 CF 1.5 WT AMR D87H None ST801 Day 5 IV CAZ, TOB

SCHI0021.S.10 CF 1 WT AMR D87H None ST801 Day 1 IV CAZ, TOB

SCHI0025.S.9 CF 1 AMR WT T83I None ST649 Unknown

SCHI0033.S.29 BSI 0.75 AMR WT T83I None ST244 Unknown

CIP sensitive

SCHI0005.S.8 CF 0.5 WT WT None
ParE (Ala473Val), AmgS 
(Val121Gly; upregulates 

MexXY efflux pump)
ST262 Day 10 IV MEM, 

TOB

SCHI0020.S.4 CF 0.5 WT WT None
ParE (Ala473Val), NfxB 

(large deletion, upregulates 
MexCD efflux pump)

ST3828§ Day 1 IV CAZ, TOB

SCHI0020.S.5 CF 0.5 WT WT None
ParE (Ala473Val), NfxB 

(large deletion, upregulates 
MexCD efflux pump)

ST3828§ None

SCHI0020.S.6 CF 0.5 WT WT None
ParE (Ala473Val), NfxB 

(loss, upregulates MexCD 
efflux pump)

ST3828§ Day 1 IV CAZ, TOB

SCHI0027.S.4* CF 0.25 WT WT None None ST801 None

SCHI0030.S.1 CF 0.25 WT WT None None ST275 None

SCHI0030.S.5* CF 0.25 WT WT None None ST275 None

SCHI0033.S.1* BSI 0.125 WT WT None None ST3864§  �  Unknown

SCHI0033.S.3 BSI 0.19 WT WT None None ST3829  �  Unknown

SCHI0033.S.5 BSI 0.19 WT WT None None ST274  �  Unknown

SCHI0033.S.7 BSI 0.094 WT WT None None ST252  �  Unknown

SCHI0033.S.8 BSI 0.25 WT WT None None ST649 Unknown

SCHI0033.S.9 BSI 0.25 WT WT None None ST708  �  Unknown

Table 1.  Continued

Continued
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GyrA T83I and GyrA D87H/N/Y prevalence in global P. aeruginosa isolates
We analysed a global collection (n=283) of genome-sequenced isolates [30–32, 34–36] with corresponding CIP phenotype data 
to determine the geographical prevalence of these two GyrA AMR variants.

RESULTS AND DISCUSSION
SYBR-MAMAs were screened across the 85 genome-sequenced P. aeruginosa isolates, comprising 40 CIP-sensitive (including PAO1), 
13 CIPi, and 33 CIPr strains (Table 1). Of these, only one, SCHI0050.S.1, was derived from a participant receiving FQ (CIP) treatment, 

Strain Disease MIC (µg ml−1) gyrA248 allele 
(PCR)

gyrA259 allele 
(PCR)

GyrA AMR 
mutation (WGS)

Other CIP AMR-
conferring mutations 

(WGS)
Sequence type Treatment at time of 

collection

SCHI0033.S.10* BSI 0.19 WT WT None None ST244  �  Unknown

SCHI0033.S.11* BSI 0.5 WT WT None None ST3865§  �  Unknown

SCHI0033.S.12* BSI 0.125 WT WT None None ST865  �  Unknown

SCHI0033.S.13A* BSI 0.5 WT WT None None ST395  �  Unknown

SCHI0033.S.13B* BSI 0.19 WT WT None None ST395 Unknown

SCHI0033.S.16 BSI 0.5 WT WT None
NfxB (Phe126fs; 

upregulates MexCD efflux 
pump)

