Behaviour Engineering based Approaches to Requirements

Change Management and Requirements Defects Detection

Sajid Anwer

Bachelor of Science in Computer Science (BSCS) from COMSATS Institute of

Information Technology, Lahore, Pakistan

Master of Science in Computer Science (MSCS) from King Fahd University of

Petroleum & Minerals, Saudi Arabia

School of Information and Communication Technology
Griffith University

Australia

SUBMITTED IN FULFILMENT OF THE REQUIREMENTS OF THE DEGREE OF
DOCTOR OF PHILOSOPHY

August 2021

Abstract

The main goal of software development is to produce software that fulfils users’ needs.
Users’ needs are usually expressed as system requirements that are elicited during the
Requirements Engineering (RE) phase of the Software Development Life Cycle (SDLC).
In real-world systems, it is difficult to elicit all the requirements early in development.
As a result, in practice, changes to the initial requirements occur frequently. Moreover,
some other factors may also trigger Requirements Changes (RCs) such as technological
advancements and changes in stakeholders’ needs. RCs can also be made even after the
system has been deployed. To manage RCs, systematic approaches, which usually fall

under the umbrella of Requirements Change Management (RCM), are required.

Efficient RCM is essential for the success of large software projects. To develop efficient
RCM, challenges that might be faced during the execution of RCM processes need to be

investigated and then suitable approaches must be designed to address them.

The objective of this thesis was to investigate RCM challenges and to provide approaches
and guidelines to address these challenges. To achieve the objectives, we carried out an
evidence-based study to identify RCM challenges and then developed a suitable RCM
process, proposed in the format of an ISO/IEC standard. Subsequently, we used some

semi-formal modelling languages and formal languages to tackle two key RCM challenges.

In particular, for the evidence-based study, we used a Systematic Literature Review (SLR)
to identify challenges related to RCM in both in-house software development and Global
Software Development (GSD). We then conducted a questionnaire-based survey to get
industry practitioners’ opinions of the findings of our literature review. Based on both
data sets, a chi-square test was used to analyse the relative importance of identified RCM
challenges in the context of in-house software development and GSD. The results reveal
some insights into RCM key issues and will help software engineers and partitioner’s to

design more efficient RCM processes.

Based on our findings, we propose an RCM process in the format of an ISO/IEC standard.
The proposed process is elaborated through a seven-step model. And then, Composition
Trees (CTs) are used to compare the proposed process with the RCM related processes in
an existing ISO/IEC standards. The comparison results show that the proposed process
has addressed many key aspects of RCM that had previously been missed. In addition,

i

ii

mapping is used to verify that most RCM challenges are covered by proposed RCM process

outcomes. The results are further validated through an industry survey.

To increase the depth of our work related to RCM, we propose a systematic approach
to estimate the impact of requirements changes on other software artefacts. In the SLR,
change impact analysis is one of the most cited RCM challenges to have been identified.
Our approach uses an Integrated Behaviour Tree (IBT) to model system requirements.
We then convert the IBT to an Integrated Composition Tree (ICT), and the ICT into a
Requirements Component Dependency Network (RCDN). All these models help to trace
and visualize the change propagation from requirements to other software artefacts such
as software architecture. Moreover, RCDN and component interface diagrams help to
identify the impacted components and help to quantify the change impact, denoted as
the change impact indicator, which could provide a more objective measure for calculating

the development cost of the proposed change.

To address another RCM challenge, we propose a two-step approach to detect require-
ments defects. In the first step, a formal model based on Context-Free Grammar (CFG)
is proposed to formalise the translation of software requirements described in natural lan-
guage to a Behaviour Tree (BT). In this approach, we first define normal formed BTs
based on a newly introduced Inertia Axiom, and then use CFG to generate or verify the

normal formed BTs. A tool is developed to validate the proposed approach.

In the second step, we formalise the four most common requirements defects based on
the normalised BTs and define algorithms to detect them. To detect those requirements
defects, we use BTs to model system requirements and then develop an algorithm to
translate BTs to Web Ontology Language (OWL). The process of translating natural lan-
guage software requirements into BTs and then into a formal language helps to overcome
the difficulty of verifying whether a formal representation is faithful to its original natural
language form. And then SPARQL queries are used to query the OWL formulation of the
requirements and to detect requirements defects. Lastly, a tool is developed and applied

to a real-world system to validate the proposed approach.

An important point is that requirements defects also arise during requirements elicitation
and analysis stages. Therefore, in this context, some results of this research are relevant

to another problem in the RE phase of SDLC.

Statement of Originality

This work has not previously been submitted for a degree or diploma in any university. To
the best of my knowledge and belief, the thesis contains no material previously published

or written by another person except where due reference is made in the thesis itself.

Sajid Anwer

iii

Acknowledgements

The work presented in this thesis would not have been possible without the support,
guidance and encouragement of my two supervisors. I would also like to thank my friends

and family for their constant support.

Foremost, It is a matter of great pleasure and honour to express my deep sense of gratitude
for the continuous guidance and precious advice extended by my principal supervisor Dr.
Lian Wen. He has been a constant source of enormous motivation and enthusiastic support
throughout the span of the PhD. His constructive and kind comments have shown me the
right direction to obtain valuable knowledge for my research. Due to his compassionate
support and competent coaching, I have been able to finish my PhD. Thank you, Dr.
Lian Wen, for your immense support regarding my work, and I hope we will continue to

work together.

I want to express my appreciation and respect to my associate supervisor Dr. Zhe Wang,
for his support, constructive comments, which were of utmost significance. His insightful
discussions and friendly counselling backed me in achieving my objectives. I would also

like to extend my gratitude to Professor Abdul Sattar for his encouragement.

I want to thank Griffith University for giving me the opportunity to pursue post-graduate
studies and provides excellent research facilities and financial assistance during my PhD
program. I am thankful to all the heads that have been appointed during my stay at
Griffith and the administrative staff of the school of information and communication
technology for their assistance. I am also thankful to the school of higher degree research

of Griffith University for their support.

I want to thank my family and friends for supporting me throughout the years. I want
to extend my deepest gratitude and respect to my parents and my siblings for believing
in me and giving me immense moral support. I want to thank my wife, Maria Ayub and
my children Abdur Rehman and Meerab Fatima, for their patience and support. I would

also like to thank all my friends for their continued support.

Finally, I would like to thank Allah Almighty, who bestowed me the illumination and
courage to fulfil my PhD commitment. He listens to my prayers and keeps me safe
throughout my PhD, especially during the difficult time of COVID-19. He provided me
with the opportunities and gave me the determination to do my research.

iv

I want to end the acknowledgements section by leaving a few words for my readers.

Following is the quote from one of the most accomplished scientists, Marie Curie.

”Life is not easy for any of us. But what of that? We must have perseverance and, above
all, confidence in ourselves. We must believe that we are gifted for something and that

this thing must be attained”.

Contents

Abstract i
Statement of Originality iii
Acknowledgements iv
Contents vi
List of Figures xi
List of Tables xiv
Abbreviations xvi
1 Introduction 1
1.1 Background 1
1.2 Motivation e 2
1.2.1 Identifying RCM Challenges 3

1.2.2 Designing an RCM Process 4

1.2.3 Change Impact Analysis 5

1.2.4 Detect Requirements Defects 6

1.3 Aims and Objectives 8
1.4 Contributions of the Thesis 8
1.4.1 C1-RCM Challenges 9

1.4.2 C2 - RCM Process in the Format of an ISO/IEC Standard 10

1.4.3 C3 - Change Impact Analysis 11

1.4.4 Cda & C4b - Requirements Defects Detection 12

1.5 Thesis Outline 14

2 Background and Literature Review 16
2.1 P1: Requirements Change Management 17
2.1.1 Overviewof REand RCM 17

2.1.2 C1: RCM Challenges through SLR and Questionnaire Survey . . . 19

2.1.3 C2: RCM Processes e 20

2.1.4 C3: Change Impact Analysis 21

2.2 P2: Requirements Defects Detection Overview 22
2.2.1 C4a: Modelling Language (BT) Formalisation 22

2.2.2 C4b: Requirements Defects Detection 23

2.3 Data Collection e 24

Contents vii

2.3.1 T2: Systematic Literature Review 24
2.3.2 T3: Questionnaire Survey oo 26
2.4 T4: Software Processes and Standards 27
2.5 T5: Behaviour Engineering oo 29
2.5.1 Tbha: Behaviour Tree 30
2.5.2 Thb: Composition Tree 33
2.6 T6: Context-Free Grammar 36
2.7 Ontologies and Reasoning 37
2.7.1 T7: Web Ontology Language (OWL) 38
2.7.2 T8 SPARQL 40
2.8 P1.1: Global Software Development 40
2.8.1 Project Management Structures in GSD 40
3 Requirements Change Management Challenges 44
3.1 Introduction 45
3.2 Related Work oL 48
3.3 Research Methodology 49
3.3.1 Data Collection via SLR 49
3.3.1.1 Search Strategy 50
3.3.1.2 Studies Selection oL 53
3.3.1.3 Data Extraction and Synthesis 55
3.3.2 Data Collection via Questionnaire Survey 56
3.3.2.1 Survey Design o 56
3.3.2.2 Survey Instrument L oL o7
3.3.2.3 Survey Execution and Data Pre-processing 57
3.4 SLR Results and Analysis 58
3.4.1 Overview of the Studies 58
3.4.2 SLR Findings of RCM in In-House Software Development Approach
(RQL) .« © oo 61
3.4.3 SLR Findings of RCM in GSD Context (RQ3) 64
3.5 Questionnaire Survey Results and Analysis 66
3.5.1 Industry Survey Findings of RCM Process (RQ2) 67
3.5.2 Industry Survey Findings of RCM in GSD Context (RQ4) 69
3.5.3 Industry Survey Findings Analysis based on in-house and GSD Ap-
proach (RQ5) 70
3.5.4 Industry Survey Findings Analysis Based on Centralised and Dis-
tributed Global Project Structure (RQ6) 71
3.6 Comparison between SLR and Questionnaire Survey Data Sets (RQ7) . . 73
3.7 Discussiono e e 77
3.7.1 Critical RCM Challenges 7
3.7.2 Software Development Approach-Based Analysis 78
3.7.3 Global Project Management Structure-Based Analysis 80
3.7.4 Implications of This Research 81
3.8 Limitations L 83

3.9 Conclusion e 84

Contents viii

4 Requirements Change Management Process in the Format of an ISO/TEC

Standard 86
4.1 Introduction Lo 87
4.2 Related Work 88
4.3 Proposed Requirements Change Management Process 89

4.3.1 Definition 89

4.3.2 Requirements Change Management Process Model Description . . 90
4.4 Comparison with Existing Processes 92

4.4.1 Composition Tree Modelling of Configuration Management Process 92
4.4.2 Composition Tree Modelling the Requirements Change Manage-

ment Process 93
4.4.3 Comparison between RCM Process and Configuration Management
Process e 95
4.5 Mapping between RCM Challenges and RCM Process Outcomes 97
4.6 Conclusion L 100
5 Change Impact Analysis 102
5.1 Introduction e 103
5.2 Key Elements of BECIA 105
5.2.1 Conversion of an IBT into an ICT, 106
5.2.2 Conversion of an ICT into RCDN 109
5.2.3 Transform IBT into CID, 113
5.2.4 Change Impact Analysis Metric 114
5.3 BECIA Workflow with an Example 118
53.1 BECIA Workflow 118
5.3.2 Impact Analysis Example 119
5.3.2.1 Steps 2 and 3- Draw/modify RBTs and Integrate them
with the IBT 120
5.3.2.2 Step 4- Convert an IBT intoan ICT 120
5.3.2.3 Step 5- Convert an ICT into an RCDN 121
5.3.2.4 Steps 6 and 7- Project out CIDs from an IBT and Calcu-
late Change Impact 122
5.3.3 Alternative Design Approach, 125
54 Case Study e 129
5.5 Related Work 137
5.5.1 Change Impact Analysis in System Requirements 138
5.5.2 Change Impact Analysis in System Design and Architecture 139
5.5.3 Change Impact Analysis in Source Code 139
5.5.4 Comparison with Existing Work 140
5.6 Conclusion e 142

6 A Formal Model for Behaviour Trees based on Context-Free Grammar143

6.1
6.2
6.3

6.4

Introduction 144
Related Work 146
Formal Model 147
6.3.1 Normal Form of Requirement Behaviour Tree 147
6.3.2 Context-Free Grammar for Normal Formed BT 149

An Exampleo 155

Contents ix

6.5 Tool-BT Compiler 161
6.6 Conclusion e 162

7 Formalisation of Requirements Defects Detection 164
7.1 Introduction 164
7.2 Related Work 167
7.2.1 Requirements Defects Detection using Formal Languages 167

7.2.2 Requirements Translation directly to Formal Languages 167

7.2.3 Requirements Translation using Semi-Formal Languages as a Bridge 168
7.2.4 Requirements Defects Analysis using Natural Language Processing 169

7.2.5 Application of SPARQL for Requirements Analysis 169
7.2.6 Limitations of Current Research related to Requirements Defects

