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Abstract

The main goal of software development is to produce software that fulfils users’ needs.

Users’ needs are usually expressed as system requirements that are elicited during the

Requirements Engineering (RE) phase of the Software Development Life Cycle (SDLC).

In real-world systems, it is difficult to elicit all the requirements early in development.

As a result, in practice, changes to the initial requirements occur frequently. Moreover,

some other factors may also trigger Requirements Changes (RCs) such as technological

advancements and changes in stakeholders’ needs. RCs can also be made even after the

system has been deployed. To manage RCs, systematic approaches, which usually fall

under the umbrella of Requirements Change Management (RCM), are required.

Efficient RCM is essential for the success of large software projects. To develop efficient

RCM, challenges that might be faced during the execution of RCM processes need to be

investigated and then suitable approaches must be designed to address them.

The objective of this thesis was to investigate RCM challenges and to provide approaches

and guidelines to address these challenges. To achieve the objectives, we carried out an

evidence-based study to identify RCM challenges and then developed a suitable RCM

process, proposed in the format of an ISO/IEC standard. Subsequently, we used some

semi-formal modelling languages and formal languages to tackle two key RCM challenges.

In particular, for the evidence-based study, we used a Systematic Literature Review (SLR)

to identify challenges related to RCM in both in-house software development and Global

Software Development (GSD). We then conducted a questionnaire-based survey to get

industry practitioners’ opinions of the findings of our literature review. Based on both

data sets, a chi-square test was used to analyse the relative importance of identified RCM

challenges in the context of in-house software development and GSD. The results reveal

some insights into RCM key issues and will help software engineers and partitioner’s to

design more efficient RCM processes.

Based on our findings, we propose an RCM process in the format of an ISO/IEC standard.

The proposed process is elaborated through a seven-step model. And then, Composition

Trees (CTs) are used to compare the proposed process with the RCM related processes in

an existing ISO/IEC standards. The comparison results show that the proposed process

has addressed many key aspects of RCM that had previously been missed. In addition,
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mapping is used to verify that most RCM challenges are covered by proposed RCM process

outcomes. The results are further validated through an industry survey.

To increase the depth of our work related to RCM, we propose a systematic approach

to estimate the impact of requirements changes on other software artefacts. In the SLR,

change impact analysis is one of the most cited RCM challenges to have been identified.

Our approach uses an Integrated Behaviour Tree (IBT) to model system requirements.

We then convert the IBT to an Integrated Composition Tree (ICT), and the ICT into a

Requirements Component Dependency Network (RCDN). All these models help to trace

and visualize the change propagation from requirements to other software artefacts such

as software architecture. Moreover, RCDN and component interface diagrams help to

identify the impacted components and help to quantify the change impact, denoted as

the change impact indicator, which could provide a more objective measure for calculating

the development cost of the proposed change.

To address another RCM challenge, we propose a two-step approach to detect require-

ments defects. In the first step, a formal model based on Context-Free Grammar (CFG)

is proposed to formalise the translation of software requirements described in natural lan-

guage to a Behaviour Tree (BT). In this approach, we first define normal formed BTs

based on a newly introduced Inertia Axiom, and then use CFG to generate or verify the

normal formed BTs. A tool is developed to validate the proposed approach.

In the second step, we formalise the four most common requirements defects based on

the normalised BTs and define algorithms to detect them. To detect those requirements

defects, we use BTs to model system requirements and then develop an algorithm to

translate BTs to Web Ontology Language (OWL). The process of translating natural lan-

guage software requirements into BTs and then into a formal language helps to overcome

the difficulty of verifying whether a formal representation is faithful to its original natural

language form. And then SPARQL queries are used to query the OWL formulation of the

requirements and to detect requirements defects. Lastly, a tool is developed and applied

to a real-world system to validate the proposed approach.

An important point is that requirements defects also arise during requirements elicitation

and analysis stages. Therefore, in this context, some results of this research are relevant

to another problem in the RE phase of SDLC.
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Chapter 1

Introduction

1.1 Background

Software systems are making profound changes to every aspect of human existence. Nowa-

days, software is everywhere and plays a fundamental and increasing role in our society.

Software now drives applications in virtually all areas of human endeavours in critical

roles [3]. Therefore, it is of utmost importance that the software perform correctly and

predictably in all domains where it is relied on because of its critical roles. Moreover,

software produces big changes in the market and has a huge impact on the way we live.

Therefore, it is necessary to understand the characteristics of software and other related

factors.

It is necessary to define rules and processes for the development of software systems to

ensure their correct functioning, as software impacts our daily lives to a huge extent. To

fulfil this purpose, the term ‘software engineering’ was first introduced in the late 1950s

and early 1960s [4]. Software engineering can be defined as “the application of a system-

atic, disciplined, quantifiable approach to the development, operation, and maintenance of

software” [5, 6]. The process that implements software engineering principles to produce

quality software is called the Software Development Life Cycle (SDLC).

Software systems are designed for a specific purpose, such as solving a problem or fulfilling

the needs of stakeholders such as end-users, customers, or business [6]. The stakeholder

needs are usually expressed as system features that the system should possess, and these

systems features are called software requirements. Software requirements can be formally

1
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defined as “A condition or capability that must be met or possessed by a solution or

solution component to satisfy a contract, standard, specification, or other formally imposed

documents” [1, 5, 6]. The software requirements are managed through the Requirements

Engineering (RE) phase of the SDLC.

RE is pivotal and central to every successful software development project. According to

one study, it was found that of 268 cited software development challenges, 40% were related

to the RE phase of SDLC [7]. RE includes both the process of specifying requirements

by studying the needs of stakeholders and the process of systematically analysing and

refining those specifications [8]. Therefore, requirements development and requirements

management are the two main activities performed in the RE phase of SDLC [1, 9]. Re-

quirements development mainly addresses the requirements elicitation and specification,

while requirements management deals with the management of the current and changed

requirements. According to the Rational Project Management survey, conducted by IBM

[10], ineffective requirements management processes have been identified as a leading cause

of project failure.

In the next sections, we introduce the motivation of the whole study; we define the scope

of our work and present its main contributions.

1.2 Motivation

Requirements Change Management (RCM) is one of the key components of the require-

ments management activities of the RE phase. Software development is a very dynamic

process, and change is inevitable and persistent in software engineering. Many factors

have driven these changes, such as evolving customer needs or business goals, organi-

sational policies, working or system operating environment, and government regulations

[11]. Similarly, stakeholders’ varying ways of expressing the requirements can also results

in ambiguity and inconsistency in requirements, which ultimately causes the requirements

change [1].

Requirements Change (RC) or requirement evolution can be formally defined as “the

tendency of requirements to change over time in response to evolving needs of customers,

stakeholders, organisations and work environment” [12]. As a result, RCM can be formally
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defined as ”managing changing requirements during the requirements engineering process,

system development and system maintenance” [1, 5, 9].

It is challenging to identify and specify a complete set of requirements for a system in

real-world scenarios. The software requirements keep changing through the SDLC, and

approximately 50% of the initial requirements are changed before the system has been

deployed [5]. The continual requirements changes and their management remains an open

challenge in the field of software engineering [13]. Bano et al. [14] and Arias et al. [15]

specified that effective change management is one of the main factors determining software

failure or success, and annually almost 8.7% of projects fail due to problems associated

with requirements changes. Similarly, a study conducted by Standish (2019) revealed

that requirements change is one of the top challenges faced in software development [16].

In another study of Virtual Case file [17], the project was abounded after the engineers

has spent five years and A$170 million due to repeated changes in the requirements

specifications.

After discussing the importance of RCM and its impact on software projects success and

failure, it is imperative first to identify a set of challenges related to that problem because

it helps investigate a problem in more detail. By considering this face, this thesis explores

key challenges related to RCM domain indifferent software development approaches. By

following this, to provide a formal set of guidelines to implement RCM, an RCM process

is proposed. To move on and provide more in-depth work related to the RCM problem,

two highly cited challenges identified initially are chooses and proposed approaches to

address them. Although all these sub-problems are related to one problem, which is

RCM, however, to improve readability, we provide motivation and key limitations of the

existing research related to these problems in separate subsections.

In the following subsections, we introduce these problems related to RCM, and discuss

the limitations of the existing research.

1.2.1 Identifying RCM Challenges

To provide qualitative and quantitative analysis related to software artefacts, a number of

approaches, including evidence-based studies and empirical studies, have been conducted.

Evidence-based studies such as a Systematic Literature Review (SLR) or mapping studies
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are to investigate the current research related to the studied concept and to identify

the limitations of the existing research [18, 19]. Empirical studies such as controlled

experiments and case studies are needed to evaluate and validate the research results.

For example, Jayatilleke and Lai [20] conducted an SLR to analyse current practices

related to change impact analysis, requirements traceability, and cost estimation. They

also analysed existing work related to these aspects in the context of the agile software

development approach for software development. Similarly, a number of empirical studies

has been undertaken to analyse RCM challenges in the context of the Global Software

Development (GSD) approach [21–23].

In the past, a number of SLRs have been carried out to investigate different issues of

the RCM domain. However, the existing research that uses SLR to investigate RCM

challenges has the following limitations:

Limitations of existing approaches: Firstly, the existing research mostly focuses on

the RCM challenges in the context of GSD, which are mostly related to the management

perspective of the RCM process. They generally fail to investigate the challenges related

to the core RCM process, which is usually same regardless of the development approach.

Secondly, they usually did not analyse the relative importance of RCM process chal-

lenges/factors in the context of software development approaches such as in-house software

development and GSD.

Thirdly, the relative importance of RCM challenges in the context of different project

management structures adopted in the GSD domain is still an open question [2, 24].

Therefore, there is a need for evidence based study to identify RCM challenges not only

related to the GSD domain, but also related to the core RCM process. In addition, it

would also be worthwhile to investigate RCM challenges in the context of the different

project management structures usually used in GSD projects. This work is related to

RCM, problem 1 studied in this thesis, as shown in Figure 1.1.

1.2.2 Designing an RCM Process

To provide a formal set of guidelines to implement RCM and align literature findings

with industry practices, there is a need for RCM process in the format of an ISO/IEC

standard [25]. Software standards are considered one of the fundamental parts of software
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engineering, especially for developing and improving software systems [26, 27]. Due to

the continuing increase in the complexity and size of software projects, the use of software

standards has become more important. Software life cycle processes in standards provide

guidance for the individuals involved in software development projects on how to carry

out a particular activity [5]. Currently, ISO/IEC 12207 “software life cycle processes” [28]

is the most widely used software standard that includes the complete software life cycle

processes. ISO/IEC 12207 discusses change management not as a complete process, but

as a part of other software life cycle processes.

Generally, the existing software processes have the following limitations:

Limitations of existing approaches: The existing standards have not fully addressed

the RCM process. For example, ISO/IEC 12207: 2017 [28] and ISO/IEC 15288: 2015

[29] outline the configuration management process and discuss change management in

the context of configuration management. However, in software systems, configuration

management and requirements change are two different processes [30] and covers different

aspects of software development. The goal of configuration management is to maintain

consistency between all system components and control the overall execution of the sys-

tem. On the other hand, the goal of change management is to manage and control change

in individual products of SDLC.

As a result, there is a need for an RCM process that provides a structured set of formal

activities required to ensure that software is produced of the right quality, within budget

and on time [3]. This work is related to problem 1 and expands the range of work related

to problem 1, as shown in Figure 1.1.

1.2.3 Change Impact Analysis

To further expand the scope of our work related to RCM, one of the critical challenges,

Change Impact Analysis (CIA), needs to be thoroughly investigated. CIA is one of the

highly cited challenges identified through our SLR. CIA is a process for identifying system

artefacts that are indirectly or directly affected by a requirements change [31].

In real-world systems, the system components are linked with each other to collectively

solve any problem [32]. Even though newly introduced requirements only occupy a small
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portion of the entire system, the changes could affect some other requirements; they might

also impact some critical design artefacts, including the architecture [33].

For many decades, various CIA techniques have been introduced and applied at different

stages of the SDLC to different artefacts, including requirements, architecture, source

code, and a combination of them. However, they have the following limitations:

Limitations of existing approaches: Firstly, previous research has only provided a

rough set of candidate elements that might be impacted by requirements change instead

of pinpointing the elements actually impacted [34].

Secondly, they usually define system artefacts at the abstract level without specifying

them in more precise modelling languages [35]. The change impacts are described in

natural languages rather than more formal and precise modelling language such as Unified

Modelling Language (UML) and Behaviour Tree (BT). Because of this, they usually lack

the capability to illustrate the propagation of the proposed change from requirements to

other software artefacts in an easy to understand and verifiable way.

Thirdly, most of the approaches have not provided any suitable measure for quantifying

the change impact. They usually only provide the list of potentially impacted software

artefacts without considering their complexities. The correct understanding of the com-

plexity of software artefacts helps estimate implementation cost more objectively.

Therefore, because of those limitations, there is a need to estimate the impact of proposed

requirements change on other software artefacts by using a more objective measure. It is

challenging to estimate the cost of implementing the proposed change without quantifying

its impact [36].

1.2.4 Detect Requirements Defects

To move on, we took another key RCM challenge identified through SLR, requirements

defects detection. It is important to note that requirements defects can arise during

the two activities of the RE phase of SDLC. Firstly, they can arise during requirements

elicitation and analysis, a key activity performed in the RE phase of SDLC. Therefore,

in this context, this is another problem (problem 2, shown in Figure 1.1) related to the

RE phase of SDLC. Secondly, they can arise during RCM, and this is the key reason to
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study this problem along with RCM in this thesis. In this work, we divided requirements

defects detection into two sub-parts.

The first part of requirements defects detection is related to the formalisation of the

translation from natural language requirements to semi-formal modelling language, i.e.

BT. The key motivation for this research is that natural languages are too flexible and

have number of problems, such as ambiguity. This step is before the formalisation of semi-

formal languages to formal language and is important because the problems due to the

flexibility of natural languages can pass on to semi-formal language and then ultimately to

formal languages and cause requirements defects [37]. In the past, a number of approaches

have been proposed to perform formalisation of semi-formal modelling languages to some

other formal languages. However, only a few studies have been conducted to formalise

the translation of natural languages to semi-formal modelling languages, and they have

some limitations such as only covering a few constructs of these languages [38].

The second part of requirements defects detection is related to the formalisation of require-

ments defects based on formalised BT and the detection of these requirements defects.

Requirements defects pose a major threat to the success of systems [39]. Requirements

defects may creep in at any stage of development and are more costly to fix at the later

stage of development [40, 41]. Requirements defects formalisation is important in design-

ing formal approaches that can help to detect these defects automatically [42]. In the

past, a number of formal studies have been carried out to detect requirements defects;

however, the existing approaches related to requirements defects detection have the fol-

lowing limitations:

Limitations of existing approaches: Firstly, most of the approaches translate natu-

ral language requirements directly to formal languages such as first-order or propositional

logic [43]. However, the customers who provide the requirements may find it difficult to

understand formal languages, while the engineers may not have the domain knowledge to

correctly interpret the customers’ requirements. As a result, it is not easy to verify if the

formal representation is correct [44].

Therefore, there is a need to use some semi-formal languages to bridge natural languages

and formal languages. Secondly, an expert-level understanding is required to implement

formal languages.Moreover, there is a need for an automated tool to reduce the depen-

dency on expert-level understanding to use formal languages [45, 46].
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Lastly, most of the existing approaches cover only inconsistency defects but miss some

other common defects such as incompleteness, redundancy, and ambiguity.

1.3 Aims and Objectives

As stated in the previous section, our main research goal is to provide approaches and

guidelines for RCM and requirements defects detection to assist industry practitioners

and researchers. To achieve our main research goal, the relevant objectives of this thesis

are stated as follows:

1. To address the limitations of existing SLR approaches; perform an SLR to analyse

the current literature related to RCM challenges in the context of in-house software

development and GSD. This objective is fulfilled in contribution 1 (C1), as shown

in Figure 1.1.

2. To address the limitations of existing RCM related processes in ISO/IEC standards,

propose an RCM process in the format of an ISO/IEC standard to facilitate industry

practitioners for implementing RC. This objective is fulfilled in contribution 2 (C2),

as shown in Figure 1.1.

3. To estimate requirements change impact on other software artefacts, propose an

approach to perform CIA, one of the highly cited RCM challenges identified in

objective 1. This objective is fulfilled in contribution 3 (C3), as shown in Figure

1.1.

4. Propose an approach to perform requirements defects detection arising during RCM,

another challenge identified in objective 1. This approach also detects requirements

defects that arise during requirements elicitation and analysis. This objective is

fulfilled in two contributions (C4a and C4b), as shown in Figure 1.1.

1.4 Contributions of the Thesis

This thesis investigates two key problems related to the RE phase of SDLC: RCM and

requirements defects detection, as shown in Figure 1.1. Two starts, we identify challenges
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challenges and development approaches. In this work, we first use SLR to identify RCM

challenges related to both development approaches. Then we use a questionnaire survey

to get industry practitioners’ opinions about literature findings. After collecting data from

both sources, we use statistical techniques such as the chi-square test to compare RCM

challenges and development approaches. This comparative analysis helps in understanding

the relative importance of each challenge related to a specific development approach.

Furthermore, we use the chi-square test to analyse RCM challenges in the context of two

prominent project management structures mostly adopted in GSD projects. This analysis

helps in understanding the relative importance of each challenge in the context of a specific

project management structure. In the end, based on the given analysis, we recommend

some key future research directions. The detailed discussion related to contribution C1 is

given in Chapter 3.

Techniques Used:

T2: SLR: SLR is one type of evidence-based studies used to investigate the current

research related to the studied concept and identify future research direction. Further

details of this technique is provided in subsection 2.3.1.

T3: Questionnaire survey: Questionnaire survey is one type of empirical studies used

to gather opinions about a certain technology or process from a large population: A more

detailed discussion related to this technique is provided in subsection 2.3.2.

Output: The following two papers are published as outputs of this contribution:

Paper 1: S. Anwer, L. Wen, and Z. Wang. “A Systematic Approach for Identifying

Requirement Change Management Challenges: Preliminary Results,” in Proceedings of

the Evaluation and Assessment on Software Engineering, 230–235, 2019.

Paper 2: S. Anwer, L. Wen, Z. Wang and S. Mahmood, “Comparative Analysis of

Requirement Change Management Challenges Between in-House and Global Software

Development: Findings of Literature and Industry Survey” in IEEE Access, vol. 7, pp.