ST909 Unknown

SCHI0033.S.17 BSI 0.25 WT WT None None ST274  �  Unknown

SCHI0033.S.18 BSI 0.19 WT WT None None ST348  �  Unknown

SCHI0033.S.20 BSI 0.19 WT WT None None ST274  �  Unknown

SCHI0033.S.23 BSI 0.5 WT WT None None ST3843§  �  Unknown

SCHI0033.S.24 BSI 0.5 WT WT None None ST471  �  Unknown

SCHI0033.S.25 BSI 0.38 WT WT None None ST815  �  Unknown

SCHI0033.S.27 BSI 0.25 WT WT None None ST395  �  Unknown

SCHI0033.S.28 BSI 0.38 WT WT None None ST3804 Unknown

SCHI0033.S.30 BSI 0.19 WT WT None None ST782  �  Unknown

SCHI0033.S.32 BSI 0.38 WT WT None None ST298  �  Unknown

SCHI0033.S.33 BSI 0.5 WT WT None
MexR (Arg91fs; 

upregulates MexAB efflux 
pump

ST17  �  Unknown

SCHI0033.S.35 BSI 0.38 WT WT None None ST348  �  Unknown

SCHI0033.S.36 BSI 0.5 WT WT None None ST3830§  �  Unknown

SCHI0033.S.37 BSI 0.25 WT WT None None ST298  �  Unknown

SCHI0033.S.38 BSI 0.25 WT WT None None ST235  �  Unknown

SCHI0033.S.39 BSI 0.19 WT WT None None ST1189  �  Unknown

SCHI0038.S.3 COPD 0.19 WT WT None None ST888 None

SCHI0039.S.1 COPD 0.125 WT WT None None ST3134 None

SCHI0050.S.1 COPD 0.125 WT WT None ParC (Gln405Arg) ST3323 Day 3 oral CIP

PAO1 Wound nd WT WT None None ST549 Unknown

*Whole-genome sequence data assembled with SPAdes [25] rather than MGAP.
†SCHI0032.S.32 submitted to PubMLST under isolate name AUS205 (ID:1023) [40]
‡SCHI0032.S.33 submitted to PubMLST under the isolate name AUS134 (ID:952) [40]
§Novel multilocus sequence type (ST) identified in this study
AMR, antimicrobial-resistant; ATM, aztreonam; BE, bronchiectasis; BSI, bloodstream infection; CAZ, ceftazidime; CF, cystic fibrosis; CIP, ciprofloxacin; COPD, chronic obstructive pulmonary 
disease; CRO, ceftriaxone; DOX, doxycycline; FEP, cefepime; FOF, fosfomycin; GEN, gentamicin; IV, intravenous; MEM, meropenem; MIC, minimum inhibitory concentration (based on ETEST); 
SYBR-MAMA, SYBR Green-based mismatch amplification mutation assay; TOB, tobramycin; UTI, urinary tract infection; WGS, whole-genome sequencing; WT, wild-type.

Table 1.  Continued
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and this isolate was CIP-sensitive (Table 1). Unexpectedly, none of the 46 CIPi/CIPr strains were from participants known to be 
receiving contemporaneous FQ antibiotics (Table 1), although we were unable to investigate historical FQ exposure due to ethical 
limitations on participant data collection. It is therefore possible that some of our participants have previously received FQ antibiotics 
in the weeks or months prior to our sample collection. Alternatively, given that most of our participants were hospitalized, another 
possibility is that the CIPi/CIPr strains were nosocomially acquired, either from other admitted patients who had been or were being 
treated with FQs, or from the hospital environment.

The gyrA248 SYBR-MAMA robustly discriminated GyrA T83I from wild-type strains, with matched alleles consistently amplifying 
earlier than mismatched counterparts (T83I ΔCT=4.0±0.03 vs wild-type ΔCT=7.6±0.1 [Fig. 1a, b]). Four tested GyrA T83I strains 
also demonstrated intermediate or full resistance towards LEV, MFX and OFX (Table 2), confirming the importance of this variant 
in broader FQr. T83I is considered to be the most common GyrA variant in CIPi/CIPr strains [4, 11, 37]; for example, two Japanese 
studies reported 82 % (60/73) [38] and 75 % (112/150) [39] T83I prevalence among CIPi/CIPr isolates, and a Vietnamese study reported 
54 % (76/141) prevalence [11]. In our dataset, T83I was detected in 28 % (13/46) CIPi/CIPr strains and 0 % (0/38) CIP-sensitive strains 
(Table 1), suggesting that T83I is an important, but not dominant, cause of CIPi/CIPr in Australian isolates, although testing across a 
broader isolate collection is required to confirm this observation.