Detection 170

7.3 Requirements Defects Detection Framework 171

7.3.1 BERDD Structure, 171

7.3.2 BERDD Workflow, 172

7.4 Requirements Defects 173

7.4.1 Requirements Defects Classification 174

7.4.2 Normal Form of Requirements Behaviour Tree 175

7.4.3 Incompleteness Defect and its Detection 178

7.4.3.1 Definitiono o 178

7.4.3.2 Example o 178

7.4.4 Ambiguity Defect and its Detection 180

7.4.4.1 Definition 180

7442 Example 181

7.4.5 5.4 Redundancy Defect and its Detection 181

7.4.5.1 Definition 181

7.4.5.2 Example 182

7.4.6 Inconsistency Defect and its Detection 183

7.4.6.1 Definition 183

7.4.6.2 Example 183

7.5 Tool (RDI) Environment 185

7.5.1 RDI Workflow 186

7.5.2 Behaviour Tree Representation in OWL 187

76 AnExample. 192

7.7 Discussion and Limitations 0oL 197

7.7.1 Comparison with Existing Studies 197

7.7.2 Limitations 199

7.8 Conclusion e e 200

8 Conclusion 201

8.1 Summary of Thesis 201

8.2 Future Work 204

A Appendices for Chapter 3 206

A.1 Search Strings for Different Databases 206

A.1.1 IEEE Xplore e 206

Contents b
A.1.2 Science Direct 207

A.1.3 SpringerLinko oo 207

Al4d ACM ... e 208

A.2 List of Primary Studies in SLR oL 208
A.3 RCM Challenges Categories Identified via SLR. 212
A4 Questionnaire Survey 213
A.5 Ethical Clearance to Conduct Questionnaire Survey 216
A.6 Participants Demographic Details 216
A.7 SLR Primary Studies Quality Assessment Results 221

B Appendices for Chapter 7 223
B.1 RIOWLFile e e 223
B.2 SPARQL Queries 224
B.3 AIPIBT File 225
Publications and Submitted Papers 226
Bibliography 227

List of Figures

1.1

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12

3.1
3.2
3.3

3.4

4.1
4.2
4.3
4.4

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10
5.11
5.12
5.13

Contributions overview Lo 9
Overview of requirements engineering domain adapted from [1] 17
SLR Process. e e e 25
The behaviour engineering approach to creating a software design 30
BT example e 32
BT node attributes oo 32
The IBT of R1 35
The IBTof Rland R2 35
The IBT of CAR system 36
Chomsky hierarchy languages classification 37
GSD OVerview v v e e e e e 41
Centralised global project structure adapted from [2]. 41
Distributed global project structure adapted from [2]. 42
Research methodology L. 49
SLR process steps and number of studies at each step 54
Number of selected studies published per year and their distribution over

SOUTCE tYPE . v v v v vt e e e e 59
Bubble plot with year of publication and research method 59
Requirements change management model 91
The composition tree for CMP 93
The CT for RCMP e 94
CCT for CMP of 12207 and proposed RCM process 96
Example IBTo o 107
Steps to model example ICT 108
Example ICT oo 109
The RCDN for the example ICT 111
The CID for component C1 113
BECIA workflow 118
RERBT . . . e 120
Updated IBT o e 120
Updated ICT 121
Updated RCDN o 122
The CID for component C1 123
The CID for component C4 123
The CID for component C3, 123

xi

List of Figures xii

5.14
5.15
5.16
5.17
5.18
5.19
5.20
5.21
5.22
5.23
5.24
5.25
5.26
5.27
5.28
5.29
5.30
5.31

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9
7.10
7.11
7.12
7.13
7.14

The CID for component C6 124
Second design RBT for R5. 126
Updated IBT for the second design 126
Updated ICT for the second design 126
Updated RCDN for the second design 127
The CID for component C1 based on the second design 127
The CID for component C4 based on the second design 127
The CID for component C2 based on the second design 128
The CID for component C5 based on the second design 128
STLISMS updated IBT 131
STLISMS updated ICT 132
STLISMS updated RCDN 133
STLISMS-The CID for C1 i 134
STLISMS-The CID for C5 it 134
STLISMS-The CID for C10 i 135
STLISMS-The CID for C6 it 136
STLISMS-The CID for C2 137
STLISMS-The CID for C4 it 138
Oven IBT for (RI & R4) oo o 148
Normal formed RBT o 150
An abstract IBT example oL 151
Parse tree for an abstract IBT 152
An IBT for SAS 154
The parse tree for SASIBT L. 154
An IBT for original requirements of microwave oven 157
The parse tree for microwave oven original IBT 158
The modified IBT for microwave oven 159
The parse tree for microwave oven modified IBT 160
BTC workflow e 161
BTC output for original requirements of microwave oven 162
BTC output for modified requirements of microwave oven 162
Key elements of BERDD L. 171
BERDD Workflow 173
Normal formed RBT 177
Oven IBT for incompleteness defects 179
R3-RBT 179
SAS IBT for ambiguity defects 182
Oven IBT for redundancy defects 184
Oven IBT for inconsistency defects 185
RDI Workflow e 187
Steps to convert IBT-XML to OWL 188
OWL meta-classes and object properties declaration 190
SASIBT e 191
XML file for SAS-R1 191

OWL representation for node R1.1 192

List of Figures xiii

7.15
7.16
7.17
7.18
7.19
7.20
7.21
7.22

RBT for RRof ATP o 194
RBT for ROof AIP o 194
Incompleteness defect detection of R of AIP 195
Incompleteness defect detection of R9 of AT 195
AIP - ambiguity detection oL 196
ATIP - ambiguity detection L 196
AIP - redundancy detection L. 197

AIP - inconsistency detection L. 197

List of Tables

2.1
2.2

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11

3.12

3.13
3.14
3.15
3.16

3.17
3.18
3.19

4.1
4.2
4.3

5.1

5.2

6.1
6.2
6.3

Core elements of BT notation
The requirements of the CAR system

Keyword synonyms Lo
Quality assessment criteriao
Primary studies selection datao 0oL
RCM Challenges identified via SLR for in-house software development . .
RCM - In-house Challenges analysis in the context of empirical studies . .
RCM-GSD Challenges identified via SLR.
RCM-GSD Challenges analysis in the context of empirical studies
RCM - In-house Challenges analysis based on questionnaire survey
RCM-GSD Challenges analysis based on questionnaire survey data
Chi square test results of industry data (in-house vs GSD)
Chi square test results of industry data (centralised vs global project struc-
BUTE) . o o o o e e e e e e e e
Comparison of two data sets of RCM Challenges in in-house software de-
velopment e e
Comparison of two data sets of RCM-GSD Challenges
Group statistics of RCM Challenges in in-house software development

Group statistics of RCM-GSD Challenges
Independent sample t-test results for RCM Challenges in in-house software
development
Independent sample t-test results for RCM-GSD Challenges
Summary of results
Comparison of two data sets for RCM challenges based on software devel-
opment approaches L oL

Mapping between RCM-In-house challenges and RCM process outcomes .
Mapping between RCM-GSD challenges and RCM process outcomes . . .
Best practices followed for the RCM process outcomes

The relationship types in RCDN and their interpretation rules for indirect
impact analysis
STLISMS functional requirements

Functional requirements of microwave oven
Modified functional requirements for microwave oven
Mapping between original and modified functional requirements for mi-
CTOWAVE OVEIL . .« « v v v e e e e e e e e e e e e e e e e e

Xiv

List of Tables XV

7.1
7.2
7.3
7.4
7.5
7.6

Requirements defects classification o000 175
The requirements of microwave oven-Incompleteness 179
The SAS requirements 181
Oven requirements for redundancy defects 183
Oven requirements for inconsistency defects 185
ATP Functional requirements 193

Abbreviations

BE
BT
CT
CID
CFG
CMP
CIA
DBT
DCT
GSD
ICT
IBT
RE
RCM
RC
RBT
RCT
RCDN
RDI
SDLC
SE
SLR
UML
OWL

Behaviour Engineering

Behaviour Tree

Composition Tree

Component Interface Diagram
Context-Free Grammar
Configuration Management Process
Change Impact Analysis

Design Behaviour Tree

Design Composition Tree

Global Software Development
Integrated Composition Tree
Integrated Behaviour Tree
Requirements Engineering
Requirements Change Management
Requirements Change
Requirements Behaviour Tree
Requirements Composition Tree
Requirements-Components Dependency Network
Requirements Defects Identifier
Software Development Life Cycle
Software Engineering

Systematic Literature Review
Unified Modelling Language

Web Ontology Language

xvi

Chapter 1

Introduction

1.1 Background

Software systems are making profound changes to every aspect of human existence. Nowa-
days, software is everywhere and plays a fundamental and increasing role in our society.
Software now drives applications in virtually all areas of human endeavours in critical
roles [3]. Therefore, it is of utmost importance that the software perform correctly and
predictably in all domains where it is relied on because of its critical roles. Moreover,
software produces big changes in the market and has a huge impact on the way we live.
Therefore, it is necessary to understand the characteristics of software and other related

factors.

It is necessary to define rules and processes for the development of software systems to
ensure their correct functioning, as software impacts our daily lives to a huge extent. To
fulfil this purpose, the term ‘software engineering’ was first introduced in the late 1950s
and early 1960s [4]. Software engineering can be defined as “the application of a system-
atic, disciplined, quantifiable approach to the development, operation, and maintenance of
software” [5, 6]. The process that implements software engineering principles to produce

quality software is called the Software Development Life Cycle (SDLC).

Software systems are designed for a specific purpose, such as solving a problem or fulfilling
the needs of stakeholders such as end-users, customers, or business [6]. The stakeholder
needs are usually expressed as system features that the system should possess, and these
systems features are called software requirements. Software requirements can be formally

1

Introduction 2

defined as “A condition or capability that must be met or possessed by a solution or
solution component to satisfy a contract, standard, specification, or other formally imposed
documents” [1, 5, 6]. The software requirements are managed through the Requirements

Engineering (RE) phase of the SDLC.

RE is pivotal and central to every successful software development project. According to
one study, it was found that of 268 cited software development challenges, 40% were related
to the RE phase of SDLC [7]. RE includes both the process of specifying requirements
by studying the needs of stakeholders and the process of systematically analysing and
refining those specifications [8]. Therefore, requirements development and requirements
management are the two main activities performed in the RE phase of SDLC [1, 9]. Re-
quirements development mainly addresses the requirements elicitation and specification,
while requirements management deals with the management of the current and changed
requirements. According to the Rational Project Management survey, conducted by IBM
[10], ineffective requirements management processes have been identified as a leading cause

of project failure.

In the next sections, we introduce the motivation of the whole study; we define the scope

of our work and present its main contributions.

1.2 Motivation

Requirements Change Management (RCM) is one of the key components of the require-
ments management activities of the RE phase. Software development is a very dynamic
process, and change is inevitable and persistent in software engineering. Many factors
have driven these changes, such as evolving customer needs or business goals, organi-
sational policies, working or system operating environment, and government regulations
[11]. Similarly, stakeholders’ varying ways of expressing the requirements can also results
in ambiguity and inconsistency in requirements, which ultimately causes the requirements

change [1].

Requirements Change (RC) or requirement evolution can be formally defined as “the
tendency of requirements to change over time in response to evolving needs of customers,

stakeholders, organisations and work environment” [12]. As a result, RCM can be formally

Introduction 3

defined as "managing changing requirements during the requirements engineering process,

system development and system maintenance” [1, 5, 9].

It is challenging to identify and specify a complete set of requirements for a system in
real-world scenarios. The software requirements keep changing through the SDLC, and
approximately 50% of the initial requirements are changed before the system has been
deployed [5]. The continual requirements changes and their management remains an open
challenge in the field of software engineering [13]. Bano et al. [14] and Arias et al. [15]
specified that effective change management is one of the main factors determining software
failure or success, and annually almost 8.7% of projects fail due to problems associated
with requirements changes. Similarly, a study conducted by Standish (2019) revealed
that requirements change is one of the top challenges faced in software development [16].
In another study of Virtual Case file [17], the project was abounded after the engineers
has spent five years and A$170 million due to repeated changes in the requirements

specifications.

After discussing the importance of RCM and its impact on software projects success and
failure, it is imperative first to identify a set of challenges related to that problem because
it helps investigate a problem in more detail. By considering this face, this thesis explores
key challenges related to RCM domain indifferent software development approaches. By
following this, to provide a formal set of guidelines to implement RCM, an RCM process
is proposed. To move on and provide more in-depth work related to the RCM problem,
two highly cited challenges identified initially are chooses and proposed approaches to
address them. Although all these sub-problems are related to one problem, which is
RCM, however, to improve readability, we provide motivation and key limitations of the

existing research related to these problems in separate subsections.

In the following subsections, we introduce these problems related to RCM, and discuss

the limitations of the existing research.

1.2.1 Identifying RCM Challenges

To provide qualitative and quantitative analysis related to software artefacts, a number of
approaches, including evidence-based studies and empirical studies, have been conducted.

Evidence-based studies such as a Systematic Literature Review (SLR) or mapping studies

Introduction 4

are to investigate the current research related to the studied concept and to identify
the limitations of the existing research [18, 19]. Empirical studies such as controlled
experiments and case studies are needed to evaluate and validate the research results.
For example, Jayatilleke and Lai [20] conducted an SLR to analyse current practices
related to change impact analysis, requirements traceability, and cost estimation. They
also analysed existing work related to these aspects in the context of the agile software
development approach for software development. Similarly, a number of empirical studies
has been undertaken to analyse RCM challenges in the context of the Global Software
Development (GSD) approach [21-23].