116585-116611, 2019,

1.4.2 C2 - RCM Process in the Format of an ISO/IEC Standard

The main goal of this contribution is to define an RCM process in the format of an

ISO/IEC standard, which provides a set of guidelines as outcomes that ought to be fol-

lowed to achieve a particular objective. In this work, we propose a novel RCM process

in the format of an ISO/IEC standard and then use a composition tree to compare the
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proposed RCM process with the existing configuration management process. This com-

parison helps in understanding the deficiencies of the existing RCM related processes in

ISO/IEC standards. We also defined a seven-step RCM model to further elaborate the

proposed RCM process. Moreover, to align RCM challenges identified in contribution 1

(C1) with the proposed process, we mapped RCM challenges to RCM process outcomes.

Then, we used a questionnaire survey to get the opinions of industry practitioners about

this mapping. The thorough analysis shows that more than 90% of the participants agreed

with our developed mapping. This mapping helps industry practitioners to understand

what challenges they could face while achieving a specific RCM process outcome. The

detailed discussion related to this contribution is given in Chapter 4.

Techniques Used:

T4: Software Processes and Standards: Software processes in standards provide a

structured set of activities to produce quality software. The detailed discussion related

to software processes and standards is given in subsection 2.4.

T5a: Composition Tree (CT): CT is one type of modelling notation introduced in

the Behaviour Engineering (BE) approach. CTs, similar to UML class diagrams, model

static system aspects in terms of entities, relationships, attributes and component states

and provide useful summary information related to these elements [47]. Further details

related to CT are given in subsection 2.5.2.

T3: Questionnaire survey: This technique is already briefly discussed in contribution

C1 and detailed discussion is provided in subsection 2.3.2.

Output: The following paper is published as an output of this contribution:

Paper 3: S. Anwer, L. Wen, T. Rout, Z. Wang. “Introducing Requirements Change Man-

agement Process into ISO/IEC 12207,” in: Software Process Improvement and Capability

Determination. SPICE 2018.

1.4.3 C3 - Change Impact Analysis

To further expand the depth of our work related to RCM domain, we propose a BE-based

approach for change impact analysis. The primary goal of this approach is to estimate

the impact of the proposed changes on other software artefacts. In this work, first, we

translate and integrate software requirements to an Integrated Behaviour Tree (IBT) and

then convert the IBT into an Integrated Composition Tree (ICT). After that, we convert
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the ICT to a Requirements Components Dependency Network (RCDN) to capture differ-

ent relationships between requirements and components. Then, we use the RCDN and

component interface diagrams retrieved from the IBT to identify which components are

impacted due to the proposed change. In addition, wee propose a Change Impact Indica-

tor (CII) metric to quantify the proposed change impact. The CII helps to estimate the

development cost required to implement the proposed changes and also helps to identify

an optimal solution from a number of possible change proposals. A real-world system is

used to demonstrate the applicability of our proposed approach. A case study verified

that our approach works successfully to deliver expected results in a real-world software

project. Further discussion related to this contribution is presented in Chapter 5.

Techniques Used:

T5a: Composition tree: CT is briefly discussed in contribution 2 and detailed discus-

sion is provided in subsection 2.5.2.

T5b: Behaviour tree: BT is one type of modelling notation introduced in the BE ap-

proach. The BT is used to model the dynamic aspect of the system. It is a semi-formal,

tree-like graphical structure that represents the behaviour of entities that realise or change

states, make decisions, and respond to/cause events. Further details related to BT given

in subsection 2.5.1.

Output: This contribution output is submitted as a journal paper.

Paper 5: S. Anwer, L. Wen, S. Zhang and Z. Wang, “BECIA: A Behaviour Engineering-

based Approach for Change Impact Analysis” (Submitted to Journal of Software:Evolution

and Process).

1.4.4 C4a & C4b - Requirements Defects Detection

To further expand the scope of our work related to RCM problem, we took another

RCM challenge identified through SLR and proposed a two-step approach to detect re-

quirements defects, including incompleteness, ambiguity, redundancy, and inconsistency.

Requirements defects is one of the major factors for project failures [16].

In the first step, we propose a new axiom called the Inertia Axiom to formalise BT

syntax that is subsequently named normal formed BT. After that, we use a context-free

grammar technique to verify or generate the normal formed BT. A tool is developed to

validate the proposed approach. This work lay the foundation for defining and formalising
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requirements defects in the BT context. The detailed discussion related to this part is

given in Chapter 6.

In the second step, we use the normal formed BT concept and formalise the four most

common requirements defects in the BT context. To detect the formalised requirements

defects, we use BT to model system requirements and then develop an algorithm to trans-

late BTs into a formal logic language called Web Ontology Language(OWL). Moreover,

as a proof of concept, we developed a tool and applied it to a real case study. This

tool uses SPARQL, a semantic query language, to query the OWL knowledge base and

retrieve data about requirements defects. This work helps to detect requirements defects

raised during requirements elicitation & analysis and requirements change. The detailed

discussion related to this part is presented in Chapter 7.

Techniques Used:

T5b: Composition tree: BT is briefly discussed in contribution 3 and detailed discus-

sion is provided in subsection 2.5.1.

T6: Context-Free Grammar (CFG): CFG is used to define or verify the structure of

a language, such as programming language, using a set of defined rules. Further discussion

is provided in subsection 2.6.

T7: OWL: The OWL is a semantic web language designed to represent complex knowl-

edge about things, groups of things, and relations between things. Further discussion is

provided in subsection 2.7.1.

T8: SPARQL: SPARQL is a query language used to retrieve and manipulate data stored

in Resource Description Framework (RDF) format or OWL knowledge base. Further dis-

cussion is provided in subsection 2.7.2.

Output:The first part results are published as a conference paper, and the second part

work is in preparation to be as a journal paper.

Paper 4: S. Anwer, L. Wen and Z. Wang, “A Formal Model for Behaviour Trees Based on

Context-Free Grammar,” 27th Asia-Pacific Software Engineering Conference (APSEC),

Singapore, 2020, pp. 465-469.

Paper 6: S. Anwer, L. Wen and Z. Wang, “BERDD: A Behaviour Engineering based

Approach for Requirements Defects Detection” (In preparation).



Introduction 14

1.5 Thesis Outline

This thesis investigates different issues related to RCM and requirements defects, as shown

in Figure 1.1. This thesis is divided into eight chapters. Following the introductory

chapter, the rest of the thesis is organised as follows:

Chapter 2 is the background of the thesis. We first present an overview of the prob-

lems investigated in this thesis, such as RCM and requirements defects detection. While

discussing the problems, we also present brief related work for the contributions made

related to these problems in this thesis. After that, we present a brief introduction and

discuss the relevance of techniques, including GSD, SLR, questionnaire survey, software

processes and standards, BT, CT, context-free grammar, OWL, and SPARQL.

Chapter 3 is related to RCM challenges both in in-house software development and GSD.

We used SLR to identify the key challenges of RCM and then use a questionnaire survey to

get industry practitioners’ feedback. We perform different analysis to understand different

aspects related to these challenges in the RCM domain based on both data sets. We also

recommend some future research directions based on the performed analysis.

Chapter 4 is related to the RCM process. We propose a novel RCM process in the

format of an ISO/IEC standard and then use CT to compare the existing configuration

management process with the proposed RCM process. We also develop a mapping between

RCM challenges and RCM process outcome to understand what challenges are associated

with each process outcome.

Chapter 5 is related to change impact analysis. This chapter expands the depth of

RCM related work and address one of the RCM challenges identified in Chapter 3. We

use different BE models to propose an approach to estimate the impact of the proposed

change on other system artefacts.

Chapter 6 This chapter further expands the depth of RCM work and breadth of work

related to RE. It proposes a theoretical approach for formalisation of the translation from

natural language requirements to BT, which is called normal formed BT. This theoretical

work laid a foundation for addressing some requirements defects, such as incompleteness,

which is another challenge usually faced during RCM. We use CFG to verify and generate

normal formed BT.
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Chapter 7 is related to requirements defects detection. This chapter extends chapter

6 work and defines the four most common requirement defects such as incompleteness,

inconsistency, redundancy, and ambiguity. To detect these defects, we translate BT into

OWL and then use SPARQL query language to retrieve data related to requirements

defects.

Chapter 8 finally presents a summary of the work done in this thesis, and outlines some

future directions to extend this thesis.



Chapter 2

Background and Literature

Review

This chapter presents the preliminaries for the essential concepts that support the work

presented in this thesis. It investigates works related to RCM (problem 1), including RCM

process, RCM challenges through a Systematic Literature Review (SLR), and Change

Impact Analysis (CIA) in Section 2.1. Requirements defects detection related work, which

is problem 2 studied in this thesis, is presented in Section 2.2.

After that, relevant techniques will be discussed briefly. Software processes and standards

are introduced in Section 2.4. Behaviour Engineering (BE) concepts and notations are

described in Section 2.5, while a brief introduction about Context-Free Grammar (CFG)

is provided in Section 2.6. A brief overview of ontologies and languages, including Web

Ontology Language (OWL) and SPARQL query language, is given in Section 2.7. Data

collection techniques, including SLR and a questionnaire survey, are discussed in 2.3.

Lastly, The Global Software Development (GSD) concept is discussed in Section 2.8.

It is important to note that this chapter does not provide a comprehensive study about

these topics, but rather offers a brief introduction that is sufficient to understand the work

presented in this thesis.

16
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2.1 P1: Requirements Change Management

This section briefly introduces the background of Requirements Engineering (RE) and

RCM, and reviews RCM work, including RCM processes, RCM challenges through SLRs,

and CIA.

2.1.1 Overview of RE and RCM

Requirements engineering is the first, and one of the key phases of SDLC [5]. The require-

ments specification is necessary to ensure that the system performs what the adopting

organisation intends, but it is also imperative to detail the scope of the implementation.

Poorly written requirements specification or inconsistent understanding among different

stakeholders can cause system failure and might cause human casualties. For example, in

1992, the London ambulance service suffered a disaster that brought their operations to

a virtual standstill, and 20-30 people died. The detailed investigation revealed that poor

requirements specification was one of the major reasons for system failure [48]. Similarly,

the Queensland Health payroll system crashed just after putting in the live environment,

which cost around A$1.25 billion to the state government [49].

Requirements 

Engineering

Requirements 

Development

Requirements 

Management

Elicitation Analysis Specification Validation
Requirements Change 

Management

Version 

Control

Figure 2.1: Overview of requirements engineering domain adapted from [1]

Requirements development and requirements management are two main activities per-

formed in the RE phase, as shown in Figure 2.1. Requirements development deals with

requirements elicitation, analysis, specification, and validation. Requirements elicitation

and analysis is a process of interacting with customers and end-users to find out the
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domain requirements, system functional requirements, and other constraints. Require-

ments engineers usually execute it, but it may also include other stakeholders, including

managers, maintenance engineers, and testing engineers. It helps to gather requirements,

analyse and find potential conflicts within collected requirements. However, at the same

time, this process may also introduce some defects due to incorrect understanding of

gathered requirements [50].

Requirements management usually deals with RCM and version control. There are some

other activities usually performed in requirements management but are not listed here due

to space limitation in the diagram. Our primary focus is to investigate different aspects

of the RCM domain, which is shown in the shaded rectangle in Figure 2.1. Our second

aim is to design an approach for requirements defects detection, which are usually raised

due to RCM and requirement elicitation and analysis.

Software development is a very dynamic process, and change is inevitable and persistent

in software engineering. It is challenging to identify and specify a complete set of re-

quirements for a system in real-world scenarios. Many factors drive these changes, such

as evolving customer needs or business goals, organisational policies, working or system

operating environment, and government regulations. Requirements change is generally

considered an undesirable event that usually creates unfavourable effects on the software

development process [51]. A study conducted by Standish (2017) revealed that require-

ments change increased the project cost by three times and project time by two times [52].

Similarly, the estimated cost for the project Shared Service Transformation Programme

designed by the Department of Transport in the UK [53], when approved, was £55.4 mil-

lion, but due to multiple changes in the system requirements, the project cost increased

to £121.2 million.

In summary, RCM is a very important activity performed throughout the SDLC, even

during system maintenance. In this research, we studied different aspects of the RCM

domain and designed some approaches to address some of this domain’s key challenges.

After discussing the general background about RE and RCM, we briefly discuss the back-

ground of the sub-problems related to RCM that we investigate in this thesis. Firstly,

we discuss SLRs and questionnaire surveys related to RCM challenges, followed by RCM

related processes in the existing ISO/IEC standards and then change impact analysis,

one of the key challenges for RCM. After that, we discuss requirements defects detection
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as a separate problem that may arise due to requirements elicitation and analysis; how-

ever, requirements defects may also arise due to RCM. This is the reason to investigate

requirements defects detection along with RCM in this thesis. The important consid-

eration about the following subsections is that we only discuss the background of the

sub-problems mentioned above and a brief literature review. A detailed literature review

related to each problem and potential gaps is discussed in the corresponding chapters.

2.1.2 C1: RCM Challenges through SLR and Questionnaire Survey

Nowadays, the central role of software-intensive systems in everyday life emphasises the

need for evidence-based software engineering (EBSE) [18, 19]. EBSE techniques such as

SLR and mapping studies help researchers ensure that their work addresses the needs of

industry practitioners and all other concerned stockholders, and they also help practi-

tioners make rational decisions about new techniques and emerging technologies [54]. An

SLR is a systematic way of surveying the literature and finding what has been done and

what the shortcomings of a specific problem are. These shortcomings can be considered

as future research directions related to that particular problem.

In the field of Software Engineering (SE), a number of SLRs have been conducted to study

different SE concepts and to explore future research direction in the SE domain. For ex-

ample, Schon et al. [55] conducted SLR to study requirements engineering literature with

a focus on stakeholder and user involvement. Similarly, Hanssen et al. [56] conducted

an SLR to review the application of agile methodologies in GSD projects. Furthermore,

Albuquerque et al. [57] conducted a mapping study to explore best practices in imple-

menting Requirements Changes (RC) in an agile software development context. Similarly,

Batool and Inayat [58] conducted an empirical study to investigate RC best practices in

the Pakistani agile-based industry.

In the domain of RCM, a number of SLRs have been conducted; for example, Jayatilleke

and Lie [20] conducted an SLR to investigate existing research/literature related to RCM.

It mainly focuses on the causes of changes, processes, and techniques to manage require-

ments change. They critically evaluate the formal and semi-formal processes related to

RCM. Similarly, McGee and Greer [59], and Bano et al. [14]conducted SLRs to investi-

gate the causes of change, and then they group them for better understanding. Moreover,

some studies used empirical techniques to identify RCM challenges[23, 60].
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Further to the above, a number of SLRs have been conducted to investigate RCM in

the GSD paradigm. For example, Khan et al. [61, 62] used SLR and questionnaire

to investigate the communications risks of the RCM process in GSD projects. They

reported that, in the presence of geographical, sociocultural, and temporal differences,

communication and coordination is crucial in the RCM process of globally distributed

projects.

Regrading questionnaire survey, Shafiq et al. [63] presented an empirical study to explore

different aspects of requirements management and requirement change management in

GSD projects and proposed a specialised project management technique to handle RCM

problems.

A detailed discussion about how we have conducted SLR and of the results is given in

Chapter 3.

2.1.3 C2: RCM Processes

Software engineering processes in standards aim to ensure that systems are reliable and

good for the environment. Software engineering processes have been proposed to stan-

dardise the development process so that software projects achieve the given objective

within a specific time and budget.

Nowadays, a number of software processes as standards are used in industry to regulate the

software development process. For example, ISO/IEC 12207: 2017 [28] provides a set of

processes for the software life cycle. Similarly, ISO/IEC 29110:2011 [64] adapted a number

of processes from ISO/IEC 12207 for very small entities. However, the existing standards

did not provide a process for RCM, which is an important activity of the RE phase of

SDLC. They discussed RCM as one of the activities of the configuration management

process. For example, ISO/IEC 12207: 2017 [28] and ISO/IEC 15288: 2015 [29] outline

the configuration management process and discuss the change management in the context

of configuration management as an activity. However, in software systems, configuration

management and requirements change are two different processes [30] and covers different

aspects of software development. The configuration management goal is to control the

overall execution of the system. In contrast, the change management process goal is to

manage and control change in individual products of the project or system.
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To address the limitations of the existing research, this work proposes a novel RCM

process in the format of an ISO/IEC standard and theoretical model to further elaborate

the RCM process.

Further discussion about the RCM process and RCM model is presented in Chapter 4.

2.1.4 C3: Change Impact Analysis

The majority of software systems are accompanied by frequent changes because they are

required to keep the system operational [65]. Performing regular updates and addition

of features is a necessary task when adapting to a new hardware/software or changing

customer needs. However, the implementation of a single change can affect many different

artefacts including design and architecture of the system. Therefore, it is necessary to

understand and estimate the impact of the proposed change on other system artefacts.

CIA is a general process to identify system elements that are indirectly or directly affected

by a change [31, 66]. CIA is usually studied in two types of application scenarios. Firstly,

in requirements management, for a specific change request, the CIA identifies the files and

models that might be affected by the requested change. Secondly, for an implemented

change, the CIA role is to find the parts of the source code affected by the proposed

change.

A number of CIA techniques have been proposed for different software artefacts such as

requirements models [67], system design/architecture [68], and source code [69]. Similarly,

a few studies have been conducted that trace back the changes from one software artifact

to another artefacts. For example, from requirements to design, Sudin and Kristensen [70]

presented an approach to understand how changes in requirements are carried out during

the design process. From source code to software design, Hammad et al. [71] presented

an approach that monitors the evolution of a design based on the changes in source code.

However, both of these approaches manually identify the potentially impacted design

elements based on requirements changes. In the context of requirements to source code,

Ali and Lai [72] presented an approach to estimate impact in source code based on the

proposed requirements change. They introduced a set of metrics to analyse the estimated

impact from different perspectives.

Further discussion with more related work about the CIA is presented in Chapter 4.
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2.2 P2: Requirements Defects Detection Overview

According to the Standish report (2019) [16], only 16.2% of software projects were deemed

successful with all the promised functionality and completed on time and budget. There

are many reasons for the failed (83.8%) projects, including lack of user involvement, poor

planning, lack of executive support, and technical incompetence. In addition to these

factors, defects or bugs also contribute towards project failure. Defects are defined as the

deviation from the actual and expected result of system or software applications. Defects

in software products show the software’s inability or inefficiency to perform the expected

and desired to work [73].