Like gyrA248, there was clear discrimination between AMR and wild-type genotypes for the gyrA259 SYBR-MAMA, with AMR 
alleles amplifying earlier in AMR-encoding strains (D87Y ΔCT=14.7 [Fig. 2a]; D87N ΔCT=9.6±0.04 [Fig. 2b]; D87H ΔCT=13.5±0.2 
[Fig. 2c]), and vice versa for wild-type strains (ΔCT=10.8; Fig. 2d). gyrA259 AMR was detected in 54 % (25/46) CIPi/CIPr and 0 % 
(0/38) CIP-sensitive strains, suggesting that this SNP is the most common cause of CIPr in Australian isolates.

Table 2. Pseudomonas aeruginosa isolates used for gyrA248 and gyrA259 SYBR-MAMA assay validation, and associated fluoroquinolone-class antibiotic 
disc diffusion data

gyrA phenotype Isolate ID CIP LEV OFX MFX WT to AMR (codon change)

AMR (mutant)

SCHI0003.S.3
SCHI0008.S.4
SCHI0010.S.1
SCHI0025.S.9

I
I
R
I

I
I
R
R

R
R
R
R

R
R
R
R

gyrA248 T→C (T83I)

SCHI0016.S.124
SCHI0032.S.32

R
R

R
R

R
R

R
R gyrA259 G→A (D87N)

SCHI0003.S.8
SCHI0005.S.10
SCHI0025.S.15
SCHI0029.S.1

R
R
R
R

I
I
R
R

R
I
R
R

R
R
R
R

gyrA259 G→C (D87H)

SCHI0032.S.33 R I R R gyrA259 G→T (D87Y)

WT (control)

SCHI0038.S.3
SCHI0039.S.1
SCHI0050.S.1

PAO1

S
S
S
S

S
S
S
S

S
S
S
S

S
S
S
S

No mutation at gyrA248 or gyrA259

AMR, antimicrobial-resistant; CIP, ciprofloxacin; I, intermediate; LEV, levofloxacin; MFX, moxifloxacin; OFX, ofloxacin; R, resistant; S, sensitive; WT, wild-type.

Table 3. SYBR Green-based mismatch amplification mutation assay (SYBR-MAMA) primers designed in this study

gyrA SNP GyrA AMR variant Primer name Sequence (5'−3')* Optimized concentration 
(μm)

gyrA248 T83I

gyrA248_T_AMR ACGATGGTGTCGTAGACCGtGa 0.30

gyrA248_C_WT CGATGGTGTCGTAGACCGtGg 0.30

gyrA248_F TGTGGTCGGCGACGTGATC 0.20

gyrA259
D87N,
D87Y,
D87H

gyrA259_D_AMR CATGCGCACGATGGTGad 0.20

gyrA259_G_WT GCCATaCGCACGATGGTGac 0.20

gyrA259_F AGCTGGGCAACGACTGGAA 0.20

*Bold nucleotides indicate the SNP; underlined nucleotides indicate deliberately incorporated antepenultimate/penultimate mismatches to enhance allele 
specificity.
AMR, antimicrobial resistant (allele); SNP, single-nucleotide polymorphism; WT, wild-type (allele)
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The degenerate nature of our gyrA259 AMR primer has the advantage of enabling all four nucleotide variants to be detected using 
just two reactions; it does not require each variant to be tested individually. As our assay cannot discriminate the three gyrA259 
AMR variants from each other, we instead used WGS to determine their prevalence. D87H was most common, accounting for 
88 % (22/25) of the gyrA259 AMR strains in our database (Table 1). This high prevalence is in sharp contrast to what is observed 
elsewhere; when we assessed two global datasets (total n=656 strains [13, 29]), we found a complete absence of the D87H variant 
in this large international collection. Upon further examination, we found that the basis for this geographicl difference is the 
monopoly of the D87H variant in CF strains belonging to ST801 (AUST-06), a genotype that is almost exclusively found in people 
with CF from Queensland, Australia [40]. Indeed, 22/23 (96 %) ST801 strains in our dataset encoded D87H, suggesting that this 
antimicrobial-resistant variant has become fixed in this lineage. This finding is alarming, as it indicates that FQ antibiotics are 