In the past, a number of SLRs have been carried out to investigate different issues of
the RCM domain. However, the existing research that uses SLR to investigate RCM
challenges has the following limitations:

Limitations of existing approaches: Firstly, the existing research mostly focuses on
the RCM challenges in the context of GSD, which are mostly related to the management
perspective of the RCM process. They generally fail to investigate the challenges related

to the core RCM process, which is usually same regardless of the development approach.

Secondly, they usually did not analyse the relative importance of RCM process chal-
lenges/factors in the context of software development approaches such as in-house software

development and GSD.

Thirdly, the relative importance of RCM challenges in the context of different project

management structures adopted in the GSD domain is still an open question [2, 24].

Therefore, there is a need for evidence based study to identify RCM challenges not only
related to the GSD domain, but also related to the core RCM process. In addition, it
would also be worthwhile to investigate RCM challenges in the context of the different
project management structures usually used in GSD projects. This work is related to

RCM, problem 1 studied in this thesis, as shown in Figure 1.1.

1.2.2 Designing an RCM Process

To provide a formal set of guidelines to implement RCM and align literature findings
with industry practices, there is a need for RCM process in the format of an ISO/IEC

standard [25]. Software standards are considered one of the fundamental parts of software

Introduction 5

engineering, especially for developing and improving software systems [26, 27]. Due to
the continuing increase in the complexity and size of software projects, the use of software
standards has become more important. Software life cycle processes in standards provide
guidance for the individuals involved in software development projects on how to carry
out a particular activity [5]. Currently, ISO/IEC 12207 “software life cycle processes” [28]
is the most widely used software standard that includes the complete software life cycle
processes. ISO/IEC 12207 discusses change management not as a complete process, but

as a part of other software life cycle processes.

Generally, the existing software processes have the following limitations:

Limitations of existing approaches: The existing standards have not fully addressed
the RCM process. For example, ISO/IEC 12207: 2017 [28] and ISO/IEC 15288: 2015
[29] outline the configuration management process and discuss change management in
the context of configuration management. However, in software systems, configuration
management and requirements change are two different processes [30] and covers different
aspects of software development. The goal of configuration management is to maintain
consistency between all system components and control the overall execution of the sys-
tem. On the other hand, the goal of change management is to manage and control change

in individual products of SDLC.

As a result, there is a need for an RCM process that provides a structured set of formal
activities required to ensure that software is produced of the right quality, within budget
and on time [3]. This work is related to problem 1 and expands the range of work related

to problem 1, as shown in Figure 1.1.

1.2.3 Change Impact Analysis

To further expand the scope of our work related to RCM, one of the critical challenges,
Change Impact Analysis (CIA), needs to be thoroughly investigated. CIA is one of the
highly cited challenges identified through our SLR. CIA is a process for identifying system

artefacts that are indirectly or directly affected by a requirements change [31].

In real-world systems, the system components are linked with each other to collectively

solve any problem [32]. Even though newly introduced requirements only occupy a small

Introduction 6

portion of the entire system, the changes could affect some other requirements; they might

also impact some critical design artefacts, including the architecture [33].

For many decades, various CIA techniques have been introduced and applied at different
stages of the SDLC to different artefacts, including requirements, architecture, source
code, and a combination of them. However, they have the following limitations:

Limitations of existing approaches: Firstly, previous research has only provided a
rough set of candidate elements that might be impacted by requirements change instead

of pinpointing the elements actually impacted [34].

Secondly, they usually define system artefacts at the abstract level without specifying
them in more precise modelling languages [35]. The change impacts are described in
natural languages rather than more formal and precise modelling language such as Unified
Modelling Language (UML) and Behaviour Tree (BT). Because of this, they usually lack
the capability to illustrate the propagation of the proposed change from requirements to

other software artefacts in an easy to understand and verifiable way.

Thirdly, most of the approaches have not provided any suitable measure for quantifying
the change impact. They usually only provide the list of potentially impacted software
artefacts without considering their complexities. The correct understanding of the com-

plexity of software artefacts helps estimate implementation cost more objectively.

Therefore, because of those limitations, there is a need to estimate the impact of proposed
requirements change on other software artefacts by using a more objective measure. It is
challenging to estimate the cost of implementing the proposed change without quantifying

its impact [36].

1.2.4 Detect Requirements Defects

To move on, we took another key RCM challenge identified through SLR, requirements
defects detection. It is important to note that requirements defects can arise during
the two activities of the RE phase of SDLC. Firstly, they can arise during requirements
elicitation and analysis, a key activity performed in the RE phase of SDLC. Therefore,
in this context, this is another problem (problem 2, shown in Figure 1.1) related to the

RE phase of SDLC. Secondly, they can arise during RCM, and this is the key reason to

Introduction 7

study this problem along with RCM in this thesis. In this work, we divided requirements

defects detection into two sub-parts.

The first part of requirements defects detection is related to the formalisation of the
translation from natural language requirements to semi-formal modelling language, i.e.
BT. The key motivation for this research is that natural languages are too flexible and
have number of problems, such as ambiguity. This step is before the formalisation of semi-
formal languages to formal language and is important because the problems due to the
flexibility of natural languages can pass on to semi-formal language and then ultimately to
formal languages and cause requirements defects [37]. In the past, a number of approaches
have been proposed to perform formalisation of semi-formal modelling languages to some
other formal languages. However, only a few studies have been conducted to formalise
the translation of natural languages to semi-formal modelling languages, and they have

some limitations such as only covering a few constructs of these languages [38].

The second part of requirements defects detection is related to the formalisation of require-
ments defects based on formalised BT and the detection of these requirements defects.
Requirements defects pose a major threat to the success of systems [39]. Requirements
defects may creep in at any stage of development and are more costly to fix at the later
stage of development [40, 41]. Requirements defects formalisation is important in design-
ing formal approaches that can help to detect these defects automatically [42]. In the
past, a number of formal studies have been carried out to detect requirements defects;
however, the existing approaches related to requirements defects detection have the fol-
lowing limitations:

Limitations of existing approaches: Firstly, most of the approaches translate natu-
ral language requirements directly to formal languages such as first-order or propositional
logic [43]. However, the customers who provide the requirements may find it difficult to
understand formal languages, while the engineers may not have the domain knowledge to
correctly interpret the customers’ requirements. As a result, it is not easy to verify if the

formal representation is correct [44].

Therefore, there is a need to use some semi-formal languages to bridge natural languages
and formal languages. Secondly, an expert-level understanding is required to implement
formal languages.Moreover, there is a need for an automated tool to reduce the depen-

dency on expert-level understanding to use formal languages [45, 46].

Introduction 8

Lastly, most of the existing approaches cover only inconsistency defects but miss some

other common defects such as incompleteness, redundancy, and ambiguity.

1.3 Aims and Objectives

As stated in the previous section, our main research goal is to provide approaches and
guidelines for RCM and requirements defects detection to assist industry practitioners
and researchers. To achieve our main research goal, the relevant objectives of this thesis

are stated as follows:

1. To address the limitations of existing SLR approaches; perform an SLR to analyse
the current literature related to RCM challenges in the context of in-house software
development and GSD. This objective is fulfilled in contribution 1 (C1), as shown
in Figure 1.1.

2. To address the limitations of existing RCM related processes in ISO/IEC standards,
propose an RCM process in the format of an ISO /TEC standard to facilitate industry
practitioners for implementing RC. This objective is fulfilled in contribution 2 (C2),

as shown in Figure 1.1.

3. To estimate requirements change impact on other software artefacts, propose an
approach to perform CIA, one of the highly cited RCM challenges identified in
objective 1. This objective is fulfilled in contribution 3 (C3), as shown in Figure

1.1.

4. Propose an approach to perform requirements defects detection arising during RCM,
another challenge identified in objective 1. This approach also detects requirements
defects that arise during requirements elicitation and analysis. This objective is

fulfilled in two contributions (C4a and C4b), as shown in Figure 1.1.

1.4 Contributions of the Thesis

This thesis investigates two key problems related to the RE phase of SDLC: RCM and

requirements defects detection, as shown in Figure 1.1. T'wo starts, we identify challenges

Introduction 9

Requirements

Rl
Probel
Publication

Introduce
Cause
NE l'lb‘ecqu"' ements Introduce P2 Req t
> Mm""‘g € Defects Detection
Paper 3: 4 Paper 5: Paper 6:
Conference Joumnal Journal
L4 < .
Submitted In preparation T8:SPARQL
obal P1 2:In-house - i App
Software Software C3: Change
Development Devel ent Process as ISOEC Impact Analysis Apply
:Web Ontolog

anguage (OV

App
T6:Context-
‘ree Grammay

Conference

2:Systematic) . h . . l
Literature (I 3Alexesuonnau '11‘:_5;113“' Paper 4:
Review urvey gineenng Conference

FIGURE 1.1: Contributions overview

related to RCM in in-house software development and the GSD domain, which provides
an in-depth analysis of the RCM problem. And then, to provide a formal set of guidelines
to implement RCM, we propose an RCM process in the format of an ISO/IEC standard.
Following this, to further increase the scope of this thesis related to the RCM problem,
we choose two highly cited RCM challenges: CIA and requirement defects and propose
approaches to address them. Although all these sub-problems are related to one problem,
which is RCM, however, to improve readability, we provide contribution details in separate

subsections. An overview of these contributions is as follows:

1.4.1 C1 - RCM Challenges

In this work, we conducted an evidence-based study using SLR, to investigate the RCM
challenges related to both in-house software development and GSD approaches, as shown

in Figure 1.1. This work aims to identify RCM challenges and comparatively analyse RCM

Introduction 10

challenges and development approaches. In this work, we first use SLR to identify RCM
challenges related to both development approaches. Then we use a questionnaire survey
to get industry practitioners’ opinions about literature findings. After collecting data from
both sources, we use statistical techniques such as the chi-square test to compare RCM
challenges and development approaches. This comparative analysis helps in understanding
the relative importance of each challenge related to a specific development approach.
Furthermore, we use the chi-square test to analyse RCM challenges in the context of two
prominent project management structures mostly adopted in GSD projects. This analysis
helps in understanding the relative importance of each challenge in the context of a specific
project management structure. In the end, based on the given analysis, we recommend
some key future research directions. The detailed discussion related to contribution C1 is
given in Chapter 3.

Techniques Used:

T2: SLR: SLR is one type of evidence-based studies used to investigate the current
research related to the studied concept and identify future research direction. Further
details of this technique is provided in subsection 2.3.1.

T3: Questionnaire survey: Questionnaire survey is one type of empirical studies used
to gather opinions about a certain technology or process from a large population: A more
detailed discussion related to this technique is provided in subsection 2.3.2.

Output: The following two papers are published as outputs of this contribution:
Paper 1: S. Anwer, L. Wen, and Z. Wang. “A Systematic Approach for Identifying
Requirement Change Management Challenges: Preliminary Results,” in Proceedings of
the Evaluation and Assessment on Software Engineering, 230-235, 2019.

Paper 2: S. Anwer, L. Wen, Z. Wang and S. Mahmood, “Comparative Analysis of
Requirement Change Management Challenges Between in-House and Global Software
Development: Findings of Literature and Industry Survey” in IFEE Access, vol. 7, pp.
116585-116611, 2019,

1.4.2 C2 - RCM Process in the Format of an ISO/IEC Standard

The main goal of this contribution is to define an RCM process in the format of an
ISO/TEC standard, which provides a set of guidelines as outcomes that ought to be fol-
lowed to achieve a particular objective. In this work, we propose a novel RCM process

in the format of an ISO/IEC standard and then use a composition tree to compare the

Introduction 11

proposed RCM process with the existing configuration management process. This com-
parison helps in understanding the deficiencies of the existing RCM related processes in
ISO/IEC standards. We also defined a seven-step RCM model to further elaborate the
proposed RCM process. Moreover, to align RCM challenges identified in contribution 1
(C1) with the proposed process, we mapped RCM challenges to RCM process outcomes.
Then, we used a questionnaire survey to get the opinions of industry practitioners about
this mapping. The thorough analysis shows that more than 90% of the participants agreed
with our developed mapping. This mapping helps industry practitioners to understand
what challenges they could face while achieving a specific RCM process outcome. The
detailed discussion related to this contribution is given in Chapter 4.

Techniques Used:

T4: Software Processes and Standards: Software processes in standards provide a
structured set of activities to produce quality software. The detailed discussion related
to software processes and standards is given in subsection 2.4.

T5a: Composition Tree (CT): CT is one type of modelling notation introduced in
the Behaviour Engineering (BE) approach. CTs, similar to UML class diagrams, model
static system aspects in terms of entities, relationships, attributes and component states
and provide useful summary information related to these elements [47]. Further details
related to CT are given in subsection 2.5.2.

T3: Questionnaire survey: This technique is already briefly discussed in contribution
C1 and detailed discussion is provided in subsection 2.3.2.

Output: The following paper is published as an output of this contribution:

Paper 3: S. Anwer, L. Wen, T. Rout, Z. Wang. “Introducing Requirements Change Man-
agement Process into ISO/IEC 12207,” in: Software Process Improvement and Capability
Determination. SPICE 2018.