According to Lauesen and Vinter [74], software defects are usually classified into two

groups: requirements defects and implementation defects. Implementation defects usually

occur due to faulty development activities and result in program crashes or wrong results.

In contrast, requirements defects usually happen due to incomplete requirements and

inconsistent understanding.

The formal approaches related to requirements defects detection can be classified into two

groups. Firstly, some studies first translate user requirements into semi-formal modelling

language and then convert semi-formal modelling language to formal languages. Secondly,

some studies translate user requirements from natural languages directly to formal lan-

guages. We opted for the first approach due to some obvious reasons. For example, by

translating natural languages directly to formal languages, the customers who provide the

requirements may find it difficult to understand formal languages, while the engineers may

not have the domain knowledge to interpret the customers’ requirements correctly [75]. In

contrast, semi-formal languages usually produces graphical output, easily understandable

to both customers and software engineers [76]. This approach is further divided into two

parts, which are discussed in the following subsections.

2.2.1 C4a: Modelling Language (BT) Formalisation

The formalisation of translation from natural language to semi-formal Modelling lan-

guages is very vital to design formal approaches to detect requirements defects. It is also

important to address natural languages inherent issues such as ambiguity. However, In
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the past, most of the studies have been carried to formalise the translation from modelling

languages to some formal languages.

Regarding UML to other formal languages, Khan and Porres [77] proposed a technique

to check the consistency of different UML models (state and class diagrams) using OWL

reasoning. They translated UML models to OWL and then performed consistency analysis

using pallet and HermiT reasoning engines. Similarly, Kaneiwa and Satoh [78] introduced

an approach for checking the consistency of the class diagram by translating it into first-

order logic. They introduced an optimised algorithm and restricted the basic elements of

a class diagram. In another study, Mens et al. [79] implemented an approach to check the

consistency between UML models (state chart diagram and sequence diagram) through

using DL. They transformed the UML model to DL format using an off-the-shelf tool

named Poseidon and then performed horizontal (between the same version of different

models) and evolutional (different versions of the same model) consistency checking by

using a DL reasoning engine.

Similarly, a number of studies have been carried out to formalise BT to other formal

languages. For example, Zafar et al. [80] developed a tool to map BT models into datalog

and performed requirements early validation and analysis.

Modelling notations formalisation is very important to detect requirements defects. How-

ever, these types of approaches can detect requirements defects that can occur due to the

flexibility of modelling languages and do not consider the issues that arise due to the flexi-

bility of natural languages. The approach to formalise the translation of natural languages

requirements into semi-formal modelling languages helps to detect the inherent problems

of natural languages such as ambiguity, context-dependency, and incompleteness.

The detailed discussion related to formalising the translation of software requirements

described in natural language to BT, with more related work, is presented in Chapter 6.

2.2.2 C4b: Requirements Defects Detection

In the past, a number of techniques have been proposed to deal with requirements defects,

including defects prevention, defects detection, and minimising the impact of the defects.

Defects detection and removal is the most popular approach in most organisations.
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A decent amount of work has been undertaken regarding formal approaches for require-

ments defects detection. For example, Chen et al. [81] proposed a formal approach

to check the consistency of the safety requirements of the interlocking railway system.

They defined their language as SafeNL to specify safety requirements written in natural

language and then automatically transformed them into formal constraints called clock

constraint specification language. They used off the shelf available tools for model check-

ing and to check for inconsistency defects. Similarly, Nenwitch et al. [82] developed a

framework called Xlinkit using first-order logic to check inconsistency defects between

heterogeneous requirement specifications. In another study, Weitl et al. [83] implemented

an approach by combining temporal logic and DL based ontology. They aimed to check

the inconsistency of abstract level requirements documents by comparing them with the

developed knowledge base.

Moreover, some studies have used Natural Language Processing (NLP) based approaches

to detect requirements defects. In these approaches, firstly, the natural languages re-

quirements are systematically translated to some other formal language using some NLP

techniques and they then performed requirements defects detection. for example, Ferrari

et al. [84] proposed an NLP pattern-based approach to defects requirements defects. They

applied their approach to a large-scale system in the railway domain and achieved 83%

precision.

Requirements defects detection with more related work is presented in Chapter 7.

2.3 Data Collection

This section briefly discusses the data collection techniques such as SLR and questionnaire

survey used in this research.

2.3.1 T2: Systematic Literature Review

SLR, one type of EBSE, was originally used in the medicine domain and introduced in the

field of software engineering in 2004 [54]. SLR can be defined as “A systematic literature

review (often referred to as a systematic review) is a means of identifying, evaluating and
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interpreting all available research relevant to a particular research question, or topic area,

or phenomenon of interest.” The process of undertaking an SLR is shown in 2.2.

SLR Protocol 
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End
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Identify Relevant 

Research

Select Primary 

Studies

Access Studies 

Quality

Extract Required 

Data

Synthesise Data

Write Results
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Figure 2.2: SLR Process

SLR is a three-phase process that involves planning, conducting, and documenting. Devel-

opment of an SLR protocol and protocol evaluation are the two main activities performed

in the planning phase. In the SLR protocol development activity, firstly, the need for

review will be analysed, and secondly, the research questions will be specified based on

the review need. Thirdly, research strings will be formalised based on the major search

terms and relevant keywords. Research strings might be different for the different search
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databases like IEEE, Science Direct. Lastly, the inclusion and exclusion criteria for pri-

mary studies will also be defined. Evaluation of developed protocol from independent

researchers will be performed as the second activity of the planning phase.

In the conducting phase, the series of activities will include relevant research identification,

primary studies selection, studies quality assessment, data extraction and data synthesis.

Research strings developed in the planning phase will be executed in selected databases

to find relevant studies.

In the second activity, the primary studies will be selected based on the inclusion and

exclusion criteria. The primary studies selection process can be further divided into two

sub-activities. In the first cycle, the studies selection will be performed based on the

paper title and abstract. In the next cycle, the primary studies will be selected based

on the paper’s complete content. In the next activity, the selected primary studies will

be accessed based on the defined quality criteria. Studies that fail to fulfil the quality

threshold will be dropped from the primary studies list. Relevant data, such as challenges,

factors etc., will be extracted in the fourth activity of the conducting phase. The extracted

data will be peer reviewed based on some random selections from the primary studies.

A manual review of primary studies will be performed to evaluate the effectiveness of

the protocol and study selection process. After that, the extracted data will be further

analysed and synthesised.

Lastly, the synthesised data will be analysed using statistical techniques according to the

research problem in the reporting phase. In the end, the results will be summarised and

published as scientific research papers.

Further details related to SLR and how we have conducted is presented in Chapter 3.

2.3.2 T3: Questionnaire Survey

The survey is an appropriate empirical research methodology tool for collecting qualitative

and quantitative data from a large group of participants by using techniques such as

questionnaires or interviews [85]. Surveys are conducted when the given technology or

tool has already been used or before it is introduced. It is usually used to understand the

situation of the current system [19].
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The survey is designed and conducted by following these steps: firstly, the research objec-

tive is defined. It will help to understand the research scope and context for framing the

research questions. The important point is that the research objectives must capture the

survey goal. In the next step, the target audience and sampling frame are identified. The

target audience is usually selected from the overall population; then, a sample is selected

from the target audience. To select a target sample, random, systematic, and snowballing

sampling techniques can be used.

In the third step, the survey instrument is designed. The survey instrument is generally

the questionnaire and usually contains open-ended and quantitative value-based questions.

Survey outcomes primarily depend on how a questionnaire has been designed. In the next

step, the survey instrument is evaluated by experts and through experiments. In the last

step, survey data is collected and analysed to obtain valuable outcomes.

Further details related to the questionnaire survey and how we have conducted are pre-

sented in Chapter 3.

2.4 T4: Software Processes and Standards

Software development is not always a straightforward task. A number of factors such

as development team structure, market trends, technological advancements, and other

situational factors affect the development process and quality of software systems [86].

To minimise the impact of these factors, the first software engineering standard was

proposed in 1968, barely eight years after the term ‘software engineering’ was coined.

Approximately, after two decades, in 1987, the joint ISO and IEC standard subcommittee

(ISO/IEC JTC 1/SC7, or SC7) was created [46]. Standards form the fundamental building

blocks for product development by establishing consistent protocols that can be universally

understood and adopted.

The software standards provide a set of processes for managing the life cycle of software.

For example, ISO/IEC 12207 provides 30 processes for four major groups related to soft-

ware development. Software processes take certain inputs and transform them into some

outputs through a defined set of activities. The software process provides a common

structure so that the buyers, suppliers, developers, maintainers, operators, managers and

technicians involved in the software development use a common language [87]. Software
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processes help organisations to regulate their development processes, optimise develop-

ment cost, increase revenue and create new business opportunists.

Sometimes, the term software development process is used synonymously with software

process; however, the software process does not include activities directly related to soft-

ware development like quality and configuration. Software development process definitions

are usually not very formal and are left to intuition. People with formal backgrounds crit-

icised these methods because they proved to be a major reason for failures of large and

complex projects. The software process aims to manage and transform user require-

ments into a final software product within a specified budget and time. In a nutshell, the

software process provides a roadmap to construct a software product with the required

functionality and within a given budget and timeline[88].

Nowadays, GSD is widely used to gain benefit from an extended skill set and maximum

use of clock hours. In the GSD environment, teams are dispersed across different countries

with different time zones and cultures. Due to these differences, they may have a different

understanding of different software products; however, software processes in standards

helps to integrate their individual efforts at any level through a well-defined set of activities

[89].

Software processes are defined in ISO software standards. Currently, many software stan-

dards are used in the industry to regulate development processes such as ISO/IEC 15288:

2015 [29], ISO/IEC 12207: 2008 [90], and 12207:2017 [28]. ISO/IEC 12207 provides a

common framework for software life cycle processes that the software industry uses for

software development, supply, operation, and maintenance. The software process in stan-

dards is defined as: title, purpose statement, outcomes, activities and tasks.

� Purpose: It is expressed as a high-level goal to achieve in performing the process.

� Outcomes: These usually provide the expected results but measurable and tangible

from the successful performance of the process. Outcomes should express a single

result. Use of the word ‘and’ or ‘and/or’ to conjoin clauses should be avoided.

� Activity: This aspect of the standard provides the list of actions that might be used

to achieve the particular outcomes.

� Tasks: This aspect of the standard provides the list of actions that are required to

perform a specific activity.
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A detailed discussion about we use ISO/IEC standards format to propose a new RCM

process is given in Chapter 4.

2.5 T5: Behaviour Engineering

Despite the improvements made in software engineering since 1968, software complexity,

faulty or incomplete requirements and a need to satisfy a set of the developed software

requirements still threats to software quality [91, 92]. This situation is intensified in

conventional SE methods that try to build software systems that should satisfy their

requirements. Such SE methods are not only complex, but also fail to deliver quality

software within schedule and budget.

On the other hand, BE, first introduced in 2001 with the name of genetic software en-

gineering [93], provides a systematic approach to designing a software system out of its

requirements. Different from the more traditional SE approach, through which a software

design is created to fulfil the requirements, BE retrieves a design through integrated views

of the requirements [91]. BE introduces two families of graphic notations to capture soft-

ware requirements from two different perspectives. The families are BTs, which capture

the dynamic view of a system, and CTs, which capture the static view of a system. These

two types of graphic notations will be introduced in the next subsections.

The overall behaviour engineering approach to creating a software design is shown in

Figure 2.3. The problem domain contains the functional requirements of a software sys-

tem expressed in natural languages. In the BE approach, each functional requirement is

rigorously translated one at a time to either Requirements Behaviour Trees (RBTs) or

Requirements Compositions Trees (RCTs). In the next step, all the individual trees are in-

tegrated into the Integrated behaviour Tree (IBT) or Integrated Composition Tree (ICT),

which can later be transformed into the design behaviour tree. After that, the design

behaviour tree can be translated into other design views such as component interaction

diagram, component behaviour tree, and component interface diagram. Following this

process, BE provides a clear, systematic and straightforward path from a set of functional

requirements to a design that will satisfy those requirements [91].

As a formal modelling approach, the strength of BE lies in the novel way it addresses the

problems of scale, complexity, and incomplete information associated with the large set
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Figure 2.3: The behaviour engineering approach to creating a software design

of requirements needed to guide the development of challenging integrated systems [47].

While doing so, BE techniques remove ambiguity, redundancies and affect traceability.

BE techniques enjoy a graphical, compositional, and structurally integrated view of the

process or system being modelled [94]. This noval approach is arguably revolutionary

[95]; it attracts interest in both academia and industry and has produced fruitful research

results in the past two decades [96].

2.5.1 T5a: Behaviour Tree

The BT is one of the graphical notations introduced in BE. BT was created to capture

and formalise dynamic information in natural language requirements specifications. BT

can be formally defined as follows:

“A Behaviour Tree is a semi-formal, tree-like graphical form that represents the be-

haviour of individual or networks of entities which realise or change states, make de-

cisions, respond-to/cause events, and interact by exchanging information and/or passing

control” [96].

The unique tree-like syntax of BTs enables domain experts to view the flow of control

easily and allows BTs to accommodate large amounts of information in network structures

with a web of complex interconnections in a scalable way that would overwhelm humans

[97]. In the last two decades, BT notation has gone through evolution and refinements

to its current state. For example, Gonzalez-Perez, et al. [98] defined a meta-model for

further understanding and clarity, especially by the object-oriented community. Winter,

Grunske, and Colvin presented approaches to translate BT to other formal languages,
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such as CSP [99], SAL [100], and UPPAAL [101]. Furthermore, an EBNF styled textual

semantic language (BTSL) has been developed [102].

In addition to this, non-monotonic reasoning of BT was incorporated in [103]. Ahmed

et al. [104] defined a semantic network to support interactive RE processes, and Colvin

et al. [105] used probabilistic theory to enhance its reliability, performance, and other

dependability properties. BT notation is well documented, explained, and discussed with

supporting tools and successful industry case studies in [96].

Before introducing the other technical details of BT notation, we will explain how BT

can be designed from natural language requirements with a simple case study. Consider

the two requirements of a microwave oven case study used in already published research

[106]. We have simplified the requirements description for easy understanding.

R1: Originally, the oven is in an Idle state, and the Door is closed, and when the button

is pushed, the Power-tube will be energised and the oven will start cooking.

R2: If the button is pushed while the oven is cooking, it will cause the oven to cook for

an extra minute.

Although we list only two oven system requirements, the objective here is to elucidate the

BT modelling process with a set of requirements. The BTs are constructed in two steps,

translation and integration, by using two axioms called precondition axiom and integration

axiom, introduced in [91]. In the first step, each system requirement is translated into

a separate BT called a RBT. For example, Figure 2.4 (a) shows the RBT for R1. For

easy understanding, we have underlined the states/actions and made the components

bold, i.e. Originally, the OVEN is in Idle state and the DOOR is closed and when

the BUTTON is pushed, the POWER-TUBE will be energised and the OVEN will

start cooking. Similarly, R2 will be translated, and the corresponding RBT is shown in

Figure 2.4 (b). The directed arrows show the connection between individual nodes. In this

translation, we have followed the convention of writing component names in the capital.

In the second step, the individual RBTs are integrated to get a complete BT of the

system, which is called an IBT. In this step, nodes with the same behaviour in the RBTs

are identified and integrated to form an IBT such as node with component name ‘OVEN’

and behaviour ‘Cooking’ used to combine RBT of R1 with RBT of R2, and an IBT based

on these two requirements is shown in Figure 2.4 (c). The At sign ‘@’ is used to show the
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Figure 2.4: BT example

integration node in an IBT. Here, we explained the BT modelling process with a simple

example; however, a more detailed discussion about this process can be found in [91].

After informally discussing the BT modelling process, we will now explain more technical

details of BT notation. Figure 2.5 displays the attributes of a BT node. The key elements

of a BT node consist of a component name and the behaviour it exhibits qualified by

behaviour type. The other attributes include traceability link, traceability status, and

node label as one optional parameter. The traceability link is used to associate a BT

node with its corresponding system requirement, and traceability status indicates the

status of that link with a set of values. The ‘+’ indicates that the BT node’s behaviour is

not explicitly stated but is implied by the requirement, and ‘-’ specifies that the behaviour

exhibits in the BT node are missing from the requirement.

Figure 2.5: BT node attributes
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Delimiters on both sides of the behaviour indicate the behaviour type of a BT node. The

behaviour type may be a state realisation ([. . . ]), an event (??...??), a guard (???...???),

a selection (?...?), an input (<. . .>), or an output (>. . .<). The node operators are

defined in the source node, which matches a destination node with the same component,

behaviour, and behaviour type. The reversion node (indicated by “ˆ ”) indicates that

the control of this node will be passed directly to its closest parent node with the same

component name, behaviour name and type. The syntax and semantics of each behaviour

type and the reversion node operator are shown in Table 2.1.

Table 2.1: Core elements of BT notation

Node Label Semantics

State Reali-
sation

This indicates that component C realises the state of S and
then passes the control to its child node(s).

Selection This indicates that component C will pass the control to its
child node(s) if C is in the state of S; otherwise, the process
on this node will be terminated.

Event This indicates that component C will wait until it is in the
state of S and then pass the control to its child node(s).

Input This indicates that component C will receive a message and
passes the control to its child node(s).

Output This indicates that component C will generate a message
and passes the control to the node(s) receives the message.

Reversion This indicates that the control of this node will be passed
directly to its closest parent node with the same component
name, behaviour name and type.

A further discussion about how BT is used to model system requirements is presented in

Chapters 5, 6, and 7.

2.5.2 T5b: Composition Tree

Composition Tree is one of the graphical notations introduced in BE. CT is a formal

graphical notation originally for modelling component-based systems [94], CTs are similar

to UML class diagrams, model static system aspects in terms of entities, relationships,

attributes and component states [47]. Compared to other modelling notations like UML

with tens of diagrams to contend with, the created CT models are more intuitive, less

ambiguous and easier to read and verify than the original natural language processes [47].

Non-experts can easily understand the CT flowchart-styled graphic notation, soft and
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casual modelling. The notation has been found to be than other modelling notations to

trace back and preserve the intentions of natural language processes [47].