Fig. 1. SYBR Green-based mismatch amplification mutation assay (SYBR-MAMA) interrogation of the gyrA248 (T→C) biallelic single-nucleotide 
polymorphism, resulting in a threonine to isoleucine substitution at position 83 (T83I) in certain fluoroquinolone (FQ)-resistant P. aeruginosa isolates. 
gyrA248 SYBR-MAMA performance in: (a)  SCHI0010.S.1 (FQ-resistant, encodes T83I); (b)  SCHI0038.S.3 (FQ-sensitive wild-type isolate). Orange, 
antimicrobial-resistant allele; blue, wild-type allele. No-template controls did not amplify. All samples were run in duplicate. RFU, relative fluorescence 
units.

Fig. 2. SYBR Green-based mismatch amplification mutation assay (SYBR-MAMA) interrogation of the gyrA259 (G→A/C/T) tetra-allelic single-nucleotide 
polymorphism, resulting in aspartate to asparagine (D87N), histidine (D87H), or tyrosine (D87Y) substitutions, respectively, at position 87 in certain 
fluoroquinolone (FQ)-resistant Pseudomonas aeruginosa isolates. gyrA259 SYBR-MAMA performance in: (a) SCHI0005.S.10 (intermediate resistance 
towards FQs, encodes D87H); (b) SCHI0032.S.32 (FQ-resistant, encodes D87N); (c) SCHI0032.S.33 (FQ-resistant, encodes D87Y); and (d) SCHI0038.S.3 
(FQ-sensitive wild-type isolate). Purple, antimicrobial-resistant allele; aqua, wild-type allele. No-template controls did not amplify. All samples were 
run in duplicate. RFU, relative fluorescence units.
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ineffective in ST801 eradication. Identification of this lineage, especially in naïve international CF populations, should prompt 
CIP antimicrobial susceptibility testing as a priority due to the high risk of CIPi/CIPr.

Another discordant finding was the prevalence of dual gyrA248 and gyrA259 antimicrobial-resistant variants between our dataset 
and others. Dual gyrA248 and gyrA259 antimicrobial-resistant variants appear at a prevalence of 3 [29] to 14 % [13] of gyrA 
QRDR-mutated strains, whereas we did not observe a strain encoding both of these antimicrobial-resistant variants in our dataset. 
Although the basis of this discordance is not known, we cannot rule out biases in our dataset as the cause of this discrepancy, 
and acknowledge our relatively small isolate number (n=84), assessment of only clinical isolates, and inclusion of multiple strains 
from single patients as possible reasons for these observed differences in dual gyrA mutation prevalence.

Like T83I, seven tested strains encoding D87Y, D87N and D87H all exhibited intermediate or full LEV, MFX and OFX resistance 
(Table 2). The gyrA mutations had a larger impact on MFX and OFX (causing AMR) compared with CIP and LEV (causing 
intermediate resistance) (Table 2). This observation supports the hypothesis that additional mutation(s) are sometimes required 
to confer AMR towards CIP and LEV [12].

It has been previously reported that, in isolation, the GyrA T83I and GyrA D87N/Y/H variants give rise to different MICs towards 
CIP (1 µg ml−1 and 0.25–0.5 µg ml−1, respectively) [8]. These findings imply that strains encoding the GyrA T83I variant are more 
likely to have a higher CIP MIC compared with their GyrA D87N/Y/H counterparts. However, we did not observe such clear 
delineation in CIP MICs between strains encoding these two SNPs; strains encoding only T83I but no other CIPi/CIPr mutations 
(n=10) exhibited CIP MICs between 0.75 and >32 µg ml−1, and strains encoding D87H/N/Y but no other CIPi/CIPr mutations 
exhibited CIP MICs between 1 and 8 µg ml−1 (n=24) (Table 1). One possibility for this difference is that our study examined clinical 
strains, which may encode enigmatic mutations that contribute towards the observed CIPi and CIPr phenotypes. Further studies 
are needed to determine the basis of this observation. Nevertheless, our results confirm the utility of our two gyrA SNP assays 
for rapidly testing for CIPi and CIPr strains. We recommend that the detection of strains encoding AMR alleles at either of these 
SNPs should prompt a discontinuation or avoidance of FQ therapy (pending antimicrobial susceptibility testing results) due to 
a higher potential for treatment failure.