1.4.3 C3 - Change Impact Analysis

To further expand the depth of our work related to RCM domain, we propose a BE-based
approach for change impact analysis. The primary goal of this approach is to estimate
the impact of the proposed changes on other software artefacts. In this work, first, we
translate and integrate software requirements to an Integrated Behaviour Tree (IBT) and

then convert the IBT into an Integrated Composition Tree (ICT). After that, we convert

Introduction 12

the ICT to a Requirements Components Dependency Network (RCDN) to capture differ-
ent relationships between requirements and components. Then, we use the RCDN and
component interface diagrams retrieved from the IBT to identify which components are
impacted due to the proposed change. In addition, wee propose a Change Impact Indica-
tor (CII) metric to quantify the proposed change impact. The CII helps to estimate the
development cost required to implement the proposed changes and also helps to identify
an optimal solution from a number of possible change proposals. A real-world system is
used to demonstrate the applicability of our proposed approach. A case study verified
that our approach works successfully to deliver expected results in a real-world software
project. Further discussion related to this contribution is presented in Chapter 5.
Techniques Used:

T5a: Composition tree: CT is briefly discussed in contribution 2 and detailed discus-
sion is provided in subsection 2.5.2.

T5b: Behaviour tree: BT is one type of modelling notation introduced in the BE ap-
proach. The BT is used to model the dynamic aspect of the system. It is a semi-formal,
tree-like graphical structure that represents the behaviour of entities that realise or change
states, make decisions, and respond to/cause events. Further details related to BT given
in subsection 2.5.1.

Output: This contribution output is submitted as a journal paper.

Paper 5: S. Anwer, L. Wen, S. Zhang and Z. Wang, “BECIA: A Behaviour Engineering-
based Approach for Change Impact Analysis” (Submitted to Journal of Software: Evolution

and Process).

1.4.4 C4a & C4b - Requirements Defects Detection

To further expand the scope of our work related to RCM problem, we took another
RCM challenge identified through SLR and proposed a two-step approach to detect re-
quirements defects, including incompleteness, ambiguity, redundancy, and inconsistency.

Requirements defects is one of the major factors for project failures [16].

In the first step, we propose a new axiom called the Inertia Axiom to formalise BT
syntax that is subsequently named normal formed BT. After that, we use a context-free
grammar technique to verify or generate the normal formed BT. A tool is developed to

validate the proposed approach. This work lay the foundation for defining and formalising

Introduction 13

requirements defects in the BT context. The detailed discussion related to this part is

given in Chapter 6.

In the second step, we use the normal formed BT concept and formalise the four most
common requirements defects in the BT context. To detect the formalised requirements
defects, we use BT to model system requirements and then develop an algorithm to trans-
late BTs into a formal logic language called Web Ontology Language(OWL). Moreover,
as a proof of concept, we developed a tool and applied it to a real case study. This
tool uses SPARQL, a semantic query language, to query the OWL knowledge base and
retrieve data about requirements defects. This work helps to detect requirements defects
raised during requirements elicitation & analysis and requirements change. The detailed
discussion related to this part is presented in Chapter 7.

Techniques Used:

T5b: Composition tree: BT is briefly discussed in contribution 3 and detailed discus-
sion is provided in subsection 2.5.1.

T6: Context-Free Grammar (CFG): CFG is used to define or verify the structure of
a language, such as programming language, using a set of defined rules. Further discussion
is provided in subsection 2.6.

T7: OWL: The OWL is a semantic web language designed to represent complex knowl-
edge about things, groups of things, and relations between things. Further discussion is
provided in subsection 2.7.1.

T8: SPARQL: SPARQL is a query language used to retrieve and manipulate data stored
in Resource Description Framework (RDF) format or OWL knowledge base. Further dis-
cussion is provided in subsection 2.7.2.

Output:The first part results are published as a conference paper, and the second part
work is in preparation to be as a journal paper.

Paper 4: S. Anwer, L. Wen and Z. Wang, “A Formal Model for Behaviour Trees Based on
Context-Free Grammar,” 27th Asia-Pacific Software Engineering Conference (APSEC),
Singapore, 2020, pp. 465-469.

Paper 6: S. Anwer, L. Wen and Z. Wang, “BERDD: A Behaviour Engineering based

Approach for Requirements Defects Detection” (In preparation).

Introduction 14

1.5 Thesis Outline

This thesis investigates different issues related to RCM and requirements defects, as shown
in Figure 1.1. This thesis is divided into eight chapters. Following the introductory

chapter, the rest of the thesis is organised as follows:

Chapter 2 is the background of the thesis. We first present an overview of the prob-
lems investigated in this thesis, such as RCM and requirements defects detection. While
discussing the problems, we also present brief related work for the contributions made
related to these problems in this thesis. After that, we present a brief introduction and
discuss the relevance of techniques, including GSD, SLR, questionnaire survey, software

processes and standards, BT, CT, context-free grammar, OWL, and SPARQL.

Chapter 3 is related to RCM challenges both in in-house software development and GSD.
We used SLR to identify the key challenges of RCM and then use a questionnaire survey to
get industry practitioners’ feedback. We perform different analysis to understand different
aspects related to these challenges in the RCM domain based on both data sets. We also

recommend some future research directions based on the performed analysis.

Chapter 4 is related to the RCM process. We propose a novel RCM process in the
format of an ISO/IEC standard and then use CT to compare the existing configuration
management process with the proposed RCM process. We also develop a mapping between
RCM challenges and RCM process outcome to understand what challenges are associated

with each process outcome.

Chapter 5 is related to change impact analysis. This chapter expands the depth of
RCM related work and address one of the RCM challenges identified in Chapter 3. We
use different BE models to propose an approach to estimate the impact of the proposed

change on other system artefacts.

Chapter 6 This chapter further expands the depth of RCM work and breadth of work
related to RE. It proposes a theoretical approach for formalisation of the translation from
natural language requirements to BT, which is called normal formed BT. This theoretical
work laid a foundation for addressing some requirements defects, such as incompleteness,
which is another challenge usually faced during RCM. We use CFG to verify and generate

normal formed BT.

Introduction 15

Chapter 7 is related to requirements defects detection. This chapter extends chapter
6 work and defines the four most common requirement defects such as incompleteness,
inconsistency, redundancy, and ambiguity. To detect these defects, we translate BT into
OWL and then use SPARQL query language to retrieve data related to requirements

defects.

Chapter 8 finally presents a summary of the work done in this thesis, and outlines some

future directions to extend this thesis.

Chapter 2

Background and Literature

Review

This chapter presents the preliminaries for the essential concepts that support the work
presented in this thesis. It investigates works related to RCM (problem 1), including RCM
process, RCM challenges through a Systematic Literature Review (SLR), and Change
Impact Analysis (CIA) in Section 2.1. Requirements defects detection related work, which

is problem 2 studied in this thesis, is presented in Section 2.2.

After that, relevant techniques will be discussed briefly. Software processes and standards
are introduced in Section 2.4. Behaviour Engineering (BE) concepts and notations are
described in Section 2.5, while a brief introduction about Context-Free Grammar (CFG)
is provided in Section 2.6. A brief overview of ontologies and languages, including Web
Ontology Language (OWL) and SPARQL query language, is given in Section 2.7. Data
collection techniques, including SLR and a questionnaire survey, are discussed in 2.3.

Lastly, The Global Software Development (GSD) concept is discussed in Section 2.8.

It is important to note that this chapter does not provide a comprehensive study about
these topics, but rather offers a brief introduction that is sufficient to understand the work

presented in this thesis.

16

Background and Literature Review 17

2.1 P1: Requirements Change Management

This section briefly introduces the background of Requirements Engineering (RE) and
RCM, and reviews RCM work, including RCM processes, RCM challenges through SLRs,
and CIA.

2.1.1 Overview of RE and RCM

Requirements engineering is the first, and one of the key phases of SDLC [5]. The require-
ments specification is necessary to ensure that the system performs what the adopting
organisation intends, but it is also imperative to detail the scope of the implementation.
Poorly written requirements specification or inconsistent understanding among different
stakeholders can cause system failure and might cause human casualties. For example, in
1992, the London ambulance service suffered a disaster that brought their operations to
a virtual standstill, and 20-30 people died. The detailed investigation revealed that poor
requirements specification was one of the major reasons for system failure [48]. Similarly,
the Queensland Health payroll system crashed just after putting in the live environment,

which cost around A$1.25 billion to the state government [49].

Requirements
Engineering

Requirements Requirements
Development Management

Requirements Change Version

Elicitation Analysis Specification | | Validation T — Control

FIGURE 2.1: Overview of requirements engineering domain adapted from [1]

Requirements development and requirements management are two main activities per-
formed in the RE phase, as shown in Figure 2.1. Requirements development deals with
requirements elicitation, analysis, specification, and validation. Requirements elicitation

and analysis is a process of interacting with customers and end-users to find out the

Background and Literature Review 18

domain requirements, system functional requirements, and other constraints. Require-
ments engineers usually execute it, but it may also include other stakeholders, including
managers, maintenance engineers, and testing engineers. It helps to gather requirements,
analyse and find potential conflicts within collected requirements. However, at the same
time, this process may also introduce some defects due to incorrect understanding of

gathered requirements [50].

Requirements management usually deals with RCM and version control. There are some
other activities usually performed in requirements management but are not listed here due
to space limitation in the diagram. Our primary focus is to investigate different aspects
of the RCM domain, which is shown in the shaded rectangle in Figure 2.1. Our second
aim is to design an approach for requirements defects detection, which are usually raised

due to RCM and requirement elicitation and analysis.

Software development is a very dynamic process, and change is inevitable and persistent
in software engineering. It is challenging to identify and specify a complete set of re-
quirements for a system in real-world scenarios. Many factors drive these changes, such
as evolving customer needs or business goals, organisational policies, working or system
operating environment, and government regulations. Requirements change is generally
considered an undesirable event that usually creates unfavourable effects on the software
development process [51]. A study conducted by Standish (2017) revealed that require-
ments change increased the project cost by three times and project time by two times [52].
Similarly, the estimated cost for the project Shared Service Transformation Programme
designed by the Department of Transport in the UK [53], when approved, was £55.4 mil-
lion, but due to multiple changes in the system requirements, the project cost increased

to £121.2 million.

In summary, RCM is a very important activity performed throughout the SDLC, even
during system maintenance. In this research, we studied different aspects of the RCM

domain and designed some approaches to address some of this domain’s key challenges.

After discussing the general background about RE and RCM, we briefly discuss the back-
ground of the sub-problems related to RCM that we investigate in this thesis. Firstly,
we discuss SLRs and questionnaire surveys related to RCM challenges, followed by RCM
related processes in the existing ISO/IEC standards and then change impact analysis,

one of the key challenges for RCM. After that, we discuss requirements defects detection

Background and Literature Review 19

as a separate problem that may arise due to requirements elicitation and analysis; how-
ever, requirements defects may also arise due to RCM. This is the reason to investigate
requirements defects detection along with RCM in this thesis. The important consid-
eration about the following subsections is that we only discuss the background of the
sub-problems mentioned above and a brief literature review. A detailed literature review

related to each problem and potential gaps is discussed in the corresponding chapters.

2.1.2 C1: RCM Challenges through SLR and Questionnaire Survey

Nowadays, the central role of software-intensive systems in everyday life emphasises the
need for evidence-based software engineering (EBSE) [18, 19]. EBSE techniques such as
SLR and mapping studies help researchers ensure that their work addresses the needs of
industry practitioners and all other concerned stockholders, and they also help practi-
tioners make rational decisions about new techniques and emerging technologies [54]. An
SLR is a systematic way of surveying the literature and finding what has been done and
what the shortcomings of a specific problem are. These shortcomings can be considered

as future research directions related to that particular problem.

In the field of Software Engineering (SE), a number of SLRs have been conducted to study
different SE concepts and to explore future research direction in the SE domain. For ex-
ample, Schon et al. [55] conducted SLR to study requirements engineering literature with
a focus on stakeholder and user involvement. Similarly, Hanssen et al. [56] conducted
an SLR to review the application of agile methodologies in GSD projects. Furthermore,
Albuquerque et al. [57] conducted a mapping study to explore best practices in imple-
menting Requirements Changes (RC) in an agile software development context. Similarly,
Batool and Inayat [58] conducted an empirical study to investigate RC best practices in

the Pakistani agile-based industry.

In the domain of RCM, a number of SLRs have been conducted; for example, Jayatilleke
and Lie [20] conducted an SLR to investigate existing research/literature related to RCM.
It mainly focuses on the causes of changes, processes, and techniques to manage require-
ments change. They critically evaluate the formal and semi-formal processes related to
RCM. Similarly, McGee and Greer [59], and Bano et al. [14]conducted SLRs to investi-
gate the causes of change, and then they group them for better understanding. Moreover,

some studies used empirical techniques to identify RCM challenges[23, 60].

Background and Literature Review 20

Further to the above, a number of SLRs have been conducted to investigate RCM in
the GSD paradigm. For example, Khan et al. [61, 62] used SLR and questionnaire
to investigate the communications risks of the RCM process in GSD projects. They
reported that, in the presence of geographical, sociocultural, and temporal differences,
communication and coordination is crucial in the RCM process of globally distributed

projects.