CT, just like BT, is constructed through a careful step wise approach and later integrated

into one complete tree like a graphical model. Individual RCTs are later integrated into

an ICT more like a UML class diagram to encapsulate a structured view of the complete

system vocabulary. Here we use a small example, which has been published in software

engineering literature [47], to illustrate composition trees. Let us consider a small system,

CAR, that has the following 6 requirements:

Table 2.2: The requirements of the CAR system

# Requirement

R1 The car can only be started if it is in the park state when the driver inserts
the key in the ignition and turns it on.

R2 A dashboard light remains on if the driver’s seatbelt is not fastened when
the driver is seated, and the ignition is on.

R3 If the handbrake is on when the ignition is on, the brake light turns on.

R4 The security alarm is on when the car is locked, and if anyone tries to
break in by breaking a window or forcing a door the alarm will sound.

R5 When the driver, on approaching the car, presses the key-button it unlocks
the door and turns the security alarm off.

R6 When the car is unlocked the driver may get in and put the car into the
park state.

The first step is to translate individual requirements into RCTs. The RCT translated from

requirement R1 is shown in Figure 2.6. To help readers understand how the requirement

is translated into a CT, we repeat the original requirement in the figure and underline

all keywords. The system is called CAR (in this example, we use all capital words to

represent components and systems), expressed in a double-line box at the top of the

figure. According to R1, the CAR could be in two different states called “started” and

“park”, so the two states are drawn under CAR. R1 also mentions two components, “key”

and “ignition,” drawn in single-line boxes under CAR. From R1, we also know that KEY

could be in the state of “turned” and IGNITION could be in the state of “on”, so these

states are drawn under corresponding components, respectively. We also note that KEY

is inserted in IGNITION, which indicates a relationship between the two components,

and this relationship is represented with a key label Relation under KEY. Similarly, we

can draw other RCTs one by one and then integrate them.
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CAR

R1: The car can only be started if it is in the park state when the driver inserts the 

key in the ignition and turns it on.

State

IGNITIONR1 IGNITIONR1 StateKEYR1 KEYR1

Relation

[In]R1

State

IGNITIONWhere

[Turned]R1 [Turned]R1

[On]R1 [On]R1

[Started]R1 [Started]R1

[Park]R1 [Park]R1

Figure 2.6: The IBT of R1

Figure 2.7 shows the integrated composition tree of R1 and R2. From this figure, apart

from component KEY and IGNITION, three more components DLIGHT (dashboard

light), SBELT (seatbelt), and SEAT (seat) are added with their corresponding states

based on R2.

Figure 2.8 shows the ICT of all 6 requirements. There are 10 components under CAR

and a component BUTTON under component KEY. Each state is associated with a

requirement tag to trace this piece of information back to its original requirement. For

example, component BUTTON has a state called “pressed”, the associated requirement

tag is R5, so we can check requirement R5 to verify this piece of information.

CAR

R2: A dashboard light remains on if the driver's seatbelt is not fastened when the driver is seated, and the ignition is on.

State
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Figure 2.7: The IBT of R1 and R2
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Figure 2.8: The IBT of CAR system

Comparing Figure 2.8 with the original set of requirements, we can see that the ICT shows

the system’s component composition is much more clearly and visibly. Many questions

such as what components are under the system, what states a component may have,

can be easily answered by checking the diagram. The diagram can also help to identify

incompleteness defects in the requirements. For example, we discover that the component

DLIGHT has only one state “on”. Based on domain knowledge, we know that light should

not be in the state of “on” all the time, which means we have missed some requirements

to describe when the DLIGHT might be “off”. Generally, CTs plus BTs have proven to

be useful tools for requirements analysis and systems design.

A further discussion about how CT is used in our research is presented in Chapters 4 and

5.

2.6 T6: Context-Free Grammar

Context-Free Grammar (CFG) is one of the formal grammars defined in the Chomsky

hierarchy, as shown in Figure 2.9. CFG is less expressive than context-sensitive grammar

and requires less computation effort to generate a language [107–109]. Moreover, the

question of whether the given string is generated or verified by a given grammar is called

a membership problem, and context-free languages are best suited for these problems. In
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contrast, in natural languages where the context of letters/words within a string/sentence

matters, along with the structure, context-sensitive languages become the best choice.

Regular 

Context Free 

Context Sensitive

Recursively Enumerable  

Figure 2.9: Chomsky hierarchy languages classification

A CFG helps define the structure of a language, such as a programming language, using

a set of production rules. Alternatively, a CFG, by applying a set of production rules,

can also be used to verify whether any given string belongs to some language. In general,

a CFG is described by a tuple (S, N , T , P ) where S, N , T , P represent start symbol,

non-terminals, terminals, and production rules. Overall, a CFG generates a language L

that means is the set of all sentences can be expressed using the CFG. For example, a

CFG may specify the rules used to construct any sentence in the English language. If

a sentence conforms to the rules specified in a CFG, it is called grammatically correct;

otherwise, the sentence is ungrammatical.

This research uses CFG to formalise RBT structure and identifies requirements incom-

pleteness defects by using that structure. We opted for CFG because, firstly, our problem

relates to the membership problem, and CFG constructs are enough to verify and syn-

tactically generate RBT structure. Secondly, a CFG provides a deterministic solution in

contrast to a recursive enumerable one.

Further discussion related to CFG with more related work is presented in Chapter 6.

2.7 Ontologies and Reasoning

This section briefly discusses OWL, the relevance of OWL to this research, and the

SPARQL query language used to query data from OWL ontologies.
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2.7.1 T7: Web Ontology Language (OWL)

The increasing importance of ontologies and their processing in computers has led to the

development of many ontology representation languages such as SHOE, OIL, DAML+OIL,

RDF, RDF(S) and OWL [110]. OWL is a consolidation of its preceding languages with

influence from Description Logics, frames paradigm and RDF. Its main representation and

logical framework, including syntax and semantics, are based on Description Logics [110].

An ontology language is a vehicle to specify at an abstract level what is necessarily true

in the domain of interest. It expresses constraints that declare what should necessarily

hold in any possible concrete instantiation of the domain.

The OWL is a semantic web language designed and standardised by W3C to represent

rich and complex knowledge about things, groups of things, and relations between things

[111]. The first version of OWL called OWL 1 was announced in 2004. The OWL 1

language comprises three sub-languages such as OWL Lite, OWL DL, and OWL Full.

OWL Lite is the least expressive, and supports classification hierarchy and simple con-

straint features. OWL DL provides maximum expressiveness to the users without losing

computational completeness and decidability. OWL DL is so named due to its correspon-

dence with description logic, which is a decidable variant of first-order-logic. Lastly, OWL

Full provides maximum expressiveness and syntactic freedom but without computational

guarantee, and for this reason, OWL DL is best suited for knowledge representation.

The current version of OWL is called OWL 2, which became a W3C standard in 2009,

and it is more expressive than its predecessor OWL 1 (2004). The OWL 2 editors such

as Protégé and semantic reasoners such as Pellet [112], and HermiT [113] were developed

soon after the announcement of the standard. OWL 2 does not distinguish those OWL 1

sub-languages. In this research, we have used OWL 2 to represent software requirements.

OWL formalises domain knowledge by creating an ontology by defining classes and the

properties of those classes. It also defines individuals and asserts properties about them

and reasons about these classes and individuals to the degree permitted by its formal

semantics [114]. A concrete syntax is needed to store OWL ontologies and exchange

them among tools and applications in practice. The primary exchange syntax for OWL

is RDF/XML, and it is supported by most of the OWL tools.
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To retain upward compatibility with existing web language, OWL includes class and

property features as already used by RDF and RDFS [115]. Because of all the influences

on OWL and compatibility issues with other semantic web languages,

� OWL uses URI references as names just like RDF uses them. It is also usual in

OWL to use qualified names such as OWL: Thing

� OWL presents information to ontologies which are stored as web documents written

in RDF/XML.

� OWL allows RDF annotation properties to be used to attach information to classes,

properties and ontologies.

� OWL uses RDF datatypes and XML schema datatypes to provides data types and

data values.

The reasons for choosing OWL as the formal language to specify, analyse and reason

about requirements defects in Chapter 7 are:

� Some other formal languages such as propositional logic or first-order logic can also

be used for supporting software requirements analysis. However, propositional logic

is less expressive and not suitable for reasoning with large data [116], while first-

order logic, even though very expressive, is computationally undecidable.

� Based on the previous research [117], OWL is more suitable for creating and main-

taining domain knowledge and semantics for requirements that require the concepts

and relationships in the problem domain to be defined.

� Many OWL reasoners are available off the shelf [112, 113, 118].

� According to the systematic literature review [119], OWL is the most commonly

used ontology language in the RE process.

We used the OWL concept in requirements defects detection, and more details about how

we used it are presented in Chapter 7.
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2.7.2 T8: SPARQL

SPARQL is a query language used to retrieve and manipulate data stored in RDF format.

SPARQL can also be used to query the OWL knowledge base because an OWL ontology’s

underlying structure is a collection of triples, each consisting of a subject, a predicate, and

an object. This structure is similar to the RDF graph and is stored in RDF/XML format,

which is usually used to store RDF data. SPARQL expresses queries across diverse data

sources, whether the data is stored natively as RDF or viewed as RDF such as OWL.

SPARQL can also be used for querying required and optional graph patterns along with

their conjunctions and disjunctions [120].

In this study, OWL is used to express system requirements, and different query languages

such as DL and OWL can be used to query the OWL knowledge base. However, in this

study, we use SPARQL because SPARQL offers many benefits such as graph pattern

matching, availability of a rich set of functions for strings, numbers as compared to DL

query language. SPARQL engines are also widely available and have significant adoptions

[121].

Further details about how we used the SPARQL query to retrieve data related to require-

ments defects are presented in 7.

2.8 P1.1: Global Software Development

Global Software Development or software development outsourcing is an emerging soft-

ware engineering paradigm with a focus on developing quality software at low development

cost [122]. GSD can be defined as a relationship between client and vendor organisations

in which a client contracts out all or part of its software development activities to one or

more vendors, who provide required services in return for agreed cost [123]. The general

overview of the GSD paradigm is shown in Figure 2.10.

2.8.1 Project Management Structures in GSD

The software development environment is continually changing because of globalisation,

innovation, and market trends. The newly emerged software development paradigm
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Figure 2.10: GSD Overview

Project Manager
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Figure 2.11: Centralised global project structure adapted from [2].
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Project Manager

Australia
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Local Coordinator

China

Local Coordinator
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Figure 2.12: Distributed global project structure adapted from [2].

named GSD has the potential to reduce a project’s time to market by using a highly

skilled workforce at a relatively reduced cost, and by using different time zones to or-

ganise a 24/7 development model [2]. Because of these factors, the management of GSD

projects becomes more challenging.

The project size, organisational structure, the maturity level of the organisation in under-

taking GSD projects, and the experience of development team members working on GSD

projects, dominate project structure selection from among different available projects

structures. There are two main types of global project structures, namely, centralised

project management structure and the distributed with local coordinators project man-

agement structure [2]. In centralised project management, as shown in 2.11, all or most

of the team members report directly to a project manager who sits at one of the GSD

sites and is responsible for most of the coordination and control tasks through collabora-

tive tools. On the other hand, in distributed with a local coordinator, as shown in 2.12,

the team members report directly to their local coordinators, who plan and execute the

allocated task and report to the project manager at regular intervals.

In this research, we analysed identified RCM challenges in the context of the different

project management structures mostly followed in the GSD paradigm.
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Further details related to RCM challenges analysis based on the GSD project management

structure are presented in Chapter 3.



Chapter 3

Requirements Change

Management Challenges

Nowadays, technological advancements emphasise the need for evidence-based studies

to investigate specific problems thoroughly. Evidence-based studies such as Systematic

Literature Reviews (SLR) and mapping studies are the tools to collect data from published

literature. They help researchers ensure that their research addresses the needs of industry

practitioners and all concerned stockholders. By considering the fact that evidence-based

studies are imperative to investigate a specific problem, in this chapter, we use SLR

to identify the challenges associated with a Requirements Change Management (RCM)

process both in in-house software development and Global Software Development (GSD)

approaches. Furthermore, we use a questionnaire survey to get industry practitioners’

feedback about our literature findings. The findings presented in this chapter would

assist researchers and industry professionals by providing potential research directions to

understand and implement RCM in different contexts more efficiently.

After identifying RCM challenges, we propose a process to provide a formal set of guide-

lines to implement RCM. Following this, we choose two highly cited RCM challenges

identified through SLR and propose approaches to address them.

44
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3.1 Introduction

RCM is a complex process triggered by factors such as organisational policies, market

trends, and operational environments [124]. In recent years, several models have been

proposed in the literature to improve RCM [72, 125, 126]. At the same time, a few reviews

have been carried out to explore the different aspects of the RCM models [14, 20, 127].

However, the existing reviews have limited coverage and miss some important aspects

related to software development approaches and the RCM process.

There are two major software development approaches in practice, namely in-house soft-

ware development and GSD. In-house software development is carried out by a team of

professionals, probably from the same country/city, with the same cultural and language

background working within the same organisation [128].

A GSD project is carried out by multiple teams in various locations in the world[2, 123].

The GSD paradigm offers many benefits, including low-cost development, access to a

skilled and quality workforce, and a follow-the-sun development approach [129]. However,

the GSD paradigm has failed to realise the anticipated outcomes and has achieved a

45% project success rate compared to 61% for co-located teams [130]. There are many

reasons for these failures, including cultural, temporal, and communication issues [131–

133], particularly project management challenges across the borders.

Hence, the question arises: what are the differences and similarities between RCM in

the two software development approaches? The comparative analysis between RCM chal-

lenges in in-house and GSD will assist practitioners to understand and implement RCM

in different context more efficiently.

Furthermore, when people move from in-house software development to GSD, project

management will become more challenging due to geographical and cultural differences

[134]. To address this challenge, usually, two types of global project management struc-

tures, namely distributed (with local coordinators) structure and centralised structure [2]

are used for GSD projects. To understand their impacts on RCM challenges is also inter-

esting because doing so will help GSD practitioners to adopt or construct more suitable

approaches to address these challenges.

Despite the importance of this problem, no detailed study has been found in the literature

to explore the challenges associated with RCM and the two different software development
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approaches. Similarly, little research has been reported to compare the impact of different

project management structures in the context of RCM challenges for GSD projects. This

study aims to identify and compare the challenges associated with RCM in both in-

house and GSD approaches. To identify RCM related challenges, we use an SLR and

then conduct a questionnaire survey with industry professionals to get feedback about

SLR findings. To address the above-listed limitations, we compile the following research

questions:

RQ1: What are the challenges of RCM in in-house software development as reported in

the literature?

Motivation: This question provides the starting point of this study by identifying the

RCM challenges related to the in-house software development approach reported in the

literature.

RQ2: What are the challenges of RCM in in-house software development as identified in

the industry?

Motivation: To support the findings of RQ1 and to analyse industry practices related to

RCM in an in-house approach, a questionnaire survey was developed to collect data from

industry professionals based on their experience.

RQ3: What are the challenges of RCM in the GSD approach, as studied in the literature?

Motivation: This question enhanced this study’s scope and identified RCM challenges

specifically related to GSD projects.

RQ4: What are the challenges of RCM in GSD projects as identified from industry?

Motivation: To support the findings of RQ3 and analyse industry practices related to

the RCM process, a questionnaire survey was developed to collect data from industry

professionals working on GSD projects based on their experience.

RQ5: What are the similarities and differences between RCM challenges in in-house

software development and GSD?

Motivation: The literature hasn’t discussed the relationships between RCM challenges

and the two software development approaches. This research gap motivates us to tackle

this question through an industry survey.

RQ6: What are the similarities and differences of RCM challenges between centralised

and distributed project management structures followed in GSD projects?
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Motivation: Similarly, this question hasn’t been addressed in the literature; therefore, we

try to find the answer through an industry survey.

RQ7: Are there any differences between the challenges identified from the literature and

the industry survey?

Motivation: This question helps people realise the gaps between research and the industry

by finding differences and similarities. Although the questionnaire survey was developed

based on SLR results, However, there is a mismatch between both data sets results. This

mismatch shows that there is a defence between academia and industry practices to inves-

tigate and implement RCM. We will apply a simple raking technique and a more advanced

statistical technique, t-test of independence, to explore differences and similarities between

both data sets.

In this work, we combined the SLR and questionnaire survey based approaches foe the

following reasons:

� The SLR process was used as a method for collecting RCM challenges from liter-

ature. To support our literature findings and to uncover state-of-the-art industrial

practices related to RCM challenges, the survey was created to collect data from

industry practitioners based on their experience.

� It is worth noting that the primary studies used in RQ3 do not show how different

factors are taken into account in centralized and distributed GSD project manage-

ment structures. This gap in the literature has motivated us to investigate indus-

try practices in relation to RCM in different GSD project management structures.

Hence, the questionnaire survey was used to collect data from GSD practitioners

for centralized and distributed GSD project management structures.

The following part of this chapter is organised as: section 3.2 briefly presents the review

of existing RCM related research. Section 3.3 describes the research methodology for this

chapter. Section 3.4 presents the SLR results, and section 3.5 presents the questionnaire

survey results. The comparison between SLR and questionnaire data sets is presented in

section 3.6. Section 3.7 provides some discussions and implications of this work. Section

3.8 presents the limitations of this study. Finally, the conclusion is discussed in section

3.9.
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3.2 Related Work

In the past, decent work has been done in the domain of RCM, including RCM models

in both in-house and GSD domain, rework assessment during requirements change and

empirical studies to explore different aspects of the RCM domain.

Mäkäräinen [135] proposed a requirements change process for embedded systems, and it

is very similar to the spiral software development model and encompassed four cycles.

In another study, Ren et al. [136] proposed prioritising critical requirements during the

RCM process. Likewise, Alsanad et al. [137] developed an OWL-based domain ontology

to implement requirements change in the GSD paradigm.

Regarding rework assessment, Chua and Verner [138] conducted a study to understand

the effort estimation problem in the change management domain. They used case studies

to validate their approach empirically. Similarly, Jayatilleke and Lai [139] investigated an

approach to assess the rework required to implement a proposed change. Their approach

assessed different options for a required change and suggested an option requiring less

rework to implement a required change.