We tested our two SYBR-MAMAs against chelex-extracted heat-soak DNA to determine their performance using a simple 
and rapid (~20 min) extraction method. In all instances, isolates yielded excellent, early amplification, and genotyped as 
expected. Although not tested in this study, further time savings could be made by performing SYBR-MAMAs using colony 
PCR [41]; however, in our experience, this approach requires a high degree of skill due to the inhibitory nature of total 
cellular extracts in PCR, and typically results in a low proportion of PCR failures, even with skilled operators. This issue is 
particularly acute when using low (e.g. 5 µl) reaction volumes, as used in our study to minimize costs. Therefore, we recom-
mend that chelex extractions followed by 1 : 10 dilution be performed where rapid DNA extraction is desired to ensure 100 % 
amplification success.

Of the eight CIPi/CIPr strains that did not encode gyrA248 or gyrA259 AMR variants, three had GyrB Ser466Phe or Ser466Tyr 
missense mutations with or without other FQr-conferring mutations (ParE Ala473Val, MexR Gln25Stop), whereas four had 
no known FQr determinants (Table 1). Although these isolates were CIPr, the MIC for these strains was relatively low, ranging 
from 1 to 3 µg ml−1, suggesting that this resistance phenotype may be due to efflux pump upregulation rather than genomic 
mutation. Interestingly, even WGS was unable to identify CIPr causing mutations, yielding no additional information in 
comparison to the SYBR-MAMA assays.

Finally, we determined the discriminatory power of the two gyrA SNPs across a global collection (n=283) of genome-sequenced 
isolates [30–32, 34–36] with corresponding CIP phenotype data. Based on just these two SNPs, CIP non-susceptibility was 
predicted with 91 % accuracy. Notably, 9 % (8/87) CIP-sensitive strains possessed one of these two SNPs, despite being 
phenotypically sensitive to CIP. QRDR mutations have previously been reported in CIP-sensitive strains [32]; however, this 
phenomenon is rare, and the cause is not yet known, although it has been proposed that reversion to susceptibility can occur 
infrequently due to fitness cost [42]. Alternatively, errors in antimicrobial susceptibility reporting, metadata collation, sample 
mix-ups, or WGS processing may account for inconsistencies between CIPr genotypes vs phenotypes.

CONCLUSIONS
Our two gyrA248 and gyrA259 SYBR-MAMAs detected FQ non-susceptibility in 83 % Australian CIPi/CIPr strains. Impor-
tantly, all FQ-sensitive strains yielded wild-type genotypes for both assays, demonstrating 100 % specificity. Our two gyrA 
SYBR-MAMAs thus provide a same-day, inexpensive, simple, and accurate tool for detecting the two most prevalent causes 
of FQ non-susceptibility in P. aeruginosa. Implementation of these assays in the diagnostic laboratory would enable routine 
surveillance of CIPi and CIPr strains, leading to quicker alterations to antimicrobial treatment, a decrease in inappro-
priate antibiotic therapy administration, enhanced antimicrobial stewardship measures and, ultimately, improved patient 
outcomes [9, 10]. An additional SYBR-MAMA targeting GyrB Ser466Phe and Ser466Tyr would increase detection of FQ 
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non-susceptibility to 91 % without loss of specificity. Conversion of our assays to single-tube Melt-MAMA or agarose MAMA 
[14] formats would decrease assay costs, further increasing their accessibility in low-resource laboratories.
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