Regrading questionnaire survey, Shafiq et al. [63] presented an empirical study to explore
different aspects of requirements management and requirement change management in
GSD projects and proposed a specialised project management technique to handle RCM

problems.

A detailed discussion about how we have conducted SLR and of the results is given in

Chapter 3.

2.1.3 C2: RCM Processes

Software engineering processes in standards aim to ensure that systems are reliable and
good for the environment. Software engineering processes have been proposed to stan-
dardise the development process so that software projects achieve the given objective

within a specific time and budget.

Nowadays, a number of software processes as standards are used in industry to regulate the
software development process. For example, ISO/IEC 12207: 2017 [28] provides a set of
processes for the software life cycle. Similarly, ISO/IEC 29110:2011 [64] adapted a number
of processes from ISO/TEC 12207 for very small entities. However, the existing standards
did not provide a process for RCM, which is an important activity of the RE phase of
SDLC. They discussed RCM as one of the activities of the configuration management
process. For example, ISO/IEC 12207: 2017 [28] and ISO/IEC 15288: 2015 [29] outline
the configuration management process and discuss the change management in the context
of configuration management as an activity. However, in software systems, configuration
management and requirements change are two different processes [30] and covers different
aspects of software development. The configuration management goal is to control the
overall execution of the system. In contrast, the change management process goal is to

manage and control change in individual products of the project or system.

Background and Literature Review 21

To address the limitations of the existing research, this work proposes a novel RCM
process in the format of an ISO/IEC standard and theoretical model to further elaborate

the RCM process.

Further discussion about the RCM process and RCM model is presented in Chapter 4.

2.1.4 C3: Change Impact Analysis

The majority of software systems are accompanied by frequent changes because they are
required to keep the system operational [65]. Performing regular updates and addition
of features is a necessary task when adapting to a new hardware/software or changing
customer needs. However, the implementation of a single change can affect many different
artefacts including design and architecture of the system. Therefore, it is necessary to

understand and estimate the impact of the proposed change on other system artefacts.

CIA is a general process to identify system elements that are indirectly or directly affected
by a change [31, 66]. CIA is usually studied in two types of application scenarios. Firstly,
in requirements management, for a specific change request, the CIA identifies the files and
models that might be affected by the requested change. Secondly, for an implemented
change, the CIA role is to find the parts of the source code affected by the proposed

change.

A number of CIA techniques have been proposed for different software artefacts such as
requirements models [67], system design/architecture [68], and source code [69]. Similarly,
a few studies have been conducted that trace back the changes from one software artifact
to another artefacts. For example, from requirements to design, Sudin and Kristensen [70]
presented an approach to understand how changes in requirements are carried out during
the design process. From source code to software design, Hammad et al. [71] presented
an approach that monitors the evolution of a design based on the changes in source code.
However, both of these approaches manually identify the potentially impacted design
elements based on requirements changes. In the context of requirements to source code,
Ali and Lai [72] presented an approach to estimate impact in source code based on the
proposed requirements change. They introduced a set of metrics to analyse the estimated

impact from different perspectives.

Further discussion with more related work about the CIA is presented in Chapter 4.

Background and Literature Review 22

2.2 P2: Requirements Defects Detection Overview

According to the Standish report (2019) [16], only 16.2% of software projects were deemed
successful with all the promised functionality and completed on time and budget. There
are many reasons for the failed (83.8%) projects, including lack of user involvement, poor
planning, lack of executive support, and technical incompetence. In addition to these
factors, defects or bugs also contribute towards project failure. Defects are defined as the
deviation from the actual and expected result of system or software applications. Defects
in software products show the software’s inability or inefficiency to perform the expected

and desired to work [73].

According to Lauesen and Vinter [74], software defects are usually classified into two
groups: requirements defects and implementation defects. Implementation defects usually
occur due to faulty development activities and result in program crashes or wrong results.
In contrast, requirements defects usually happen due to incomplete requirements and

inconsistent understanding.

The formal approaches related to requirements defects detection can be classified into two
groups. Firstly, some studies first translate user requirements into semi-formal modelling
language and then convert semi-formal modelling language to formal languages. Secondly,
some studies translate user requirements from natural languages directly to formal lan-
guages. We opted for the first approach due to some obvious reasons. For example, by
translating natural languages directly to formal languages, the customers who provide the
requirements may find it difficult to understand formal languages, while the engineers may
not have the domain knowledge to interpret the customers’ requirements correctly [75]. In
contrast, semi-formal languages usually produces graphical output, easily understandable
to both customers and software engineers [76]. This approach is further divided into two

parts, which are discussed in the following subsections.

2.2.1 C4a: Modelling Language (BT) Formalisation

The formalisation of translation from natural language to semi-formal Modelling lan-
guages is very vital to design formal approaches to detect requirements defects. It is also

important to address natural languages inherent issues such as ambiguity. However, In

Background and Literature Review 23

the past, most of the studies have been carried to formalise the translation from modelling

languages to some formal languages.

Regarding UML to other formal languages, Khan and Porres [77] proposed a technique
to check the consistency of different UML models (state and class diagrams) using OWL
reasoning. They translated UML models to OWL and then performed consistency analysis
using pallet and HermiT reasoning engines. Similarly, Kaneiwa and Satoh [78] introduced
an approach for checking the consistency of the class diagram by translating it into first-
order logic. They introduced an optimised algorithm and restricted the basic elements of
a class diagram. In another study, Mens et al. [79] implemented an approach to check the
consistency between UML models (state chart diagram and sequence diagram) through
using DL. They transformed the UML model to DL format using an off-the-shelf tool
named Poseidon and then performed horizontal (between the same version of different
models) and evolutional (different versions of the same model) consistency checking by

using a DL reasoning engine.

Similarly, a number of studies have been carried out to formalise BT to other formal
languages. For example, Zafar et al. [80] developed a tool to map BT models into datalog

and performed requirements early validation and analysis.

Modelling notations formalisation is very important to detect requirements defects. How-
ever, these types of approaches can detect requirements defects that can occur due to the
flexibility of modelling languages and do not consider the issues that arise due to the flexi-
bility of natural languages. The approach to formalise the translation of natural languages
requirements into semi-formal modelling languages helps to detect the inherent problems

of natural languages such as ambiguity, context-dependency, and incompleteness.

The detailed discussion related to formalising the translation of software requirements

described in natural language to BT, with more related work, is presented in Chapter 6.

2.2.2 C4b: Requirements Defects Detection

In the past, a number of techniques have been proposed to deal with requirements defects,
including defects prevention, defects detection, and minimising the impact of the defects.

Defects detection and removal is the most popular approach in most organisations.

Background and Literature Review 24

A decent amount of work has been undertaken regarding formal approaches for require-
ments defects detection. For example, Chen et al. [81] proposed a formal approach
to check the consistency of the safety requirements of the interlocking railway system.
They defined their language as SafeNL to specify safety requirements written in natural
language and then automatically transformed them into formal constraints called clock
constraint specification language. They used off the shelf available tools for model check-
ing and to check for inconsistency defects. Similarly, Nenwitch et al. [82] developed a
framework called Xlinkit using first-order logic to check inconsistency defects between
heterogeneous requirement specifications. In another study, Weitl et al. [83] implemented
an approach by combining temporal logic and DL based ontology. They aimed to check
the inconsistency of abstract level requirements documents by comparing them with the

developed knowledge base.

Moreover, some studies have used Natural Language Processing (NLP) based approaches
to detect requirements defects. In these approaches, firstly, the natural languages re-
quirements are systematically translated to some other formal language using some NLP
techniques and they then performed requirements defects detection. for example, Ferrari
et al. [84] proposed an NLP pattern-based approach to defects requirements defects. They
applied their approach to a large-scale system in the railway domain and achieved 83%

precision.

Requirements defects detection with more related work is presented in Chapter 7.

2.3 Data Collection

This section briefly discusses the data collection techniques such as SLR and questionnaire

survey used in this research.

2.3.1 T2: Systematic Literature Review

SLR, one type of EBSE, was originally used in the medicine domain and introduced in the
field of software engineering in 2004 [54]. SLR can be defined as “A systematic literature

review (often referred to as a systematic review) is a means of identifying, evaluating and

Background and Literature Review 25

interpreting all available research relevant to a particular research question, or topic area,

or phenomenon of interest.” The process of undertaking an SLR is shown in 2.2.

Start)
4 N

SLR Protocol
Development

Planning

Phase
Protocol

valuatio

Yes

y

Identify Relevant
Research

v

Select Primary
Studies

v

Conducting | /Access Studies
Phase Quality

-
-

AN

Extract Required
Data

v

Synthesise Data

-

Writing)
Phase Write Results

A 4

AN

End

FIGURE 2.2: SLR Process

SLR is a three-phase process that involves planning, conducting, and documenting. Devel-
opment of an SLR protocol and protocol evaluation are the two main activities performed
in the planning phase. In the SLR protocol development activity, firstly, the need for
review will be analysed, and secondly, the research questions will be specified based on
the review need. Thirdly, research strings will be formalised based on the major search

terms and relevant keywords. Research strings might be different for the different search

Background and Literature Review 26

databases like IEEE, Science Direct. Lastly, the inclusion and exclusion criteria for pri-
mary studies will also be defined. Evaluation of developed protocol from independent

researchers will be performed as the second activity of the planning phase.

In the conducting phase, the series of activities will include relevant research identification,
primary studies selection, studies quality assessment, data extraction and data synthesis.
Research strings developed in the planning phase will be executed in selected databases

to find relevant studies.

In the second activity, the primary studies will be selected based on the inclusion and
exclusion criteria. The primary studies selection process can be further divided into two
sub-activities. In the first cycle, the studies selection will be performed based on the
paper title and abstract. In the next cycle, the primary studies will be selected based
on the paper’s complete content. In the next activity, the selected primary studies will
be accessed based on the defined quality criteria. Studies that fail to fulfil the quality
threshold will be dropped from the primary studies list. Relevant data, such as challenges,
factors etc., will be extracted in the fourth activity of the conducting phase. The extracted
data will be peer reviewed based on some random selections from the primary studies.
A manual review of primary studies will be performed to evaluate the effectiveness of
the protocol and study selection process. After that, the extracted data will be further

analysed and synthesised.

Lastly, the synthesised data will be analysed using statistical techniques according to the
research problem in the reporting phase. In the end, the results will be summarised and

published as scientific research papers.

Further details related to SLR and how we have conducted is presented in Chapter 3.

2.3.2 T3: Questionnaire Survey

The survey is an appropriate empirical research methodology tool for collecting qualitative
and quantitative data from a large group of participants by using techniques such as
questionnaires or interviews [85]. Surveys are conducted when the given technology or
tool has already been used or before it is introduced. It is usually used to understand the

situation of the current system [19].

Background and Literature Review 27

The survey is designed and conducted by following these steps: firstly, the research objec-
tive is defined. It will help to understand the research scope and context for framing the
research questions. The important point is that the research objectives must capture the
survey goal. In the next step, the target audience and sampling frame are identified. The
target audience is usually selected from the overall population; then, a sample is selected
from the target audience. To select a target sample, random, systematic, and snowballing

sampling techniques can be used.

In the third step, the survey instrument is designed. The survey instrument is generally
the questionnaire and usually contains open-ended and quantitative value-based questions.
Survey outcomes primarily depend on how a questionnaire has been designed. In the next
step, the survey instrument is evaluated by experts and through experiments. In the last

step, survey data is collected and analysed to obtain valuable outcomes.

Further details related to the questionnaire survey and how we have conducted are pre-

sented in Chapter 3.

2.4 T4: Software Processes and Standards

Software development is not always a straightforward task. A number of factors such
as development team structure, market trends, technological advancements, and other
situational factors affect the development process and quality of software systems [86].
To minimise the impact of these factors, the first software engineering standard was
proposed in 1968, barely eight years after the term ‘software engineering’ was coined.
Approximately, after two decades, in 1987, the joint ISO and TEC standard subcommittee
(ISO/IEC JTC 1/SCT7, or SC7) was created [46]. Standards form the fundamental building
blocks for product development by establishing consistent protocols that can be universally

understood and adopted.

The software standards provide a set of processes for managing the life cycle of software.
For example, ISO/IEC 12207 provides 30 processes for four major groups related to soft-
ware development. Software processes take certain inputs and transform them into some
outputs through a defined set of activities. The software process provides a common
structure so that the buyers, suppliers, developers, maintainers, operators, managers and

technicians involved in the software development use a common language [87]. Software

Background and Literature Review 28

processes help organisations to regulate their development processes, optimise develop-

ment cost, increase revenue and create new business opportunists.

Sometimes, the term software development process is used synonymously with software
process; however, the software process does not include activities directly related to soft-
ware development like quality and configuration. Software development process definitions
are usually not very formal and are left to intuition. People with formal backgrounds crit-
icised these methods because they proved to be a major reason for failures of large and
complex projects. The software process aims to manage and transform user require-
ments into a final software product within a specified budget and time. In a nutshell, the
software process provides a roadmap to construct a software product with the required

functionality and within a given budget and timeline[88].

Nowadays, GSD is widely used to gain benefit from an extended skill set and maximum
use of clock hours. In the GSD environment, teams are dispersed across different countries
with different time zones and cultures. Due to these differences, they may have a different
understanding of different software products; however, software processes in standards
helps to integrate their individual efforts at any level through a well-defined set of activities

[89).