Regarding RCM challenges, Akbar et al. [140] proposed a readiness model for RCM in

GSD context and in another study, Akbar et al. [60] conducted an empirical study to

investigate the RCM challenges related to the GSD paradigm. In another study, Ahmed

et al. [141] identified some challenges of RCM in GSD. However, they only used the

ordinary literature review technique, which is not as systematic as SLR and they missed

some relevant papers. More recently, Akbar et al. [127] conducted an SLR to investigate

the success factors for RCM in the GSD domain. They found 23 success factors, including

change acceptability, update requirements, information sharing. Similarly, in other studies

[21, 142], conducted SLR to investigate the challenging factors that negatively impact

RCM in GSD.

Despite the fact that various empirical studies to investigate the RCM problem have been

reported. However, some limitations need attention.

� The existing studies have not discussed the different project management structures

normally practised in GSD projects [2] and how the identified challenges can be

addressed in a particular project management structure.
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� The existing approach investigations mostly focused on project management-related

challenges related to RCM and missed the core RCM process challenges.

3.3 Research Methodology

We use a two-step approach to conduct this research, as shown in Figure 3.1. In the first

step, SLR is used to survey the literature published in the public domain and identify key

challenges that impact RCM in in-house software development (RQ1) and some challenges

that impact RCM in GSD (RQ3). In the second step, we use the first step results to

develop a questionnaire survey and collect feedback from industry practitioners (RQ2,

RQ4). After that, industry practitioners’ feedback is analysed to explore different aspects

of RCM challenges both in the in-house and GSD paradigms (RQ5 and RQ6). Finally,

the data collected from the first two steps are compared (RQ7).

RCM Challenges in 

in-house Context (RQ1)

RCM Challenges in 

GSD Context (RQ3)

SLR

RCM Challenges in 

in-house Context (RQ2)

RCM Challenges in 

GSD Context (RQ2)

Questionnaire Survey

In-house Software 

Development vs GSD (RQ5) 

Centralized vs Distributed 

Project Structure in GSD 

(RQ6)

Analysis

Comparison between SLR 

and Questionnaire Survey 

(RQ7)

Figure 3.1: Research methodology

3.3.1 Data Collection via SLR

Systematic literature review is the most commonly used approach in evidence-based soft-

ware engineering. SLR is formally planned and systematically executed, and it provides

guidelines to identify, analyse and interpret all available evidence with reference to specific
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research questions. SLR is recommended to review published literature; it helps to collect

evidence and identify research gaps through a well-defined process.

In this research, we followed the Kitchenham and Charters [143] guidelines to execute

an SLR process that contains three main phases: defining a protocol, conducting the

protocol, and reviewing the protocol. In the first step, an SLR protocol was written to

outline the complete process, and our protocol consisted of the following elements: (i)

identification of research questions, (ii) search strategy, (iii) study selection, (iv) quality

assessment, and (v) data extraction and synthesis. The first element was introduced in

the introduction section, and the other elements are included in the following parts of this

section. The SLR was undertaken by a team of three researchers, one student and two

academic staff members. To reduce personal bias and improve SLR results reliability, an

inter-rater reliability test (Kendall’s coefficient of concordance (W)) was performed in all

study selection phases.

3.3.1.1 Search Strategy

The search strategy for SLR in this study is based on the following four steps.

1. Construct search terms by identifying keywords from population, intervention, out-

come and experimental design [143]. The results are:

Population: Global software development, In-house software development.

Intervention: Requirement change management challenges or barriers.

Outcome: List of challenges in the RCM of in-house and GSD projects.

Experimental design: Systematic literature review, empirical studies, expert opin-

ion.

2. Find synonyms of keywords. Well reputed academic electronic databases are used

to validate our keywords. The list of potential synonyms of each keyword is shown

in Table 3.1.

3. Use boolean operators to connect major terms. In this step, we used Boolean oper-

ator OR to connect synonyms of each keyword and AND operator to connect major

terms or keywords.

CHALLENGES: “Challenges” OR “problems” OR “difficulties” OR “complica-

tions” OR “obstacles” OR “barriers” OR “hurdles” OR “risks”
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Table 3.1: Keyword synonyms

Keyword Synonyms

Challenges Challenges, problems, difficulties, complications, ob-
stacles, barriers, hurdles, risks

Requirements Change Manage-
ment

Requirements change, requirements volatility, re-
quirements creep, requirements change management,
requirements change difficulties, requirements change
analysis, requirements change identification/type, re-
quirements change models/processes

Global Software Development Global software development, global project man-
agement, GSD, Offshore software development, dis-
tributed software development, offshore outsourcing
global software engineering, distributed software en-
gineering, GSE

In-house software development In-house software development, Onshore software de-
velopment, onsite software development

REQUIREMENTS CHANGE MANAGEMENT: “requirements change” OR “re-

quirements volatility” OR “requirements creep” OR “requirements change manage-

ment” OR “requirements change difficulties” OR” requirements change analysis”

OR “requirements change identification/type” OR “requirements change model-

s/processes”

GLOBAL SOFTWAREDEVELOPMENT: “global software development” OR “global

project management” OR “GSD” OR “Offshore software development” OR “dis-

tributed software development” OR “offshore outsourcing” OR “global software

engineering” OR “distributed software engineering” OR “GSE”

IN-HOUSE SOFTWARE DEVELOPMENT: “in-house software development” OR

onshore software development” OR “onsite software development”

By using AND operator, we defined search strings for RCM challenges in both in-

house GSD approaches.

For RCM challenges in In-house software development:

“challenges” OR “problems” OR “difficulties” OR “complications” OR “obstacles”

OR “barriers” OR “hurdles” OR “risks”AND

“requirements change” OR “requirements volatility” OR “requirements creep” OR

“requirements change management” OR “Requirements change difficulties” OR”

requirements change analysis” OR “requirements change identification/type” OR
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“requirements change models/processes” AND

“in-house software development” OR onshore software development” OR “onsite

software development”

For RCM challenges in the GSD paradigm:

“challenges” OR “problems” OR “difficulties” OR “complications” OR “obstacles”

OR “barriers” OR “hurdles” OR “risks”AND

“requirements change” OR “requirements volatility” OR “requirements creep” OR

“requirement change management” OR “requirements change difficulties” OR” re-

quirements change analysis” OR “requirements change identification/type” OR “re-

quirements change models/processes” AND

“global software development” OR “global project management” OR “GSD” OR

“offshore software development” OR “distributed software development” OR “off-

shore outsourcing” OR “global software engineering” OR “distributed software en-

gineering” OR “GSE”

4. Verify search terms in electronic databases. In this step, some papers that are

relevant to our research questions were used to verify the search terms. The resources

searched in this step included specific research databases, journals and conference

proceedings.

Based on the available access, the following electronic academic databases were used to

search relevant primary studies. Because these research sources differ in their search

mechanisms, we customised the search strings listed in the previous step accordingly,

which are given in Appendix A.1. It is a bit challenging to design a search string for

each database that can give maximum coverage of the related papers. We designed search

strings for this study with the help of two software engineering researchers who have

published a good number of papers related to SLR. And then, we cross-check the search

string results with a manual search. Therefore, we believe that our search strings help us

to extract all the papers relevant to our studies topic.

� IEEE Xplore. https://ieeexplore.ieee.org

� Science Direct. http://www.sciencedirect.com/

� Springer Link. http://link.springer.com/



RCM Challenges 53

� ACM Digital Library. http://dl.acm.org

� Google Scholar. https://scholar.google.com/

3.3.1.2 Studies Selection

Inclusion and exclusion criteria were used to select the primary studies retrieved from

the academic databases and other electronic resources. The primary studies published or

available online before 30, June 2018 were included in this research. The criteria used for

including and excluding the primary studies are as follows:

Inclusion criteria:

� Publications that directly linked to our research questions.

� In case of duplications, the most completed version is included.

� Publication written in English.

Exclusion criteria:

� Peer-reviewed papers only- we excluded position papers, keynotes, panel discussions,

editorials etc.

� Publications written in non-English.

� Publications without bibliographic information.

The seven-step process was used to select primary studies. The number of studies selected

at each step of this SLR is shown in Figure 3.2. The seven steps are as follows:

� In the first step, the search strings were executed on selected digital libraries, and

189 studies were retrieved.

� In the second step, 89 studies were selected based on the paper title and abstract.

The studies that could not be decided based on their titles and abstracts were also

retained for the next inspection round.

� In the next step, duplicate studies (13) were excluded.
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selected as primary studies. Unique identifiers were assigned to all papers, and these

are listed in Appendix A.2.

Table 3.2: Quality assessment criteria

No. Questions Possible Answers

1 Is there a rationale for why the study was undertaken?
[145]

Y=1 N=0 P=0.5

2 Are the research goals are clearly reported?[146] Y=1 N=0 P=0.5

3 Is the proposed technique clearly described?[147] Y=1 N=0 P=0.5

4 Are the research results clearly described?[119] Y=1 N=0 P=0.5

5 Is there is explicit discussion about the limitations of this
research?[148]

Y=1 N=0 P=0.5

3.3.1.3 Data Extraction and Synthesis

In the data extraction step (step 2), two authors extracted the data using a pre-designed

data extraction form, and the third author validated the extracted data. A coding scheme

based on grounded theory [149] was used to review the literature and conceptualise the

RCM challenges. Although, grounded theory has been largely applied to qualitative

research, however, labelled qualitative data can be processed for quantitative analysis

[150]. We identified, labelled and grouped the related challenges to general categories and

calculated the frequency. Furthermore, similar or related challenges were semantically

compared and grouped under relevant categories.

Data Synthesis was performed, and a list of RCM challenges from the selected 43 stud-

ies was created. Initially, 18 challenges for RCM in in-house software development and

additionally, 6 RCM challenges for GSD were identified, which are shown in Appendix

A.3.

Three researchers carefully reviewed the identified list of challenges and tried to reduce

biases and improve results validity independently. The initial list of 24 challenges was

carefully reviewed and grouped into 12 main categories. The grouping of challenges was

done based on the context in which those challenges were discussed in primary studies.

For example, “impact analysis” and “change consequences” were grouped together in one

category, as they were discussed in the same context of impact analysis.
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Furthermore, to reduce researcher bias, an inter-rater reliability test was performed. In

this process, three independent reviewers selected a random sample of five primary studies

in the first selection round and conducted the initial selection process. Similarly, the same

steps were followed in the next rounds of study selection.

We used non-parametric Kendall’s coefficient of concordance (W ) [151] to evaluate the

inter-rater agreement between reviewers. Although grounded theory produces qualitative

results but calculated frequencies for each challenge help us to perform this test. The W

value ranged from 0 to 1; 1 indicates strong agreement, and 0 indicates perfect disagree-

ment. The value of W for the randomly selected five studies from the first selection round

was 0.84 (P= 0.002). Similarly, The W value was 0.9 (P=0.04) and 0.95 (P=0.03) for

the next two selection rounds, respectively. Moreover, in the snowballing process, the W

value was 0.97 (P=0.045). These results indicate strong agreement between the findings

of primary researchers and independent reviewers.

3.3.2 Data Collection via Questionnaire Survey

An empirical survey is an appropriate research methodology for collecting qualitative

and quantitative data from a large group of participants by using techniques such as

questionnaires or interviews [152].In this work, we use a questionnaire survey to collect

industry practitioners opinions related to the SLR findings.

3.3.2.1 Survey Design

In this study, the target population of the survey is the software industry practitioners

involved in managing GSD projects were the target population; however, it is always

challenging to find a suitable population frame for a questionnaire survey [153, 154]. The

population is divided into various continents. Snowballing technique [155] was used to

recruit participants for this study’s questionnaire survey. In our case, snowball sampling

bias is not present because the population does not have privacy issues.

The snowballing sampling process was started by sending an email to personal contacts of

the research team in Pakistan, China, Hong Kong, Saudi Arabia, United Arab Emirates,

Australia, and the United Kingdom. The contacts were asked to send this survey to his

personal contacts. Moreover, the survey link was posted on social media groups, including
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Facebook, LinkedIn, Twitter. It was also posted on social media groups related to the

Global software engineering conference of 2015-2018. A large number of emails are also to

industry people working on GSD projects. The participants were informed that the data

would only be accessible to the research team and only be used for research purposes.

3.3.2.2 Survey Instrument

In this study, we developed a questionnaire survey to get industry professionals’ opinion

about the RCM challenges identified through SLR. The questionnaire consisted of 3 main

sections, including general information sections, RCM challenges in in-house software

development and RCM challenges in GSD. Moreover, these three sections consisted of 2

open-ended questions and 21 close-ended questions. In close-ended questions, a 4-point

Likert scale was used in terms of strongly agree, agree, disagree, or strongly disagree.

In this work, we did not use neutral or do not know because we assume that our close-

ended questions are very clear to the potential participants and they must have an opinion

about it, either agree or disagree. Moreover, It is easy to discuss the finding and draw

any conclusions in the absence of a neutral scale [156]. For example, one in five (20%)

disagrees” correctly implies that four out of five agree. But if you have a five-point scale,

you will probably have to qualify your statements in complicated ways. One in five (20%)

disagrees doesn’t mean the rest agrees because some of the participants may say neither

agree nor disagree.

The questionnaire survey validity was assured in two steps. In the first step, face validity

is confirmed by sending a draft survey to two independent researchers, one is from the

software engineering domain and one is from the mathematics domain. In the second step,

content validity was confirmed through a pilot study involving five professionals from

different organisations. Based on their feedback, the final version of the questionnaire

survey was developed, which is shown in Appendix A.4. We obtained ethical clearance

from University to conduct this, which is shown in Appendix A.5.

3.3.2.3 Survey Execution and Data Pre-processing

The survey was uploaded on our personal website in 2018 and was active for a period of 4

months. We invited a total of 110 practitioners to participate in this research, and 80 of
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them completed the survey, giving a response rate of 72%. The responses correctness and

completeness were assured through a comprehensive review process. We use the related

experience of the participants as a contingency question to filter the survey responses.

The respondents came from seven different countries: Australia, Pakistan, India, Ireland,

Saudi Arabia, United Arab Emirates, and China. These respondents’ organisations were

involved in business intelligence, data processing, and embedded systems. The respon-

dents’ roles in their organisations ranged from software engineer to project manager with

an average experience of 5 years in in-house software development and four years in GSD.

The demographic information of all the participants is provided in Appendix A.6.

In this survey, the data was collected in a relational database; therefore, we write simple

SQL queries to perform data cleaning based on contingency questions and other factors.

After doing the data cleaning, 69 out of 80 responses was usable.

The questionnaire survey consisted of three sections. The first section was designed to

capture general information of participants, and this section information was stored in

a relational database without any processing. Sections two and three were designed to

capture participant opinions related to RCM challenges in the in-house and GSD domain.

A 4-point Likert scale was used in terms of strongly agree, agree, disagree, or strongly

disagree to get participants opinions. To get numeric values, we mapped strongly disagree

to 1, disagree to 2, agree to 3 and strongly agree to 4, and this mapping helped us to

perform statistical analysis.

3.4 SLR Results and Analysis

A total of 43 primary studies was selected from the SLR. Before discussing the SLR

findings and the analysis of each research question, we give a thorough overview of the

general characteristics of the primary studies .

3.4.1 Overview of the Studies

This subsection presents the general characteristics of the primary studies, including the

year of publication, type of source, and research methods.
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Figure 3.3: Number of selected studies published per year and their distribution over
source type

Figure 3.4: Bubble plot with year of publication and research method
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Figure 3.3 shows the number of selected studies published per year from 1996 to 2018.

In the context of publication years, it is noteworthy that research related to RCM gained

attention after 2005. We could find only three papers published in this domain prior to

2005. Another worth mentioning point is that at least one journal paper was published

every year after 2008 except 2015. Lastly, we found 6 studies in 2017 and 3 studies in

the first six months of 2018, reflecting researchers’ growing interest in the RCM domain.

In the context of source type, the majority of the studies are conference papers (53%; 23

studies), followed by journal publications (40%; 17 studies), and book chapters (7%; 3

studies).

Figure 3.4 presents the distribution of published studies across empirical research method-

ologies. The different research strategies (literature review, case study, SLR, and sur-

vey/interview) were used in primary studies selected in this research, and these research

strategies are commonly used in the empirical software engineering domain [157, 158].

The results depict that the methodology of the majority of studies was case study (63%;

27 studies), followed by survey/interviews (16%; 7 studies), literature review (14%; 6

studies), and SLR (7%; 3 studies). It is also worth mentioning that empirical investiga-

tion, through survey/interview with industry professionals, has gained attention during

the past half a decade. This trend shows that academics have started appreciating the

importance of industry practitioners’ feedback in software engineering research. Another

important point that should be emphasised is the absence of SLR because only three SLR

have ever been conducted in RCM research.

The important point is that, theoretically, the primary studies in SLR should not be an

SLR. However, we included three SLRs as primary studies in this SLR. The reason is that

the focus of those three SLRs is different from our study. For example, Jayatilleke and

Lai [20] [A20] in A.2 conducted an SLR to analyse the existing approaches related to each

activity of the RCM process such as, change impact analysis, cost and time estimation, etc.

In the other two SLRs, Khan et al. [61, 159] [A19 and A36] in A.2 aimed to identify and

analyse communication-related challenges usually faced during RCM in the GSD domain.

On the other hand, in this study, our aim was to identify RCM challenges usually faced

during implementing RCM in the in-house and GSD domain.
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3.4.2 SLR Findings of RCM in In-House Software Development Ap-

proach (RQ1)

This subsection discusses the SLR findings related to RQ1, in which we intend to explore

the challenges that impact the RCM in in-house software development. The initial auto-

mated search resulted in 184 papers, and after a three-step selection process, we finally

short-listed 43 papers shown in Table 3.3. Among them, 32 papers deal with in-house

(general) RCM challenges and 11 of them with RCM in the GSD.

Table 3.3: Primary studies selection data

Resource Total Results First Review
Section

Second Review
Selection

Final Selec-
tion

IEEE Xplore 60 29 17 16

ACM 15 10 06 03

Science Direct 41 16 11 10

Springer 68 36 16 14

Total 184 89 50 43

Table 3.4: RCM Challenges identified via SLR for in-house software development

Challenge Frequency (n=32) Percentage

Impact Analysis 21 67

Cost/Time Estimation 8 25

Artefacts Documents Management 8 25

Requirements Traceability 7 22

Requirements Dependency 5 16

Requirements Consistency 4 12

Change Prioritisation 2 6

User Involvement 2 6

System Instability 1 3

In this research, we have identified 9 challenges (shown in Table 3.4) that impact RCM in

in-house software development. Among the challenges, the most cited challenge for RCM

in an in-house context is impact analysis (67%). In the RCM process, once the proposed

change has been identified, further analysis is required to understand the consequences

of the requested change on the software system [125, 160]. Bohner [31] defined impact
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analysis as “the activity of identifying consequences, including the side effects and ripple

effects of a change”. The impact analysis helps to understand the potential effects of

requested changes before the actual change is implemented [161]. Misunderstanding of a

proposed change could increase project cost or even leads to system failure.