Software processes are defined in ISO software standards. Currently, many software stan-
dards are used in the industry to regulate development processes such as ISO/IEC 15288:
2015 [29], ISO/IEC 12207: 2008 [90], and 12207:2017 [28]. ISO/IEC 12207 provides a
common framework for software life cycle processes that the software industry uses for
software development, supply, operation, and maintenance. The software process in stan-

dards is defined as: title, purpose statement, outcomes, activities and tasks.

e Purpose: It is expressed as a high-level goal to achieve in performing the process.

e Outcomes: These usually provide the expected results but measurable and tangible
from the successful performance of the process. Outcomes should express a single

result. Use of the word ‘and’ or ‘and/or’ to conjoin clauses should be avoided.

e Activity: This aspect of the standard provides the list of actions that might be used

to achieve the particular outcomes.

e Tasks: This aspect of the standard provides the list of actions that are required to

perform a specific activity.

Background and Literature Review 29

A detailed discussion about we use ISO/IEC standards format to propose a new RCM

process is given in Chapter 4.

2.5 Tb5: Behaviour Engineering

Despite the improvements made in software engineering since 1968, software complexity,
faulty or incomplete requirements and a need to satisfy a set of the developed software
requirements still threats to software quality [91, 92]. This situation is intensified in
conventional SE methods that try to build software systems that should satisfy their
requirements. Such SE methods are not only complex, but also fail to deliver quality

software within schedule and budget.

On the other hand, BE, first introduced in 2001 with the name of genetic software en-
gineering [93], provides a systematic approach to designing a software system out of its
requirements. Different from the more traditional SE approach, through which a software
design is created to fulfil the requirements, BE retrieves a design through integrated views
of the requirements [91]. BE introduces two families of graphic notations to capture soft-
ware requirements from two different perspectives. The families are BTs, which capture
the dynamic view of a system, and CT's, which capture the static view of a system. These

two types of graphic notations will be introduced in the next subsections.

The overall behaviour engineering approach to creating a software design is shown in
Figure 2.3. The problem domain contains the functional requirements of a software sys-
tem expressed in natural languages. In the BE approach, each functional requirement is
rigorously translated one at a time to either Requirements Behaviour Trees (RBTs) or
Requirements Compositions Trees (RCTs). In the next step, all the individual trees are in-
tegrated into the Integrated behaviour Tree (IBT) or Integrated Composition Tree (ICT),
which can later be transformed into the design behaviour tree. After that, the design
behaviour tree can be translated into other design views such as component interaction
diagram, component behaviour tree, and component interface diagram. Following this
process, BE provides a clear, systematic and straightforward path from a set of functional

requirements to a design that will satisfy those requirements [91].

As a formal modelling approach, the strength of BE lies in the novel way it addresses the

problems of scale, complexity, and incomplete information associated with the large set

Background and Literature Review 30

Problem ! Analysis Domain : Solution Domain
Domain i :) -
R;q mrgment Integrati Integrgted Refine, De5|gn Other Design Views:
P/ ehaviour Behaviour Behaviour
Translate | Trees (RBTs) Tree (IBT) Tree (DBT) Transform| ® Component Interaction
Functional Network (CIN)
Requirements : e Component Behaviour
Translate Transform| Tree (CBT)
Requirement Integrate Integrated Refine Design - e Component Interface
Composition »{ Composition » Composition Diagram (CID)
Trees (RCTs) Tree (ICT) Tree (DCT) e Etc
Requirements Analysis ' System Design

> <

\ 4

A

FI1GURE 2.3: The behaviour engineering approach to creating a software design

of requirements needed to guide the development of challenging integrated systems [47].
While doing so, BE techniques remove ambiguity, redundancies and affect traceability.
BE techniques enjoy a graphical, compositional, and structurally integrated view of the
process or system being modelled [94]. This noval approach is arguably revolutionary
[95]; it attracts interest in both academia and industry and has produced fruitful research

results in the past two decades [96].

2.5.1 Tb5a: Behaviour Tree

The BT is one of the graphical notations introduced in BE. BT was created to capture
and formalise dynamic information in natural language requirements specifications. BT

can be formally defined as follows:

“A Behaviour Tree is a semi-formal, tree-like graphical form that represents the be-
haviour of individual or networks of entities which realise or change states, make de-
cisions, respond-to/cause events, and interact by exchanging information and/or passing

control” [96].

The unique tree-like syntax of BTs enables domain experts to view the flow of control
easily and allows BT's to accommodate large amounts of information in network structures
with a web of complex interconnections in a scalable way that would overwhelm humans
[97]. In the last two decades, BT notation has gone through evolution and refinements
to its current state. For example, Gonzalez-Perez, et al. [98] defined a meta-model for
further understanding and clarity, especially by the object-oriented community. Winter,

Grunske, and Colvin presented approaches to translate BT to other formal languages,

Background and Literature Review 31

such as CSP [99], SAL [100], and UPPAAL [101]. Furthermore, an EBNF styled textual
semantic language (BTSL) has been developed [102].

In addition to this, non-monotonic reasoning of BT was incorporated in [103]. Ahmed
et al. [104] defined a semantic network to support interactive RE processes, and Colvin
et al. [105] used probabilistic theory to enhance its reliability, performance, and other
dependability properties. BT notation is well documented, explained, and discussed with

supporting tools and successful industry case studies in [96].

Before introducing the other technical details of BT notation, we will explain how BT
can be designed from natural language requirements with a simple case study. Consider
the two requirements of a microwave oven case study used in already published research

[106]. We have simplified the requirements description for easy understanding.

R1: Originally, the oven is in an Idle state, and the Door is closed, and when the button

1s pushed, the Power-tube will be energised and the oven will start cooking.

R2: If the button is pushed while the oven is cooking, it will cause the oven to cook for

an extra minute.

Although we list only two oven system requirements, the objective here is to elucidate the
BT modelling process with a set of requirements. The BTs are constructed in two steps,
translation and integration, by using two axioms called precondition axiom and integration
axiom, introduced in [91]. In the first step, each system requirement is translated into
a separate BT called a RBT. For example, Figure 2.4 (a) shows the RBT for R1. For
easy understanding, we have underlined the states/actions and made the components
bold, i.e. Originally, the OVEN is in Idle state and the DOOR is closed and when
the BUTTON is pushed, the POWER-TUBE will be energised and the OVEN will

start cooking. Similarly, R2 will be translated, and the corresponding RBT is shown in
Figure 2.4 (b). The directed arrows show the connection between individual nodes. In this

translation, we have followed the convention of writing component names in the capital.

In the second step, the individual RBTs are integrated to get a complete BT of the
system, which is called an IBT. In this step, nodes with the same behaviour in the RBTs
are identified and integrated to form an IBT such as node with component name ‘OVEN’
and behaviour ‘Cooking’ used to combine RBT of R1 with RBT of R2, and an IBT based

on these two requirements is shown in Figure 2.4 (¢). The At sign ‘Q’ is used to show the

Background and Literature Review 32

OVEN OVEN OVEN
R1 [Idle] R2 [Cooking] R1 [1dle]
DOOR BUTTON R1 DOOR
RL1 [Closed] RZ | 2opushed?? [j"’sed]
¢ BUTTON
Ry | BUTTON R2 OVEN R1 W,‘fushfw
22Pushed?? [Extra-Minute] = v —
¢ R1 POWER-TUBE
R1 POWER—_TUBE R2 OVEN [Energised]
[Energised] [Cooking]
(b) RBT-2 R1 OVEN
a1 OVEN @ [Cooking]
[Cooking]
BUTTON
a) RBT-1
@ R2 ??Pushed??
OVEN
R2 [Extra-Minute]
OVEN ~
R2 [Cooking]
(c) 1BT

FiGURE 2.4: BT example

integration node in an IBT. Here, we explained the BT modelling process with a simple

example; however, a more detailed discussion about this process can be found in [91].

After informally discussing the BT modelling process, we will now explain more technical
details of BT notation. Figure 2.5 displays the attributes of a BT node. The key elements
of a BT node consist of a component name and the behaviour it exhibits qualified by
behaviour type. The other attributes include traceability link, traceability status, and
node label as one optional parameter. The traceability link is used to associate a BT
node with its corresponding system requirement, and traceability status indicates the
status of that link with a set of values. The ‘+’ indicates that the BT node’s behaviour is
not explicitly stated but is implied by the requirement, and ‘-’ specifies that the behaviour

exhibits in the BT node are missing from the requirement.

FIGURE 2.5: BT node attributes

Background and Literature Review 33

Delimiters on both sides of the behaviour indicate the behaviour type of a BT node. The
behaviour type may be a state realisation ([...]), an event (77...7?), a guard (777...777),
a selection (7...7), an input (<...>), or an output (>...<). The node operators are
defined in the source node, which matches a destination node with the same component,
behaviour, and behaviour type. The reversion node (indicated by “* ”) indicates that
the control of this node will be passed directly to its closest parent node with the same
component name, behaviour name and type. The syntax and semantics of each behaviour

type and the reversion node operator are shown in Table 2.1.

TABLE 2.1: Core elements of BT notation

Node Label Semantics
State Reali- | This indicates that component C realises the state of S and
sation then passes the control to its child node(s).
Selection This indicates that component C will pass the control to its

child node(s) if C is in the state of S; otherwise, the process
on this node will be terminated.

Event This indicates that component C will wait until it is in the
state of S and then pass the control to its child node(s).

Input This indicates that component C will receive a message and
passes the control to its child node(s).

Output This indicates that component C will generate a message
and passes the control to the node(s) receives the message.

Reversion This indicates that the control of this node will be passed
directly to its closest parent node with the same component
name, behaviour name and type.

A further discussion about how BT is used to model system requirements is presented in

Chapters 5, 6, and 7.

2.5.2 T5b: Composition Tree

Composition Tree is one of the graphical notations introduced in BE. CT is a formal
graphical notation originally for modelling component-based systems [94], CTs are similar
to UML class diagrams, model static system aspects in terms of entities, relationships,
attributes and component states [47]. Compared to other modelling notations like UML
with tens of diagrams to contend with, the created CT models are more intuitive, less
ambiguous and easier to read and verify than the original natural language processes [47].

Non-experts can easily understand the CT flowchart-styled graphic notation, soft and

Background and Literature Review 34

casual modelling. The notation has been found to be than other modelling notations to

trace back and preserve the intentions of natural language processes [47].

CT, just like BT, is constructed through a careful step wise approach and later integrated
into one complete tree like a graphical model. Individual RCTs are later integrated into
an ICT more like a UML class diagram to encapsulate a structured view of the complete
system vocabulary. Here we use a small example, which has been published in software
engineering literature [47], to illustrate composition trees. Let us consider a small system,

CAR, that has the following 6 requirements:

TABLE 2.2: The requirements of the CAR system

Requirement

R1 The car can only be started if it is in the park state when the driver inserts
the key in the ignition and turns it on.

R2 A dashboard light remains on if the driver’s seatbelt is not fastened when
the driver is seated, and the ignition is on.

R3 If the handbrake is on when the ignition is on, the brake light turns on.

R4 The security alarm is on when the car is locked, and if anyone tries to
break in by breaking a window or forcing a door the alarm will sound.

RH When the driver, on approaching the car, presses the key-button it unlocks
the door and turns the security alarm off.

R6 When the car is unlocked the driver may get in and put the car into the
park state.

The first step is to translate individual requirements into RCTs. The RCT translated from
requirement R1 is shown in Figure 2.6. To help readers understand how the requirement
is translated into a CT, we repeat the original requirement in the figure and underline
all keywords. The system is called CAR (in this example, we use all capital words to
represent components and systems), expressed in a double-line box at the top of the
figure. According to R1, the CAR could be in two different states called “started” and
“park”, so the two states are drawn under CAR. R1 also mentions two components, “key”
and “ignition,” drawn in single-line boxes under CAR. From R1, we also know that KEY
could be in the state of “turned” and IGNITION could be in the state of “on”, so these
states are drawn under corresponding components, respectively. We also note that KEY
is inserted in IGNITION, which indicates a relationship between the two components,
and this relationship is represented with a key label Relation under KEY. Similarly, we

can draw other RCTs one by one and then integrate them.

Background and Literature Review

35

CAR

R1: The car can only be started if itis in the park state when the driver inserts the
key in the ignition and turns it on.

Relation

State

RL| [

Where ‘IGNITION

R1 | [Turned]

R1| IGNITION State
‘ R1| [Started]
State R1 [Park]
RL| [on]

FIGURE 2.6: The IBT of R1

Figure 2.7 shows the integrated composition tree of R1 and R2. From this figure, apart

from component KEY and IGNITION, three more components DLIGHT (dashboard
light), SBELT (seatbelt), and SEAT (seat) are added with their corresponding states

based on R2.

Figure 2.8 shows the ICT of all 6 requirements. There are 10 components under CAR

and a component BUTTON under component KEY. Each state is associated with a

requirement tag to trace this piece of information back to its original requirement. For

example, component BUTTON has a state called “pressed”, the associated requirement

tag is R5, so we can check requirement R5 to verify this piece of information.

CAR

R2: A dashboard light remains on if the driver's seatbelt is not fastened when the driver is seated, and the ignition is on.