Cost and time estimation cited by 25% of the primary studies, is usually carried out at

the beginning of a project, and is a critical aspect of project management. However, the

proposed change also impacts the defined project schedule and estimated cost. Cost and

time estimation are collectively considered as effort estimation; however, the conversion

of these aspects to each other is not a straight forward process [162, 163]. The first step of

this process is to calculate the software size, which is the most crucial aspect of estimating

effort impact. Different techniques, such as functional point analysis and line of code etc.,

can be used to calculate software size [164]. After that, man-hours are calculated based

on the project size, and lastly, the number of man-hours is multiplied by an hourly rate

to calculate the total effort required to implement the proposed change.

Artefact documents management is another key challenge, which is cited in 25% of the

existing research. SDLC consists of several phases, and each phase output, such as spec-

ification document, and design document, is recorded as a phase product. In the RCM

process, each phase product requires modification due to the proposed change to maintain

consistency among all artefact documents [165]. The management of the SDLC phases

product, such as requirement document, design document, source code, and testing docu-

ment, is crucial, particularly if a change occurs in the late phases of SDLC, such as during

testing.

Requirements traceability is another key challenge faced in the RCM process cited by 22%

of primary studies. Requirements traceability can be formally defined as “the ability to

describe and follow the life of a requirement in both forward, and backward direction”

[166]. Traceability analysis is one of the efficient ways to understand the impact of the

proposed change and is used for impact analysis [167]. Requirements traceability also helps

to understand the dependency between requirements, which is another key challenge of

the RCM process, and cited by 16% of the primary studies.

Requirements consistency is another key challenge that impacts the RCM process, cited

by 12% of the primary studies. Consistency analysis happens during the change analysis

phase, which is usually executed after change identification. Requirements consistency
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can be defined in many ways, such as “not two or more requirements in a specification

contradict with each other” [168], and “requirements should be understood precisely in

the same way by every person who reads them” [169]. Researchers have used many

techniques (including semi-formal i.e. using UML diagrams, formal i.e. first-order logic,

and pure logic, to address this issue. In the process of requirements evolution, either new

requirements or changes in existing requirements make requirements consistency one of

the major issues [170].

Change prioritisation, cited by 6% of the primary studies, is crucial to meet the deadline

and business goals. Every system requirement contributes to strategic business goals and

delivers some financial value to the organisation. Change prioritisation is measured based

on the urgency, impact, and risk involved with the proposed change. Prioritisation of the

proposed changes is essential in RCM, mainly when strategic business goals are dependent

on a given time frame [171].

6% cites that in existing research cite that user involvement is another key challenge

of RCM. According to the Standish report (2014), from among 10 top-ranked software

project success factors, user involvement is the top [172]. RCM requires user feedback,

especially when the requested change is proposed by one of the system users. User in-

volvement plays a critical role in successfully executing an RCM process and ultimately in

project success [173]. Finally, system instability is another key challenge that impacts the

RCM process and is referenced in 3% of the primary studies. A requested change can be

easily handled before a system is put in the live environment; however, the RCM process

becomes cumbersome when the system is already in a live environment. The key success

indicator of an RCM process is the provision of uninterrupted services to the customers

during the change implementation process.

Table 3.5 presents RCM challenges in in-house software development, source primary

studies, and the corresponding empirical study strategies. In our study, the impact anal-

ysis is the highest cited challenge. We found 62% out of 21 papers that mentioned impact

analysis as a key challenge faced in the RCM process using a case study for empirical

investigation. Similarly, other empirical techniques, such as survey/interview, literature

review, and SLR, were used by 14%, 19%, and 4% of the primary studies, respectively.

Cost/time estimation is the second most cited challenge, and 38% of the primary stud-

ies that listed cost/time estimation as a key challenge of the RCM process used case
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Table 3.5: RCM - In-house Challenges analysis in the context of empirical studies

Challenge
Empirical Studies Classification

Primary Studies
Case
Study

Survey/
Interview

SLR Literature
Review

Impact Analysis 13 3 1 4 A2, A9, A10, A11, A12,
A13, A14, A15, A17,
A20, A22, A23, A24,
A25, A30, A31, A32,
A33, A34, A35, A39

Cost/Time Estima-
tion

3 1 1 3 A2, A3, A10, A14, A20,
A25, A33, A43

Artefacts Documents
Management

5 1 0 2 A6, A10, A16, A23,
A24, A28, A32, A43

Requirements Trace-
ability

5 1 0 1 A1, A17, A27, A31,
A33, A34, A35

Requirements Depen-
dency

3 0 0 2 A2, A5, A9, A13, A25

Change Prioritisation 2 0 0 0 A1, A2

User Involvement 0 0 1 1 A16, A20

System Instability 0 0 1 0 A20

study and literature review for empirical investigation. Other empirical techniques, such

as interview/survey and SLR, were used by 12% of the primary studies for empirical

investigation.

3.4.3 SLR Findings of RCM in GSD Context (RQ3)

This subsection discusses the challenges that specifically impact RCM in GSD, as shown in

Table 3.6. In the previous subsection, we have identified nine challenges, which are general

RCM challenges and are related to in-house software development. In this subsection, we

discuss three more challenges that are only relevant to RCM in GSD. In total, we need

to consider twelve challenges while implementing proposed changes in GSD. The GSD

has been increasingly used for developing software systems efficiently and effectively by

capitalising on the talent pool across the world [174]. However, there are specific issues,

such as time zone difference, that overshadow these benefits.
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Table 3.6: RCM-GSD Challenges identified via SLR

Challenge Frequency (n=11) Percentage

Communication and Coordination 10 91

Knowledge Management and Sharing 8 73

Change Control Board Management 2 18

In our study, communication and coordination, cited by 91% of the primary studies,

is the highest cited challenge that impacts RCM in GSD. Ineffective communication in

the software development process is one of the main reasons for software project failure

[175]. In GSD, communication and coordination are usually discussed in two different

contexts: communication between various team members working on system development

and communication between clients and development teams [176]. Geographical, cultural,

and social differences make the communication and coordination process more difficult

while implementing RCM in GSD projects [62].

Knowledge management and sharing, cited by 73% of the primary studies, is another

key challenge that impacts RCM in GSD. In RCM, the development teams may reside

in different parts of the globe and work on the same proposed change and, so accessing

software artefacts with precise, accurate, and a common understating is very important.

Geographical and cultural differences between development teams and clients make this

process cumbersome [177]. The development teams also need to communicate and collab-

orate with clients who propose new requirements or modify existing requirements.

Furthermore, change control board management, cited by 18% of the primary studies, is

another challenge that impacts an RCM process in GSD projects. In in-house software

development, project managers and other members act as a change control board and

accomplish the proposed change approval process. However, in GSD, projects are usually

managed under two project management structures: centralised or distributed with local

coordinators. The formation of a change control board would be different in each of them.

The issues, such as who will be included in the CCB and how the CCB will work, need

to be addressed for RCM to succeed in the GSD context.

Finally, Table 3.7 presents RCM challenges in GSD, their source of the primary stud-

ies, and corresponding empirical study strategies. In this research, communication and

coordination is the highest cited challenge faced in RCM in GSD. We found 6 out of
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10 papers used case study for empirical investigation, while 2 of the papers applied sur-

vey/interview and SLR. Knowledge management and sharing is the second most cited

challenge, and 75% of the primary studies that listed knowledge management and sharing

as a key challenge used case study for empirical investigation. Other empirical techniques,

such as interviews/survey and SLR, were used by 12% of primary studies for empirical

investigation.

Table 3.7: RCM-GSD Challenges analysis in the context of empirical studies

Challenge
Empirical Studies Classification

Primary Studies
Case
Study

Survey/
Interview

SLR Literature
Review

Communication and
Coordination

6 2 2 0 A4, A18, A19, A21,
A26, A29, A36, A37,
A41, A42

Knowledge Manage-
ment and Sharing

6 1 1 0 A4, A18, A21, A36,
A37, A38, A41, A42

Change Control
Board Management

1 1 0 0 A21, A29

3.5 Questionnaire Survey Results and Analysis

This subsection presents the results of the questionnaire survey that we conducted to get

industry practitioners’ opinions regarding our SLR findings. After performing data clean-

ing and coding, we calculated frequency and percentage of each challenge. Frequencies

were used to compare variables within and across the groups and are useful for ordinal,

nominal and numeric data.

Moreover, we performed chi-square test to analyse the relative importance of RCM chal-

lenges for in-house and GSD domain, in subsection 3.5.3. Similarly, the chi-square test

is used to analyse the relative importance of RCM challenges for project management

structures followed in the GSD domain, in subsection 3.5.4. Chi-square test is a useful

technique to analyse the association between categorical variables (i.e., whether the vari-

ables are independent or related) for given data [178, 179]. The hypothesis to interpret

the results of the chi-square test are defined in respective subsections.
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3.5.1 Industry Survey Findings of RCM Process (RQ2)

This subsection presents industry practitioners’ opinions about RCM challenges. We

received feedback from 69 industry practitioner, and a summary of the feedback is shown

in Table 3.8. The participants’ responses were divided into two groups: positives responses

and negative responses. Positive feedback indicates that the listed challenges influence

RCM, while negative feedback shows that the listed challenge has no impact on RCM.

Because these challenges are common to both in-house and GSD development, we have

considered all participants’ observations in the frequency analysis.

Table 3.8: RCM - In-house Challenges analysis based on questionnaire survey

Challenge

Organisations’ Observations (n=69)

Positive Negative

SA A % D SD %

Impact Analysis 23 46 100 0 0 0

Cost/Time Estimation 30 33 91 6 0 9

Requirements Traceability 16 47 91 6 0 9

System Instability 23 40 91 5 1 9

Requirements Dependency 18 43 88 8 0 12

Change Prioritisation 20 37 83 11 1 17

User Involvement 24 31 80 13 1 20

Requirements Consistency 23 31 78 15 0 22

Artefacts Documents Management 13 41 78 14 1 22

Note: Strongly Agree (SA); Agree (A); Disagree (D); Strongly Disagree (SD)

More than 90% of the respondents agreed that impact analysis, cost/time estimation,

requirements traceability, and system instability are the key challenges that impact RCM

process. For example, one of the participants supported his positive response for impact

analysis with the following comment:

“The success/failure of an RCM process heavily depends upon the understanding of re-

quested change impact on other baselines such as cost, time, artefacts documents and

other requirements. We used number of different techniques such as cross-matrix, trees to

understand the impact of proposed change.” Team Lead



RCM Challenges 68

Similarly, cost/time estimation is another key challenge, and received 91% of positive re-

sponse from the participants. Cost and time estimations are normally used interchange-

ably in software engineering as a key factor that determines the project success/failure.

One of the participants supported his response with the following comment:

“Cost/Time estimation is always a challenging task in software development process, and

it becomes more difficult in the requirement change process. In RCM process, it is very

challenging to estimate time for requested change with normally used techniques such as

functional point analysis, line of code etc. Therefore, we normally use combination of

different techniques to measure time for proposed change.” Project Manager

The above feedback indicates that there is need to develop a customised technique that

can be used in the RCM process.

Requirements traceability is another key challenge, and 91% of respondents agreed that

it impacts an RCM process. In industry, some participants considered it as a supportive

element of impacts analysis. Still, most agreed that requirements traceability itself needs

attention in RCM, and it helps to understand the requirement’s life and scope in both

forward and backward directions.

Furthermore, system instability is another key challenge and received a 91% positive

response. This challenge becomes more critical if the change request comes after the

system is put in the client-side live environment. The vendor must keep the system

functioning and provide uninterrupted services to the system users and other stakeholders.

One of the participants supported his positive response with the following comment:

“It is very challenging for us to control the behaviour of the system during the RCM pro-

cess. we normally try to implement proposed change without affecting system working, but

we put system off-line if the requested change impacts key functionally or key requirements

of the system.” Development Lead

Similarly, requirements dependency, change prioritisation, and user involvement received

88%, 83%, and 80% positive responses. One of the participants supported his positive

response about change prioritisation with the following comments:

“It is very important to decide the implementation plan for the proposed change in the

RCM process, and we usually use dependency maps to prioritise the requested changes.”

Requirements Manager



RCM Challenges 69

3.5.2 Industry Survey Findings of RCM in GSD Context (RQ4)

This subsection presents industry practitioners’ opinions about the RCM challenges that

are specific to GSD projects. The listed challenges are additional to the RCM process

challenges discussed in the previous subsection as general RCM challenges. We received

data from a total of 69 industry practitioners, and 45 of them were also involved in GSD

projects. A summary of the data is presented in Table 3.9.

Table 3.9: RCM-GSD Challenges analysis based on questionnaire survey data

Challenge

Organisations’ Observation (n=45)

Positive Negative

SA A % D SD %

Communication and Coordination 27 18 100 0 0 0

Knowledge Management and Sharing 13 31 98 1 0 2

Change Control Board Management 17 21 84 6 1 16

Note: Strongly Agree (SA); Agree (A); Disagree (D); Strongly Disagree (SD)

It is interesting to note that industry practitioners support our research findings from

SLR, with two out of three challenges receiving more than 90% positive response. All the

participants agreed that communication and coordination is the key challenge for RCM in

the GSD paradigm. The key difference between in-house software development and GSD is

the geographical or physical locations of development teams, which makes communication

and coordination crucial for project success in GSD. One of the respondents supported

his positive response with the following comment:

“Communication and coordination is a key success factor in GSD projects. We always

try to minimise the impact of time zone and geographical difference by using various

communication media such as teleconferences, instant messaging.” Project Manager

Similarly, knowledge management and sharing and change control board management

received (98%) and (84%) positive response from industry practitioners. One interesting

comment we received was:

“We usually struggled to share and convey a similar understanding of software artefacts

between different development teams resides in a different part of the globe. We used
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different cloud-based tools such as AWS cloud9 for sharing software artefacts.” Team

Lead

3.5.3 Industry Survey Findings Analysis based on in-house and GSD

Approach (RQ5)

This subsection discusses industry practitioners’ feedback analysis based on the two widely

used software development approaches, in-house software development and GSD. In the

survey, we asked about experience with RCM in both development approaches, in a de-

mographic field. We applied the chi-square test of independence to compare the two

categorical values (in-house and GSD)from a single population. The chi-square test re-

sults are shown in Table 3.10. We analysed the data based on the following hypothesis:

Null Hypothesis: There is no significant association between the identified list of RCM

challenges and software development approaches.

The comparison of RCM challenges in the context of in-house software development and

the GSD approach indicates more differences than similarities, as shown in Table 3.10.

The P -value for impact analysis, requirements dependency, requirements traceability, and

system instability is greater than 0.05, which indicates that there is no relationship be-

tween these RCM challenges and development approaches; therefore, we will accept the

null hypothesis.

On the other hand, the P -value for cost/time estimation, artefacts documents manage-

ment, requirements consistency, requirements prioritisation, and user involvement is less

than 0.05, which indicates that these RCM challenges are different in both software de-

velopment approaches; therefore in this case, we will reject the null hypothesis. The

thorough analysis of industry practitioners feedback reveals that these RCM challenges

require extra effort while working in the GSD context. The results show that 95% of

the practitioners either strongly agreed or agreed that cost/time estimation is more chal-

lenging in GSD, while the same opinion was given by 83% of the practitioners working

on RCM problems in in-house software development. Furthermore, 89% of the industry

practitioners in GSD either strongly agreed or agreed that artefacts documents manage-

ment is more challenging in GSD than in the in-house software development approach,

where 58% of the practitioners gave the same feedback. Similarly, 89%, 90% and 89% of



RCM Challenges 71

Table 3.10: Chi square test results of industry data (in-house vs GSD)

Challenge
In-house (n=24) GSD (n=45)

Chi-square
test (linear-by
-linear associa-
tion) α=0.05

SA A D SD SA A D SD X2 Df p −
V alue

Impact Analysis 10 14 0 0 13 32 0 0 1.952 1 0.162

Cost/Time Estimation 7 13 4 0 23 20 2 0 4.493 1 0.034

Artefacts Documents Man-
agement

4 10 9 1 9 31 5 0 4.993 1 0.025

Requirements Traceability 5 18 1 0 11 29 5 0 0.058 1 0.81

Requirements Dependency 7 12 5 0 11 31 3 0 0.387 1 0.534

Requirements Consistency 7 7 10 0 16 24 5 0 3.919 1 0.048

Change Prioritisation 6 9 8 1 14 28 3 0 5.246 1 0.022

User Involvement 6 9 8 1 18 22 5 0 5.546 1 0.019

System Instability 7 15 2 0 16 25 3 1 0.049 1 0.825

Note: Strongly Agree (SA); Agree (A); Disagree (D); Strongly Disagree (SD)

the industry practitioners either strongly agreed or agreed that requirements consistency,

change prioritisation, and user involvement are more challenging while working on RCM

in GSD projects, in contrast to in-house software development, where 58%, 63% and 63%

of the industry practitioners gave the same opinion for these three RCM challenges.