AN

Where [IGNITION

‘ R2 ‘ DLIGHT H RZ‘ SBELT ‘ ‘ Rl‘ KEY ‘ ‘ Rl‘ IGNITION ‘ State R2 SEAT
| \ ‘ R1| [Started]
\ State state | State RL| [Park] State
[R2| o] R2 [NotFastened] | | R1 | [rumed) || R1| [on] R2| [seated]
Rele‘ltion
Ri| [

FIGURE 2.7: The IBT of R1 and R2

Background and Literature Review 36

CAR
‘R4 WNDOW‘ ‘ R2 ‘ DLIGHT ‘ ‘ RZ‘ SBELT ‘ ‘ Rl‘ KEY ‘ ‘ Rl‘IGNITION‘ ‘ RZ‘ SEAT ‘ State
[[[‘ \ \ R1 | [Started]
‘ State State ‘ State State State State R1| [Park]
[Ra [Broken] | | [R2[[on] | || R2 [NotFastened] | | R1 \ [Turned] | || R1[[on] R2 [[seated] || | Ra | [Locked]
‘ R4 |[Unlocked]
R3 ‘ BLIGHT ‘ Relation
‘R‘l ‘ DOOR ‘ ‘ R4 | ALARM
| | RL[]
P State Where [IGNITION
R3[| [on] | R3] [0 State
R4 | [Forced n n
[Forced] [On] R5 |BUTTON [On] Ra| [on]
R5 [[Unlocked]
R5 | [Off]

F1GURE 2.8: The IBT of CAR system

Comparing Figure 2.8 with the original set of requirements, we can see that the ICT shows
the system’s component composition is much more clearly and visibly. Many questions
such as what components are under the system, what states a component may have,
can be easily answered by checking the diagram. The diagram can also help to identify
incompleteness defects in the requirements. For example, we discover that the component
DLIGHT has only one state “on”. Based on domain knowledge, we know that light should
not be in the state of “on” all the time, which means we have missed some requirements
to describe when the DLIGHT might be “off”. Generally, CTs plus BTs have proven to

be useful tools for requirements analysis and systems design.

A further discussion about how CT is used in our research is presented in Chapters 4 and

5.

2.6 T6: Context-Free Grammar

Context-Free Grammar (CFG) is one of the formal grammars defined in the Chomsky
hierarchy, as shown in Figure 2.9. CFG is less expressive than context-sensitive grammar
and requires less computation effort to generate a language [107-109]. Moreover, the
question of whether the given string is generated or verified by a given grammar is called

a membership problem, and context-free languages are best suited for these problems. In

Background and Literature Review 37

contrast, in natural languages where the context of letters/words within a string/sentence

matters, along with the structure, context-sensitive languages become the best choice.

Context Free

Regular

FI1GURE 2.9: Chomsky hierarchy languages classification

A CFG helps define the structure of a language, such as a programming language, using
a set of production rules. Alternatively, a CFG, by applying a set of production rules,
can also be used to verify whether any given string belongs to some language. In general,
a CFG is described by a tuple (S, N, T, P) where S, N, T, P represent start symbol,
non-terminals, terminals, and production rules. Overall, a CFG generates a language L
that means is the set of all sentences can be expressed using the CFG. For example, a
CFG may specify the rules used to construct any sentence in the English language. If
a sentence conforms to the rules specified in a CFG, it is called grammatically correct;

otherwise, the sentence is ungrammatical.

This research uses CFG to formalise RBT structure and identifies requirements incom-
pleteness defects by using that structure. We opted for CFG because, firstly, our problem
relates to the membership problem, and CFG constructs are enough to verify and syn-
tactically generate RBT structure. Secondly, a CFG provides a deterministic solution in

contrast to a recursive enumerable one.

Further discussion related to CFG with more related work is presented in Chapter 6.

2.7 Ontologies and Reasoning

This section briefly discusses OWL, the relevance of OWL to this research, and the

SPARQL query language used to query data from OWL ontologies.

Background and Literature Review 38

2.7.1 T7: Web Ontology Language (OWL)

The increasing importance of ontologies and their processing in computers has led to the
development of many ontology representation languages such as SHOE, OIL, DAML+OIL,
RDF, RDF(S) and OWL [110]. OWL is a consolidation of its preceding languages with
influence from Description Logics, frames paradigm and RDF'. Its main representation and
logical framework, including syntax and semantics, are based on Description Logics [110].
An ontology language is a vehicle to specify at an abstract level what is necessarily true
in the domain of interest. It expresses constraints that declare what should necessarily

hold in any possible concrete instantiation of the domain.

The OWL is a semantic web language designed and standardised by W3C to represent
rich and complex knowledge about things, groups of things, and relations between things
[111]. The first version of OWL called OWL 1 was announced in 2004. The OWL 1
language comprises three sub-languages such as OWL Lite, OWL DL, and OWL Full.
OWL Lite is the least expressive, and supports classification hierarchy and simple con-
straint features. OWL DL provides maximum expressiveness to the users without losing
computational completeness and decidability. OWL DL is so named due to its correspon-
dence with description logic, which is a decidable variant of first-order-logic. Lastly, OWL
Full provides maximum expressiveness and syntactic freedom but without computational

guarantee, and for this reason, OWL DL is best suited for knowledge representation.

The current version of OWL is called OWL 2, which became a W3C standard in 2009,
and it is more expressive than its predecessor OWL 1 (2004). The OWL 2 editors such
as Protégé and semantic reasoners such as Pellet [112], and HermiT [113] were developed
soon after the announcement of the standard. OWL 2 does not distinguish those OWL 1

sub-languages. In this research, we have used OWL 2 to represent software requirements.

OWL formalises domain knowledge by creating an ontology by defining classes and the
properties of those classes. It also defines individuals and asserts properties about them
and reasons about these classes and individuals to the degree permitted by its formal
semantics [114]. A concrete syntax is needed to store OWL ontologies and exchange
them among tools and applications in practice. The primary exchange syntax for OWL

is RDF /XML, and it is supported by most of the OWL tools.

Background and Literature Review 39

To retain upward compatibility with existing web language, OWL includes class and
property features as already used by RDF and RDFS [115]. Because of all the influences

on OWL and compatibility issues with other semantic web languages,

e OWL uses URI references as names just like RDF uses them. It is also usual in

OWL to use qualified names such as OWL: Thing

e OWL presents information to ontologies which are stored as web documents written

in RDF/XML.

e OWL allows RDF annotation properties to be used to attach information to classes,

properties and ontologies.

e OWL uses RDF datatypes and XML schema datatypes to provides data types and

data values.

The reasons for choosing OWL as the formal language to specify, analyse and reason

about requirements defects in Chapter 7 are:

e Some other formal languages such as propositional logic or first-order logic can also
be used for supporting software requirements analysis. However, propositional logic
is less expressive and not suitable for reasoning with large data [116], while first-

order logic, even though very expressive, is computationally undecidable.

e Based on the previous research [117], OWL is more suitable for creating and main-
taining domain knowledge and semantics for requirements that require the concepts

and relationships in the problem domain to be defined.
e Many OWL reasoners are available off the shelf [112, 113, 118].
e According to the systematic literature review [119], OWL is the most commonly

used ontology language in the RE process.

We used the OWL concept in requirements defects detection, and more details about how

we used it are presented in Chapter 7.

Background and Literature Review 40

2.7.2 T8: SPARQL

SPARQL is a query language used to retrieve and manipulate data stored in RDF format.
SPARQL can also be used to query the OWL knowledge base because an OWL ontology’s
underlying structure is a collection of triples, each consisting of a subject, a predicate, and
an object. This structure is similar to the RDF graph and is stored in RDF /XML format,
which is usually used to store RDF data. SPARQL expresses queries across diverse data
sources, whether the data is stored natively as RDF or viewed as RDF such as OWL.
SPARQL can also be used for querying required and optional graph patterns along with

their conjunctions and disjunctions [120].

In this study, OWL is used to express system requirements, and different query languages
such as DL and OWL can be used to query the OWL knowledge base. However, in this
study, we use SPARQL because SPARQL offers many benefits such as graph pattern
matching, availability of a rich set of functions for strings, numbers as compared to DL
query language. SPARQL engines are also widely available and have significant adoptions

[121].

Further details about how we used the SPARQL query to retrieve data related to require-

ments defects are presented in 7.

2.8 P1.1: Global Software Development

Global Software Development or software development outsourcing is an emerging soft-
ware engineering paradigm with a focus on developing quality software at low development
cost [122]. GSD can be defined as a relationship between client and vendor organisations
in which a client contracts out all or part of its software development activities to one or
more vendors, who provide required services in return for agreed cost [123]. The general

overview of the GSD paradigm is shown in Figure 2.10.

2.8.1 Project Management Structures in GSD

The software development environment is continually changing because of globalisation,

innovation, and market trends. The newly emerged software development paradigm

Background and Literature Review

FIGURE 2.10: GSD Overview

Australia

UK

1y

Project Manager

China

FIGURE 2.11: Centralised global project structure adapted from [2].

Background and Literature Review 42

Australia

Project Manager

Local Coordinator

USA China

Local Coordinator Local Coordinator

FIGURE 2.12: Distributed global project structure adapted from [2].

named GSD has the potential to reduce a project’s time to market by using a highly
skilled workforce at a relatively reduced cost, and by using different time zones to or-
ganise a 24/7 development model [2]. Because of these factors, the management of GSD

projects becomes more challenging.

The project size, organisational structure, the maturity level of the organisation in under-
taking GSD projects, and the experience of development team members working on GSD
projects, dominate project structure selection from among different available projects
structures. There are two main types of global project structures, namely, centralised
project management structure and the distributed with local coordinators project man-
agement structure [2]. In centralised project management, as shown in 2.11, all or most
of the team members report directly to a project manager who sits at one of the GSD
sites and is responsible for most of the coordination and control tasks through collabora-
tive tools. On the other hand, in distributed with a local coordinator, as shown in 2.12,
the team members report directly to their local coordinators, who plan and execute the

allocated task and report to the project manager at regular intervals.

In this research, we analysed identified RCM challenges in the context of the different

project management structures mostly followed in the GSD paradigm.

Background and Literature Review 43

Further details related to RCM challenges analysis based on the GSD project management

structure are presented in Chapter 3.

Chapter 3

Requirements Change

Management Challenges

Nowadays, technological advancements emphasise the need for evidence-based studies
to investigate specific problems thoroughly. Evidence-based studies such as Systematic
Literature Reviews (SLR) and mapping studies are the tools to collect data from published
literature. They help researchers ensure that their research addresses the needs of industry
practitioners and all concerned stockholders. By considering the fact that evidence-based
studies are imperative to investigate a specific problem, in this chapter, we use SLR
to identify the challenges associated with a Requirements Change Management (RCM)
process both in in-house software development and Global Software Development (GSD)
approaches. Furthermore, we use a questionnaire survey to get industry practitioners’
feedback about our literature findings. The findings presented in this chapter would
assist researchers and industry professionals by providing potential research directions to

understand and implement RCM in different contexts more efficiently.

After identifying RCM challenges, we propose a process to provide a formal set of guide-
lines to implement RCM. Following this, we choose two highly cited RCM challenges
identified through SLR and propose approaches to address them.

44

RCM Challenges 45

3.1 Introduction

RCM is a complex process triggered by factors such as organisational policies, market
trends, and operational environments [124]. In recent years, several models have been
proposed in the literature to improve RCM [72, 125, 126]. At the same time, a few reviews
have been carried out to explore the different aspects of the RCM models [14, 20, 127].
However, the existing reviews have limited coverage and miss some important aspects

related to software development approaches and the RCM process.

There are two major software development approaches in practice, namely in-house soft-
ware development and GSD. In-house software development is carried out by a team of
professionals, probably from the same country/city, with the same cultural and language

background working within the same organisation [128].

A GSD project is carried out by multiple teams in various locations in the world[2, 123].
The GSD paradigm offers many benefits, including low-cost development, access to a
skilled and quality workforce, and a follow-the-sun development approach [129]. However,
the GSD paradigm has failed to realise the anticipated outcomes and has achieved a
45% project success rate compared to 61% for co-located teams [130]. There are many
reasons for these failures, including cultural, temporal, and communication issues [131—

133], particularly project management challenges across the borders.

Hence, the question arises: what are the differences and similarities between RCM in
the two software development approaches? The comparative analysis between RCM chal-
lenges in in-house and GSD will assist practitioners to understand and implement RCM

in different context more efficiently.

Furthermore, when people move from in-house software development to GSD, project
management will become more challenging due to geographical and cultural differences
[134]. To address this challenge, usually, two types of global project management struc-
tures, namely distributed (with local coordinators) structure and centralised structure [2]
are used for GSD projects. To understand their impacts on RCM challenges is also inter-
esting because doing so will help GSD practitioners to adopt or construct more suitable

approaches to address these challenges.

Despite the importance of this problem, no detailed study has been found in the literature

to explore the challenges associated with RCM and the two different software development

RCM Challenges 46

approaches. Similarly, little research has been reported to compare the impact of different
project management structures in the context of RCM challenges for GSD projects. This
study aims to identify and compare the challenges associated with RCM in both in-
house and GSD approaches. To identify RCM related challenges, we use an SLR and
then conduct a questionnaire survey with industry professionals to get feedback about
SLR findings. To address the above-listed limitations, we compile the following research

questions:

RQ1: What are the challenges of RCM in in-house software development as reported in
the literature?

Motivation: This question provides the starting point of this study by identifying the
RCM challenges related to the in-house software development approach reported in the

literature.

RQ2: What are the challenges of RCM in in-house software development as identified in
the industry?

Motivation: To support the findings of RQ1 and to analyse industry practices related to
RCM in an in-house approach, a questionnaire survey was developed to collect data from

industry professionals based on their experience.

RQ3: What are the challenges of RCM in the GSD approach, as studied in the literature?
Motivation: This question enhanced this study’s scope and identified RCM challenges
specifically related to GSD projects.

RQ4: What are the challenges of RCM in GSD projects as identified from industry?
Motivation: To support the findings of RQ3 and analyse industry practices related to
the RCM process, a questionnaire survey was developed to collect data from industry

professionals working on GSD projects based on their experience.

RQ5: What are the similarities and differences between RCM challenges in in-house
software development and GSD?

Motivation: The literature hasn’t discussed the relationships between RCM challenges
and the two software development approaches. This research gap motivates us to tackle

this question through an industry survey.

RQ6: What are the similarities and differences of RCM challenges between centralised

and distributed project management structures followed in GSD projects?

RCM Challenges 47

Motivation: Similarly, this question hasn’t been addressed in the literature; therefore, we

try to find the answer through an industry survey.

RQ7: Are there any differences between the challenges identified from the literature and
the industry survey?

Motivation: This question helps people realise the gaps between research and the industry
by finding differences and similarities. Although the questionnaire survey was developed
based on SLR results, However, there is a mismatch between both data sets results. This
mismatch shows that there is a defence between academia and industry practices to inves-
tigate and implement RCM. We will apply a simple raking technique and a more advanced
statistical technique, t-test of independence, to explore differences and similarities between

both data sets.

In this work, we combined the SLR and questionnaire survey based approaches foe the

following reasons:

e The SLR process was used as a method for collecting RCM challenges from liter-
ature. To support our literature findings and to uncover state-of-the-art industrial
practices related to RCM challenges, the survey was created to collect data from

industry practitioners based on their experience.

e [t is worth noting that the primary studies used in RQ3 do not show how different
factors are taken into account in centralized and distributed GSD project manage-
ment structures. This gap in the literature has motivated us to investigate indus-
try practices in relation to RCM in different GSD project management structures.
Hence, the questionnaire survey was used to collect data from GSD practitioners

for centralized and distributed GSD project management structures.

The following part of this chapter is organised as: section 3.2 briefly presents the review
of existing RCM related research. Section 3.3 describes the research methodology for this
chapter. Section 3.4 presents the SLR results, and section 3.5 presents the questionnaire
survey results. The comparison between SLR and questionnaire data sets is presented in
section 3.6. Section 3.7 provides some discussions and implications of this work. Section
3.8 presents the limitations of this study. Finally, the conclusion is discussed in section

3.9.

RCM Challenges 48

3.2 Related Work

In the past, decent work has been done in the domain of RCM, including RCM models
in both in-house and GSD domain, rework assessment during requirements change and

empirical studies to explore different aspects of the RCM domain.

Mékarainen [135] proposed a requirements change process for embedded systems, and it
is very similar to the spiral software development model and encompassed four cycles.
In another study, Ren et al. [136] proposed prioritising critical requirements during the
RCM process. Likewise, Alsanad et al. [137] developed an OWL-based domain ontology

to implement requirements change in the GSD paradigm.

Regarding rework assessment, Chua and Verner [138] conducted a study to understand
the effort estimation problem in the change management domain. They used case studies
to validate their approach empirically. Similarly, Jayatilleke and Lai [139] investigated an
approach to assess the rework required to implement a proposed change. Their approach
assessed different options for a required change and suggested an option requiring less

rework to implement a required change.

Regarding RCM challenges, Akbar et al. [140] proposed a readiness model for RCM in
GSD context and in another study, Akbar et al. [60] conducted an empirical study to
investigate the RCM challenges related to the GSD paradigm. In another study, Ahmed
et al. [141] identified some challenges of RCM in GSD. However, they only used the
ordinary literature review technique, which is not as systematic as SLR and they missed
some relevant papers. More recently, Akbar et al. [127] conducted an SLR to investigate
the success factors for RCM in the GSD domain. They found 23 success factors, including
change acceptability, update requirements, information sharing. Similarly, in other studies
[21, 142], conducted SLR to investigate the challenging factors that negatively impact
RCM in GSD.

Despite the fact that various empirical studies to investigate the RCM problem have been

reported. However, some limitations need attention.

e The existing studies have not discussed the different project management structures
normally practised in GSD projects [2] and how the identified challenges can be

addressed in a particular project management structure.

RCM Challenges 49

e The existing approach investigations mostly focused on project management-related

challenges related to RCM and missed the core RCM process challenges.

3.3 Research Methodology

We use a two-step approach to conduct this research, as shown in Figure 3.1. In the first
step, SLR is used to survey the literature published in the public domain and identify key
challenges that impact RCM in in-house software development (RQ1) and some challenges
that impact RCM in GSD (RQ3). In the second step, we use the first step results to
develop a questionnaire survey and collect feedback from industry practitioners (RQ2,
RQ4). After that, industry practitioners’ feedback is analysed to explore different aspects
of RCM challenges both in the in-house and GSD paradigms (RQ5 and RQ6). Finally,

the data collected from the first two steps are compared (RQT).

RCM Challenges in RCM Challenges in —
in-house Context (RQ1) GSD Context (RQ3) :

Questionnaire Survey

RCM Challenges in RCM Challenges in
in-house Context (RQ2) GSD Context (RQ2)

Analysis

Centralized vs Distributed Comparison between SLR
Project Structure in GSD and Questionnaire Survey
(RQ6) (RQ7)

In-house Software
Development vs GSD (RQ5)

F1GURE 3.1: Research methodology

3.3.1 Data Collection via SLR

Systematic literature review is the most commonly used approach in evidence-based soft-
ware engineering. SLR is formally planned and systematically executed, and it provides

guidelines to identify, analyse and interpret all available evidence with reference to specific

RCM Challenges 50

research questions. SLR is recommended to review published literature; it helps to collect

evidence and identify research gaps through a well-defined process.

In this research, we followed the Kitchenham and Charters [143] guidelines to execute
an SLR process that contains three main phases: defining a protocol, conducting the
protocol, and reviewing the protocol. In the first step, an SLR protocol was written to
outline the complete process, and our protocol consisted of the following elements: (i)
identification of research questions, (ii) search strategy, (iii) study selection, (iv) quality
assessment, and (v) data extraction and synthesis. The first element was introduced in
the introduction section, and the other elements are included in the following parts of this
section. The SLR was undertaken by a team of three researchers, one student and two
academic staff members. To reduce personal bias and improve SLR results reliability, an
inter-rater reliability test (Kendall’s coefficient of concordance (W)) was performed in all

study selection phases.

3.3.1.1 Search Strategy

The search strategy for SLR in this study is based on the following four steps.

1. Construct search terms by identifying keywords from population, intervention, out-
come and experimental design [143]. The results are:
Population: Global software development, In-house software development.
Intervention: Requirement change management challenges or barriers.
Outcome: List of challenges in the RCM of in-house and GSD projects.
FEzperimental design: Systematic literature review, empirical studies, expert opin-

ion.

2. Find synonyms of keywords. Well reputed academic electronic databases are used
to validate our keywords. The list of potential synonyms of each keyword is shown

in Table 3.1.

3. Use boolean operators to connect major terms. In this step, we used Boolean oper-
ator OR to connect synonyms of each keyword and AND operator to connect major
terms or keywords.

CHALLENGES: “Challenges” OR. “problems” OR “difficulties” OR “complica-
tions” OR “obstacles” OR “barriers” OR “hurdles” OR “risks”

RCM Challenges 51

TABLE 3.1: Keyword synonyms

Keyword Synonyms

Challenges Challenges, problems, difficulties, complications, ob-
stacles, barriers, hurdles, risks

Requirements Change Manage- | Requirements change, requirements volatility, re-
ment quirements creep, requirements change management,
requirements change difficulties, requirements change
analysis, requirements change identification/type, re-
quirements change models/processes

Global Software Development | Global software development, global project man-
agement, GSD, Offshore software development, dis-
tributed software development, offshore outsourcing
global software engineering, distributed software en-
gineering, GSE

In-house software development |In-house software development, Onshore software de-
velopment, onsite software development

REQUIREMENTS CHANGE MANAGEMENT: “requirements change” OR “re-
quirements volatility” OR “requirements creep” OR “requirements change manage-
ment” OR “requirements change difficulties” OR” requirements change analysis”
OR “requirements change identification/type” OR “requirements change model-
s/processes”

GLOBAL SOFTWARE DEVELOPMENT: “global software development” OR, “global
project management” OR “GSD” OR “Offshore software development” OR “dis-
tributed software development” OR “offshore outsourcing” OR “global software
engineering” OR “distributed software engineering” OR “GSE”

IN-HOUSE SOFTWARE DEVELOPMENT: “in-house software development” OR

onshore software development” OR “onsite software development”

By using AND operator, we defined search strings for RCM challenges in both in-
house GSD approaches.

For RCM challenges in In-house software development:

“challenges” OR “problems” OR “difficulties” OR “complications” OR “obstacles”
OR “barriers” OR “hurdles” OR “risks” AND

“requirements change” OR “requirements volatility” OR “requirements creep” OR
“requirements change management” OR “Requirements change difficulties” OR”

requirements change analysis” OR “requirements change identification/type” OR

RCM Challenges 52

“requirements change models/processes” AND

“in-house software development” OR onshore software development” OR “onsite
software development”

For RCM challenges in the GSD paradigm:

“challenges” OR “problems” OR “difficulties” OR “complications” OR “obstacles”
OR “barriers” OR “hurdles” OR “risks” AND

“requirements change” OR “requirements volatility” OR “requirements creep” OR
“requirement change management” OR “requirements change difficulties” OR” re-
quirements change analysis” OR “requirements change identification/type” OR “re-
quirements change models/processes” AND

“global software development” OR “global project management” OR “GSD” OR
“offshore software development” OR “distributed software development” OR, “off-
shore outsourcing” OR “global software engineering” OR “distributed software en-

gineering” OR, “GSE”

4. Verify search terms in electronic databases. In this step, some papers that are
relevant to our research questions were used to verify the search terms. The resources
searched in this step included specific research databases, journals and conference

proceedings.

Based on the available access, the following electronic academic databases were used to
search relevant primary studies. Because these research sources differ in their search
mechanisms, we customised the search strings listed in the previous step accordingly,
which are given in Appendix A.1. It is a bit challenging to design a search string for
each database that can give maximum coverage of the related papers. We designed search
strings for this study with the help of two software engineering researchers who have
published a good number of papers related to SLR. And then, we cross-check the search
string results with a manual search. Therefore, we believe that our search strings help us

to extract all the papers relevant to our studies topic.

e [EEE Xplore. https://ieeexplore.ieee.org
e Science Direct. http://www.sciencedirect.com/

e Springer Link. http://link.springer.com/

RCM Challenges 53

e ACM Digital Library. http://dl.acm.org

e Google Scholar. https://scholar.google.com/

3.3.1.2 Studies Selection

Inclusion and exclusion criteria were used to select the primary studies retrieved from
the academic databases and other electronic resources. The primary studies published or
available online before 30, June 2018 were included in this research. The criteria used for

including and excluding the primary studies are as follows:

Inclusion criteria:

e Publications that directly linked to our research questions.
e In case of duplications, the most completed version is included.

e Publication written in English.
Ezclusion criteria:
e Peer-reviewed papers only- we excluded position papers, keynotes, panel discussions,
editorials etc.
e Publications written in non-English.
e Publications without bibliographic information.

The seven-step process was used to select primary studies. The number of studies selected

at each step of this SLR is shown in Figure 3.2. The seven steps are as follows:

e In the first step, the search strings were executed on selected digital libraries, and

189 studies were retrieved.

e In the second step, 89 studies were selected based on the paper title and abstract.
The studies that could not be decided based on their titles and abstracts were also

retained for the next inspection round.

e In the next step, duplicate studies (13) were excluded.

RCM Challenges

54

FIGURE 3.2: SLR process steps and number of studies at each step

3 —
IEEE Science
Explorer Direct Link AfSM
60 41 68
Step 1: Running search
strings on academic T """" "'
databases Total
N=184
Step 2: Selection based } _______ >
on title and abstract ’> A
N=89
First Review Selection
Step 3: Duplications are }- - - .- »
excluded Y
=76
Step 4: Full paper I >
reading y
Second Review Selection N=50
Step 5: Quality e >
assessment criteria T h 4
N=40
A 4
Step 6:(Snowballing)
Scan the references of N=3
papers selected in step 5 *
Final Selection
Final Selection N=43

e In the fourth step, 50 out of 76 primary studies were short-listed based on the full

paper text. We only included papers that were relevant to our research questions.

e In the next step, 40 studies were short-listed based on quality assessment criteria,

as shown in Table 3.2 and the papers that failed to satisfy the minimum quality

score of 50% were excluded [119]. The quality assessment evaluated