3.5.4 Industry Survey Findings Analysis Based on Centralised and Dis-

tributed Global Project Structure (RQ6)

This subsection discusses industry practitioners’ feedback related to global project man-

agement structures used for GSD projects. In the questionnaire survey, we asked for

the corresponding organisational management structure (i.e. centralised or distributed)

mostly followed in GSD projects, a demographic field. The gathered data reflects the

practitioners’ preference for centralised and distributed structured organisations. In the

survey, we received data from a total of 69 participants, and 45 of them were working in

GSD, 21 of them in a centralised structure, and 24 in a distributed with local coordinators

project structure. We applied the chi square test of independence on the feedback of those
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Table 3.11: Chi square test results of industry data (centralised vs global project
structure)

Challenge
Centralised (n=21) Distributed (n=24)

Chi-square
test (linear-by
-linear associa-
tion) α=0.05

SA A D SD SA A D SD X2 Df p −
V alue

Impact Analysis 8 13 0 0 5 19 0 0 1.588 1 0.208

Cost /Time Estimation 9 10 2 0 14 10 0 0 2.026 1 0.155

Artefact Documents Manage-
ment

4 16 1 0 5 15 4 0 0.37 1 0.543

Requirements Traceability 5 14 2 0 6 15 3 0 0.01 1 0.919

Requirements Dependency 6 13 2 0 5 18 1 0 0.022 1 0.882

Requirements Consistency 7 12 2 0 9 12 3 0 0.004 1 0.951

Change Prioritisation 5 14 2 0 9 14 1 0 1.249 1 0.264

User Involvement 12 8 1 0 6 14 4 0 4.968 1 0.026

System Instability 8 11 2 0 8 14 1 1 0.145 1 0.703

Communication and Coor-
dination

16 5 0 0 11 13 0 0 4.205 1 0.04

Knowledge Management and
Sharing

4 17 0 0 9 14 1 0 0.931 1 0.335

Change Control Board
Management

11 9 1 0 6 12 5 1 5.244 1 0.022

Note: Strongly Agree (SA); Agree (A); Disagree (D); Strongly Disagree (SD)

45 participants to compare the two categorical variables (centralised or distributed) from

a single data set. The Chi square test results are shown in Table 3.11. We analysed our

data based on the following hypothesis:

Null Hypothesis: There is no significant association between the identified list of RCM

challenges and GSD project management structure.

A comparison between RCM challenges and project management structures indicates

more similarities than differences between the two GSD project management structures.

The P -value for impact analysis, cost/time estimation, requirements traceability, artefacts

documents management, requirements dependency, requirements consistency, change pri-

oritisation, system instability, and knowledge management and sharing is greater than
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0.05. Therefore, we accept the null hypothesis and infer that these RCM challenges are

independent of the two different project management structures.

On the other hand, the P -values for user involvement, communication and coordination,

and change control board management are 0.026, 0.040, and 0.022, respectively. The P -

value for user involvement, communication and coordination, and change control board

management is less than 0.05, which indicates the significance of the results; therefore, we

reject the null hypothesis. Of the industry practitioners who adopted a centralised project

management structure, 95% strongly agreed or agreed that user involvement is more

challenging than distributed project management structure, where 80% of the industry

practitioners gave the same opinion.

Furthermore, 95% of the industry professionals who followed the centralised project man-

agement approach strongly agreed or agreed that change control board management is

more challenging than management of distributed project structure, where 75% of the

industry practitioners give the same opinion. Similarly, 100% of the industry practition-

ers strongly agreed or agreed that communication and coordination is challenging in both

centralised and distributed project management structures followed in the GSD projects.

3.6 Comparison between SLR and Questionnaire Survey

Data Sets (RQ7)

This subsection compares the two data sets retrieved from the SLR and questionnaire sur-

vey using the T-test of independence. In previous subsections, we discussed the challenges

that impact the RCM process in in-house and GSD from both the published literature

and the survey. In the survey, the participants were asked to give their opinion for each

challenge by choosing one of the four options: strongly agree, agree, disagree, or strongly

disagree. Table 3.12 presents the rank of each RCM process challenge based on the SLR

and the survey results. We only take the percentage of the strongly agree option from the

survey results. Furthermore, Table 3.13 shows each RCM challenge in the GSD context

and the questionnaire survey results.

The comparison shows some similarities and differences between SLR and the survey

results, as shown in Table 3.12. A critical analysis of two data sets shows that the
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Table 3.12: Comparison of two data sets of RCM Challenges in in-house software
development

Challenge SLR
(n=32)

% Rank SA
(n=69)

% Rank

Impact Analysis 21 67 1 23 33 3

Cost/Time Estimation 8 25 2 30 43 1

Artefacts Documents Man-
agement

8 25 3 13 19 9

Requirements Traceability 7 22 4 16 23 8

Requirements Dependency 5 16 5 18 26 7

Requirements Consistency 4 12 6 23 33 5

Change Prioritisation 2 6 7 20 29 6

User Involvement 2 6 8 24 35 2

System Instability 1 3 9 23 33 4

Table 3.13: Comparison of two data sets of RCM-GSD Challenges

Challenge SLR
(n=11)

% Rank SA
(n=45)

% Rank

Communication and Coordina-
tion

10 91 1 27 60 1

Knowledge Management and
Sharing

8 73 2 13 29 3

Change Control Board Manage-
ment

2 18 3 17 47 2

researchers and industry practitioners agree on the key challenges that impact the RCM

process in in-house and GSD. Industry practitioners gave a similar response to most of the

RCM challenges identified from the literature. However, artefacts documents management

ranks third in the SLR data while it ranks ninth in the survey data. Furthermore, user

involvement ranks 8th in the SLR data but ranks 2nd in the questionnaire data. Similarly,

system instability ranked ninth in the SLR data but ranked fourth in the questionnaire

data.

Furthermore, the list of challenges, particularly in GSD, received a similar response from

data sets, as shown in Table 3.13. However, change control board management ranked

third in the SLR data but ranked second in the questionnaire data.
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We applied an independent t-test to quantify the significance of similarities between the

both data sets, SLR and questionnaire survey. Our hypothesis is as follows:

Null hypothesis: The population variances of two data sets (SLR and questionnaire survey)

are equal.

This study has two data sets (data from the SLR and the survey) for two categories

(RCM challenges for in-house and challenges for GSD only). Therefore, we performed

two different independent t-tests to compare both data sets for both categories. The

descriptive statistics of the two data sets used for this study for both categories are shown

in Table 3.14 and Table 3.15 respectively, whereas Table 3.16 and Table 3.17 show the

independent sample t-test results.

Table 3.14: Group statistics of RCM Challenges in in-house software development

Type N Mean Std. Deviation Std. Error Mean

Challenge
SLR 9 20.22 19.44 6.48

Survey 9 30.44 7.13 2.38

Table 3.15: Group statistics of RCM-GSD Challenges

Type N Mean Std. Deviation Std. Error Mean

Challenge
SLR 3 60.67 38.03 21.96

Survey 3 45.33 15.57 8.99

Table 3.16: Independent sample t-test results for RCM Challenges in in-house software
development

Levene’s Test
for Equality
of Variances

t-test for Equality of Means

F Sig. t df
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2.37 0.142 -1.48 16 0.158 -10.22 6.902 -24.85 4.41

Equal vari-
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-1.48 10.1 0.169 -10.22 6.902 -25.58 5.13
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Table 3.17: Independent sample t-test results for RCM-GSD Challenges

Levene’s Test
for Equality
of Variances

t-test for Equality of Means

F Sig. t df

S
ig
.
(2
-t
a
il
ed
)

M
ea
n

D
iff
er
en
ce

S
td
.
E
rr
o
r

D
iff
er
en
ce 95% Confidence

Interval of the
Difference

Lower Upper

C
h
a
ll
en
g
e

Equal
variances
assumed

3.11 0.153 0.646 4 0.553 15.33 23.73 -50.54 81.21

Equal vari-
ances not
assumed

0.646 2.65 0.570 15.33 23.73 -66.10 96.77

The t-test assumes that the variability of each group is approximately equal. This assump-

tion will be verified by using Levene’s test significant level. As the P -value of Levene’s

test is greater than 0.05 (0.142 > 0.05), this assumption is verified. Now we analyse the

p-value of the t-test for equality of means against equal variance assumed, and the P -value

of the test is 0.158 as shown in Table 3.16, which is greater than 0.05. As a result, we

accept our null hypothesis and conclude that these two data sets (SLR and questionnaire

survey) tend to be very close to each other, and the difference between both data sets is

simply a result of statistical factors.

Similarly, the P -value of Levene’s test for RCM-GSD challenges is greater than 0.05

(0.153>0.05): therefore, this assumption is verified. Now we analyse the P -value of the

t-test for equality of means against equal variance assumed. The P -value of the t-test is

0.553, as shown in Table 3.17, which is greater than 0.05. As a result, we accept our null

hypothesis and conclude that these two data sets (SLR and questionnaire survey) tend to

be very close to each other. The difference between both data sets is simply a result of

statistical factors.
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Table 3.18: Summary of results

Research question Summary of answers

RQ1: What are the challenges of Require-
ment Change Management process in in-
house software development as commonly
studied in the literature?

� Impact analysis

RQ3: What are the challenges of Re-
quirement Change Management process in
GSD projects, as commonly studied in the
literature?

� Communication and coordination
� Knowledge management and sharing

RQ7: Are there differences between the
challenges identified from the literature
and questionnaire survey?

Researches and practitioners agreed that
impact analysis and cost/time estimation
impact RCM process in in-house and addi-
tionally communication and coordination
and knowledge management and sharing
impact RCM process in GSD domain

3.7 Discussion

3.7.1 Critical RCM Challenges

In this research, we identified a list of challenges that impact RCM in both the in-house

and GSD approaches. To analyse the significance of the challenges, we used the following

criteria: the challenge is critical if the literature cites it with a frequency of greater than

or equal to 50%, and similarly, a challenge is considered significant, if it is answered as

strongly agree by more than 90% of the survey participants. Similar criteria are followed

in existing research [180–182]. Table 3.18 summarises this research’s key findings based

on the literature and industry feedback.

In RQ1, we identified only impact analysis as a critical challenge that impacts RCM

in in-house software development. However, there are some other challenges such as

cost/time estimation and artefacts documents management, which have a frequency of

25% and cannot fulfil the criticality criteria but are important for the RCM process

[20]. Regarding RQ2, no RCM process challenge has a frequency greater than 90%;

however, cost/time estimation has 43% positive response from industry practitioners and

is important in RCM. It is also worth mentioning that user involvement received the

second-highest positive response from industry practitioners compared to literature, where

ranked at the 8th position. In summary, impact analysis, cost/time estimation, artefacts
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documents management and user involvement are the key challenges that are important

and should be managed with high priority in RCM in an in-house software development

approach.

Furthermore, in RQ3, communication and coordination and knowledge management and

sharing are cited in more than 50% of primary studies, and are important for RCM in

the GSD context [61]. On the other hand, in the questionnaire survey (RQ4), although

no challenge satisfies the criticality criteria, it is worth mentioning that change control

board management received 47% of positive response and ranked 2nd compared to the

literature review, where only two primary studies cited as a key challenge. In summary,

all three challenges are important and should be considered while implementing RCM in

the GSD context.

Regarding RQ7, the results indicate that industry practitioners are aligned with the re-

search and reveal that impact analysis and cost/time estimation are the key challenges of

the RCM process in the in-house domain. Additionally, communication and coordination

and knowledge management and sharing are challenging for RCM in the GSD domain.

3.7.2 Software Development Approach-Based Analysis

In-house software development and GSD are the two most widely followed development

approaches in the software development industry. It is interesting to note that the existing

literature discusses the RCM process only in the context of in-house software development.

There is a lack of research on how these challenges affect the RCM process in the GSD

paradigm. The questionnaire-based survey presented in this research is the first attempt

to address the important research gap identified in SLR.

In RQ5, we tried to understand the characteristics of different RCM challenges when

they are implemented in the GSD paradigm. In the questionnaire survey, we received

data from 24 participants using the in-house software development paradigm and 45 par-

ticipants using the GSD paradigm. Accordingly, we compared the survey data between

the two development approaches. The chi-square test results indicate that there are more

differences than similarities between the RCM process development approaches. The influ-

ence of impact analysis, requirements dependency, requirements traceability, and system

instability remains the same regardless of the development approach.
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On the other hand, cost/time estimation, requirement consistency, change prioritisation,

artefacts documents management and user involvement are more challenging in GSD than

in in-house software development. We believe that this is because exchanging and synchro-

nising information is much more difficult in GSD than in in-house software development.

For example, cost/time estimation is heavily influenced by the different time zones of GSD

teams, which is not the case for in-house software development. Furthermore, require-

ments consistency and artefacts documents management require proper coordination and

precise understanding of the system requirements and other software artefacts. Therefore,

it is more challenging in GSD due to cultural, geographical differences. Similarly, user

involvement can be easily managed in an in-house software development paradigm where

teams reside at one physical location compared to the GSD paradigm in which teams are

working in different time zones.

Table 3.19: Comparison of two data sets for RCM challenges based on software devel-
opment approaches

Challenge In-
house
(n=24)

% Rank GSD
(n=45)

% Rank

Impact Analysis 11 46 1 13 29 6

Cost/Time Estimation 7 29 2 23 51 1

Requirements Dependency 7 29 3 11 24 7

Requirement Consistency 7 29 4 16 35 3

System Instability 7 29 5 16 35 4

Change Prioritisation 6 25 6 14 31 5

User Involvement 6 25 7 18 40 2

Requirements Traceability 5 21 8 11 24 8

Artefacts Documents Manage-
ment

4 17 9 9 20 9

Moreover, we have ranked RCM challenges based on the feedback received from both

types of participants, as shown in Table 3.19. It is worth mentioning that most challenges

are relatively equally important and have the same rank in both development approaches,

except for impact analysis, which ranked the 1st in in-house software development while

ranking 6th in GSD. Similarly, user involvement ranked 7th in in-house software develop-

ment, while it ranked 1st in the GSD paradigm data. In summary, these results present

the relative importance of RCM challenges in both development approaches. Impact
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analysis and cost/time estimation are more important in in-house software development

as compared to GSD in which user involvement, cost/time estimation and requirement

consistency are more important.

Furthermore, software methodologies such as lean, agile, iterative and waterfall are widely

used in the software development industry. Lean and agile methodologies are more suc-

cessful than iterative, and waterfall [183, 184]. This study performed a comparatives

analysis between RCM challenges and the most widely used software development ap-

proaches, namely in-house software development and GSD. However, there is a need to

explore how RCM will be implemented, when these development methodologies (lean,

agile, iterative, and waterfall) followed in in-house software development and GSD.

3.7.3 Global Project Management Structure-Based Analysis

In RQ5, we have investigated RCM process challenges and development approaches,

namely in-house software development and the GSD paradigm. In RQ6, we have further

analysed RCM challenges based on different project structures in GSD. The management

structure of GSD projects can be either centralised or distributed with local coordinators

based on the project size, complexity and other factors [2]. It is important to note that the

existing literature discusses RCM for the general project management approach followed

in GSD projects. There is a lack of information on how different project management

structures impact these challenging factors. The industry practitioners feedback collected

through our survey assists us in addressing this research gap identified in SLR.

In RQ6, the survey results indicate more similarities than differences between RCM chal-

lenges in different project management structures. Most challenges have the same impact

on the RCM process regardless of management structure except for user involvement and

change control board management, which are more challenging in the centralised project

management structure than the distributed structure. We believe that this is due to the

difference between the centralised and distributed project management structure followed

in GSD projects. For example, in a distributed project structure, the user will communi-

cate with one person at each site who works as the site coordinator and is responsible for

communicating and collaborating with the project manager.
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On the other hand, in a centralised project structure, all the team members working on

different sites report directly to the project manager, who is solely responsible for all tasks.

Therefore, all users need to communicate directly with a project manager, who may reside

at a different development site with a different time zone. Furthermore, communication

and coordination are equally important in both project management structures followed

in GSD projects.

3.7.4 Implications of This Research

This study aims to identify RCM challenges similarities and differences in in-house soft-

ware development and the GSD approach. Furthermore, we analyse RCM challenges

in the context of project management structures followed in GSD. Based on these two-

comparative analyses, the recommendations for researchers and practitioners are as fol-

lows:

1. In in-house software development, impact analysis, cost/time estimation, and arte-

facts documents management are more important, and project managers should give

more attention to those challenges in RCM.

2. Impact analysis is one of the key challenges reported by the primary studies. The

impact analysis helps to understand the consequences of proposed changes. Misun-

derstanding of proposed change consequences may increase project cost, postpone

the delivery, and ultimately cause project failure. We believe that formal and semi-

formal languages such as description logic and behaviour trees will assist researchers

and practitioners in better understanding the requirements change and in developing

tools/techniques for impact analysis.

3. Cost/time estimation is another key challenge that impacts the RCM process. Many

techniques, like function point analysis and line of code, are used to calculate project

time and cost at the start of the project. However, industry practitioners’ data reveal

that existing techniques such as function point analysis, line of code for software size

and cost/time estimation are not suitable for the RCM process. Therefore, there is a

need to understand and develop techniques that can be used to estimate and adjust

project cost/time because of proposed requirement changes. Hence, researchers
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should pay attention in developing customised techniques that can be used in RCM

for cost/time adjustment and estimation.

4. Requirement consistency is another key challenge that impacts the RCM process.

Requirement consistency may emerge due to changes in existing requirements or

when proposing new requirements. The industry survey for this research reveals a

need to develop techniques/tools using formal languages for this task. We believe

that the use of formal and semi-formal languages such as description logic and

behaviour trees could be a suitable solution.

5. Most of the studies did not consider system instability as a key challenge for RCM,

which is contrary to industry opinion. Hence, we assert an important and urgent

need for sufficient research to fully understand system instability in RCM.

6. Communication and coordination, knowledge management and sharing, and user

involvement are the key challenges and must be managed with high priority in

RCM in GSD projects.

7. Knowledge management and sharing are among the key challenges of the RCM

process in the GSD context. The cultural, social and geographical differences make

knowledge management more challenging and increase the need for suitable notation

to record the requirements. As a semi-formal design notation, we believe that be-

haviour trees will assist practitioners in conveying a precise and clear understanding

of system requirements among GSD teams.

8. The comparative analysis based on industry data between RCM challenges and

software development approaches lays a foundation for future research directions.

We strongly suggest that researchers should pay more attention to reporting the

RCM process in the context of different software development approaches.

9. The comparative analysis between RCM challenges and project structures lays a

foundation for GSD practitioners to make a better choice of project structure based

on project size and the nature of a project. The GSD practitioners should consider

user involvement and change control board management while using a centralised

project structure in GSD projects. This analysis also asserts GSD researchers should

report the RCM process in the context of these two project management structures

in GSD projects.
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10. The rank-based analysis lays a foundation for future research. It will help researchers

focus and direct their research in RCM domains, for example, develop techniques

for higher-ranked challenges in in-house software development and GSD.

3.8 Limitations

We applied an SLR to identify key challenges that impact the RCM process in in-house

and GSD approaches. One limitation of SLR is incompleteness. The results depend upon

the keywords used for key terms and publication databases (Science Direct, IEEE explorer,

Springer Link, and ACM) to find primary studies relevant to our research questions.

However, we mitigated this risk of incompleteness in the search terms by using alternative

synonyms to build search stings. Furthermore, with the increasing number of publications

related to this topic, we may have missed some recent publications at the time of consol-

idating the SLR results.

Another possible limitation of SLR is the frequency calculation of identified challenges. We

calculated each challenge’s frequency using a grounded theory-based coding scheme, which

provides an analytical approach to identifying, labelling, and grouping related challenges

into one category. We used inter-rater reliability tests to reduce the impact of researchers

bias. Nevertheless, we believe that our presented results are comprehensive and cover

most of the relevant published literature.

Regarding questionnaire surveys, one possible limitation is that some participants may

lack experience in responding to survey questions. In our study, we tried to choose

participants who had either a higher degree in computer science or related fields and

experience related to industry projects’ requirement management to mitigate this risk.

Another potential limitation of the questionnaire-based study is ambiguity in the survey

questions.

To minimise this limitation, I was always available on Skype and by email during the

study to clarify any potential ambiguities. This paper used Chi-square test and t-test

of independence to either reject or accept the hypothesis. Furthermore, to mitigate any

construct validity threat, we used a standard scale in the survey design that is largely

used in reported research [185].
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Another potential limitation of questionnaire-based studies lies in their external validity.

This limitation is mainly due to the low participation rate and difficulty in choosing a

true random sample.

We address this limitation by using Linkedin, mailing list, and industrial contacts, and use

the snowballing technique to engage more participants in this study [154]. Finally, we man-

aged to receive 69 usable responses. The response rate is similar to other questionnaire-

based studies reported by the software engineering community [186]. However, as indi-

cated by Lethbridge et al. [85], questionnaire-based surveys with low participants rates

can be used to understand trends. Therefore, we believe that our results will assist in-

dustry practitioners in making rational decisions during the RCM process.

3.9 Conclusion

The different aspects of RCM challenges have been explored in the existing research;

however, most previous researchers have not addressed the difference between in-house

software development and GSD.

In this study, we used an SLR to find out the RCM challenges related to in-house software

development and GSD. Through SLR, we have identified 9 challenges related to RCM

execution in in-house software development and 3 additional challenges that are specific

to RCM in GSD projects.

To get industry practitioners’ opinions related to our literature findings, a questionnaire

survey was conducted. The chi-square based analysis of survey data indicates that there

are four out of nine challenges, namely impact analysis, requirement traceability, require-

ment dependency, and system instability having the same impact in both in-house and

GSD approaches. On the other hand, cost/time estimation, artefacts documents man-

agement, user involvement, requirement consistency, and requirement prioritisation need

more attention when implemented in the GSD paradigm. Furthermore, regarding two

important project management structures in GSD, centralised project structure and dis-

tributed project structure, the survey results reveal that all challenges have the same

impact except user involvement and change control board management, which are more

important in the centralized project structure.
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The t-test of independence was used to compare both data sets. Thorough analysis reveals

that research results and industry opinions are consistent regarding RCM challenges.



Chapter 4

Requirements Change

Management Process in the

Format of an ISO/IEC Standard

After identifying the RCM challenges through evidence based studies, there is a need to

define a process to implement RCM and correlate the identified challenges with the process

outcomes. The key motivation behind this work is that, software life cycle processes in

ISO/IEC standards provide a formal set of guidelines to execute software development

activities and help organisations to regulate their development processes to produce good

quality software [25]. Furthermore, software processes provides a criteria to measure the

success or failure of software system through well-defined guidelines [187].

By considering the fact that software life cycle processes in standards are imperative to

produce good quality software, in this chapter, we propose a novel Requirements Change

Management (RCM) process in the format of an ISO/IEC standard. After that, we pro-

posed a theoretical model by considering the outcomes of of this process. Following this,

Composition Trees (CTs) are used to compare our proposed process with the require-

ments change-related processes defined in existing standards. Finally, we map between

RCM process outcomes and RCM challenges that have been identified by our research

and introduced in Chapter 3.

By proposing a novel RCM process, this work expands the breadth of our work related

to the RCM problem.

86
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4.1 Introduction

In recent years, a number of RCM models have been proposed in the literature. There are

also ISO/IEC standards proposed and practised in industry, but those standards have not

fully addressed the problems of RCM. ISO/IEC 12207: 2008 [90] discusses some aspects

of RCM, such as the requirements analysis activity of RCM.

ISO/IEC 12207: 2017 [28] and ISO/IEC 15288: 2015 [29] outline the Configuration Man-

agement Process (CMP) and discuss the change management in the context of configura-

tion management as one activity. However, in Software Development Life Cycles (SDLC),

configuration management and requirements change management are two different pro-

cesses [30] and covers different aspects of SDLC. The goal of CMP is to maintain con-

sistency between all components of the system and control the overall execution of the

system. In contrast, the goal of the change management process goal is to manage and

control change in individual products of the project or system.

To overcome the above-discussed limitation, we propose an RCM process in the format of

an ISO/IEC standard and the theoretical model that addresses the deficiencies identified

in existing research and industry practices. The proposed RCM process is defined in

terms of process purpose and process outcomes. A set of activities has been identified

and presented in a theoretical model to support and explain the process outcomes. Our

proposed model consists of seven core activities: identification, analysis, negotiation and

approval, implementation, verification, update deliverables, and communication.

Process outcomes are usually defined in natural languages and may have different in-

terpretations for different users, which could cause ambiguity. A CT, as a semi-formal

graphic notation [94], is used to model the proposed process to reduce ambiguity among

different users. CTs are also used to compare the proposed process with the existing CMP

defined in ISO/IEC 12207:2017. The comparison shows the similarities and highlights the

differences between the two processes. Our proposed process sufficiently addresses the

deficiencies of the existing CMP and addresses the core activities of RCM.

Thus, this chapter addresses the following research question:

RQ: How can the proposed RCM process be compared with the existing RCM related

processes, and does the proposed process cover every aspect of the RCM problem?
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Furthermore, to align industry practices with the literature findings, we also map between

RCM process outcomes and RCM challenges that have been identified by our research

and introduced in Chapter 3. To validate our developed mapping, we conducted a ques-

tionnaire survey with industry professionals and the results show that more than 90% of

the industry professionals agreed with our mapping.

The rest of this chapter is organised as follows: Section 4.2 briefly discuss the previous re-

search related to RCM models and software process in ISO/IEC standards. The proposed

RCM process and a theoretical model are presented in Section 4.3. Section 4.4 introduces

the CT modelling of our process and compares it with the existing process, and section 4.5

presents the developed mapping between RCM challenges and RCM process outcomes.

Finally, the conclusion of this chapter is discussed in section 4.6.

4.2 Related Work

In the past, many studies have been undertaken to explore different aspects of the RCM

domain, such as effort estimation [188], rework assessment [139, 163], and traceability

analysis [189]. At the same time, a number of RCM models have been proposed [72, 126,

190].

Currently, many ISO standards are practised in the industry, but RCM issues are not

fully addressed in these standards. Now industry has realised the importance of RCM in

software development’s success and stability, and this awareness has been reflected in some

latest SDLC processes in standards. For example, ISO/IEC 12207: 2008 [90] discusses

some aspects of RCM. Similarly, ISO/IEC 12207: 2017 [28] and ISO/IEC 15288: 2015

[29] outline the CMP and discuss change management as one of its activities; however,

those solutions are not sufficient.

In SDLC, configuration management and software change management are two differ-

ent processes. Configuration management aims to set and maintain consistency among

project products and product versioning. In contrast, change management addresses the

requested changes to individual products, e.g. system requirements, design, scope, etc.

[191]. Configuration management can be considered a supporting process in software re-

quirements change and mainly copes with the challenges of evolution and maintenance
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[30, 124, 192] but cannot be used as a substitute for the RCM process. Similarly, con-

figuration management and change management processes are defined separately in the

Information Technology Infrastructure Library (ITIL). However, ITIL mainly focuses on

delivering information technology services to companies instead of developing projects.

Despite the importance of RCM, existing ISO/IEC standards do not address this domain

completely. To fill in this specific research gap, we proposed an RCM process and designed

a theoretical model in light of the proposed process. To align with the industry practices,

we mapped between RCM challenges and RCM process outcomes and received positive

feedback from industry practitioners about our mapping.

4.3 Proposed Requirements Change Management Process

This section introduces the proposed RCM process in terms of its purpose and outcomes,

which are commonly used to define a process in standards [193].

4.3.1 Definition

Process Purpose: The purpose of the RCM process is to manage and control require-

ment changes of system elements or items and make them available to concerned parties.

Process Outcomes:

As a result of the successful implementation of the software requirement change manage-

ment process:

1. Items to be changed are identified and recorded.

2. Change Impacts are analysed.

3. The cost and schedule of changing items are estimated.

4. Changes to the items under requirements change are approved.

5. Changes to the items under requirements change are implemented.

6. Changes to the items under requirements change are verified and validated.

7. Changed items deliverables are updated and communicated to concerned parties.
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4.3.2 Requirements Change Management Process Model Description

This subsection explains the theoretical model of the proposed RCM process. Figure

4.1 shows the model’s activities and tasks. The source of change can be either internal

or external, serving the purpose of RCM model input. The project management and

maintenance team requests are considered internal requests, while external requests come

from customers or other stakeholders. The change description and reasons for the change

are also included in the change request. The change request will be saved in a change

requirement pool for future reference, along with change identification. The Ince model

[194] discussed this point as a core element of the RCM model. The use of appropriate

notation to capture the changes is the most crucial element of this activity. Software

requirement specifications usually apply UML [195], and behaviour trees [91] as a formal

notation.

The second activity of the RCM model is to perform change analysis. This activity

comprises many tasks, including change impact analysis, cost and schedule estimation.

The primary function of change is to estimate the impact of the proposed change on other

software artefacts, including design and architecture. Even risk analysis is included in

this activity [31].

The next activity is negotiation and approval of change requests. A Change Control Board

(CCB) is responsible for authorising the negotiation and approval process [126]. In small

teams, normally, project managers act as the CCB, but in large teams, some other team

members and system analysts are also included in the CCB [196]. The CCB discusses

the change impact on cost & schedule with both the development team and the external

stakeholders. After discussion with all the stakeholders, the CCB will decide whether the

change request will be accepted, rejected, or sent back to the change identification stage

for more information before the next iteration of change analysis. Rejected requests are

stored in the change request pool for future reference, and accepted requests forwarded

to the implementation stage.

The fourth activity is to implement the approved changes. Change implementation was

identified as a core activity in previous research. Change implementation mainly depends

on the type of documents used to identify the requested change [125, 197]. In this activity,

changes will be recorded in all the impacted documents.
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Figure 4.1: Requirements change management model

In fifth activity, implemented changes will be verified and validated according to the

change request [198], and it is a critical part of an RCM process [199]. The failed changes

due to implementation issues will be sent back to the implementation activity team. The

successfully passed changes will move forward to the next activity and will be stored in

the change request pool for future reference. The third possible output of this activity

would be that the implemented changes are sent back to the change identification activity

for reassessment.
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In the next activity, all deliverables, including requirements, design, code, and testing

products that have been impacted due to requested changes, will be updated. In the last

stage, the modified deliverables will be communicated to all the stakeholders, so they

become aware of this change and will use the updated version.

4.4 Comparison with Existing Processes

This section compares the proposed RCM process with the current CMP defined in the

existing ISO/IEC standards. Initially, software processes are written in natural languages,

and it is usually difficult to compare a process with its counterpart, also defined in natural

languages. Previous research reveals that Behaviour Engineering (BE) notations can be

used to model and verify process standards [200]. CT is a part of BE, and it is used to

model and compare the software processes. In the next subsections, we first use CT to

model the CMP defined in ISO/IEC 12207: 2017 and the RCM process proposed by us

and then compare them to find the differences and similarities.

4.4.1 Composition Tree Modelling of Configuration Management Pro-

cess

To model CMP defined in ISO/IEC 12207: 2017, firstly, the nouns and acronyms are

identified from the process outcomes. The identified list includes components and at-

tributes of components in CT. The process name is CT root, and then we go through

each outcome one-by-one to identify the components, states, and their relationships and

integrate them in the initial CT.

Process Name: Configuration Management Process

Process Purpose: The purpose of CMP is to manage and control system elements

and configurations over the system’s life cycle. Configuration Management also manages

consistency between a product and its associated configuration definition.

Process Outcomes:

1. Items requiring configuration management are identified and managed.

2. Configuration baselines are established.
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3. Changes to the items under configuration management are controlled.

4. Configuration status information is available.

5. Required Configuration audits are completed.

6. System releases and deliveries are controlled and approved.

CMP, item, configuration, and deliveries and releases (DRL) are the list of components

identified based on process outcomes. Figure 4.2 shows the CT of CMP defined in

ISO/IEC 12207: 2017. The component, Item, is the work product of individual phase,

such as requirement specification document, design document, source code, testing docu-

ment. The “*” sign indicates that the component may have more than one instance.

Item*1

Change*

[Controlled]3

State

DRL*

[Controlled]6

[Approved]6

State

[Identified]1 [Identified]1

[Managed]1

State

Configuration2 Configuration2

CMPCMP

Attributes

Baseline2 Baseline2

[Established]2 [Established]2

Status Info.4 Status Info.4

[Available]4 [Available]4

Audits5 Audits5

[Completed]5 [Completed]5

Attributes

Baseline2

[Established]2

Status Info.4

[Available]4

Audits5

[Completed]5

Figure 4.2: The composition tree for CMP

4.4.2 Composition Tree Modelling the Requirements Change Manage-

ment Process

This subsection presents the composition tree of the proposed RCM process. A similar

technique is used to construct a CT of the CMP process.

Process Name: Requirement Change Management Process (RCMP)

Process Purpose: The purpose of the RCM process is to manage and control a re-

quirements change of systems elements or items and make them available to concerned

parties.
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Process Outcomes:

1. Items to be changed are identified and recorded.

2. Impact analysis of changing items is performed.

3. The cost and schedule of changing items are estimated.

4. Changes to the items under requirements change are approved.

5. Changes to the items under requirements change are implemented.

6. Changes to the items under requirements change are verified and validated.

7. Changed items deliverables are controlled and communicated to concerned parties.

RCMP, Items, and Concerned Parties (CP) are the components identified based on pro-

cess outcomes. Figure 4.3 shows the CT of the proposed RCM process. The component

items are the work product of individual phase, such as requirement specification docu-

ment, design document, source code, testing document. The “*” sign indicates that the

component may have more than one instance.

Item*1 Item*1 CP*6 CP*6

State

RCMPRCMP

[Identified]1 [Identified]1

[Recorded]1 [Recorded]1

Relationship

Change*

Deliverables* State

State [Implemented]5 [Implemented]5

[Approved]4 [Approved]4

[Verified]6 [Verified]6

[Validated]6 [Validated]6

Attributes

Change Imp.2 Change Imp.2

[Analyzed]2 [Analyzed]2

Cost3 Cost3

[Estimated]3 [Estimated]3

Schedule3 Schedule3

[Estimated]3 [Estimated]3

[Updated]7 [Updated]7

[Communicated]7 [Communicated]7

CP*To CP*To

Figure 4.3: The CT for RCMP
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4.4.3 Comparison between RCM Process and Configuration Manage-

ment Process

This subsection applies the CT comparison algorithm to identify the differences and sim-

ilarities between CMP and RCM process. This comparison is performed based on a label

matching tree algorithm, which is used to compare different versions of behaviour trees

and composition trees [91].

The primary task of the two-step merging algorithm is to find the matching node in CT

node names, i.e. components, states, to form the same nodes. Firstly, the components

or states are identified that serve the same purpose but which may be called by different

names, and then a mapping between these terms needs to be defined. In this research,

no such term exists, and therefore this step will be skipped. In the second step, different

versions or different trees will be merged to form a Comparison Composition Tree (CCT).

To simplify this step, one tree would be called the ‘old tree’ and the other the ‘new tree’.

In CCT, the root is a combination of root names of both trees. CCT helps to understand

the complete information and the differences between both trees.

For clarity, a CCT follows an intuitive display style convention. The nodes that are part

of both the old and the new trees will be represented with normal solid lines. Dotted lines

are used to represent nodes that are only part of the old tree, while bold lines are used

to represent the information that only exists in the new tree. This is a brief description

of the tree merging algorithm; however, complete tree merging algorithm details can be

found in previous research [47].

The CCT of CMP 12207:2017 and RCM process is shown in Figure 4.4, and the root is a

combination of both tree roots. Similarities and differences are found in the CCT.

� A component called ‘configuration’ is defined in the CMP ISO 12207: 2017, but no

such component exists in the RCM process.

� There are no attributes defined for an ‘item’ or ‘work products’ in the CMP ISO/IEC

12207:2017, whereas a number of attributes for an ‘item’ or ‘work products’ are

identified in the RCM process.

� One component called ‘concerned parties’ is listed in the RCMP, but not in the

CMP ISO/IEC 12207:2017.
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and system configuration related activities, and the CMP addresses these activities in de-

tail. In contrast, change management is discussed very little in the CMP. The complete

change process of an item or work products is defined with only one state called ‘con-

trolled’, whereas the RCM process addresses the change management issues in detail. The

RCM process identifies the attributes related to the item or work product that needs to be

changed. Different states, such as ‘approved’, ‘implemented’, ‘verified’, and ‘validated’,

through which the item or work products need to pass in the change process are also

mentioned in the RCM process. Another essential element of the differences is the need

to update the deliverables, such as requirements, design documents, source code, and test

cases in accordance with required change, which is also included in the RCM process as

a subcomponent. Lastly, the communicated relationship is defined, to ensure that all the

stakeholders will use the same updated version of all deliverables.

4.5 Mapping between RCM Challenges and RCM Process

Outcomes

In this section, we first develop a map between the RCM challenges in both the in-house

and Global Software Development (GSD) that we have discussed in Chapter 3 and the

RCM process outcomes proposed in this chapter. The mapping will help to understand

the challenges might be faced in achieving RCM process outcomes. After that, we conduct

a questionnaire survey with the industry practitioners to get their feedback regarding this

mapping.

This mapping aims to establish a correlation between the literature findings and RCM

process outcomes. As s result, we believe that this mapping will increase the practical

significance of RCM challenges by providing an understanding for industry practitioners

about what challenges they could face in achieving RCM process outcomes. To help with

recall, below is the list of outcomes of the RCM process proposed in this chapter:

1. Items to be changed are identified and recorded.

2. Change impacts are analysed.

3. The cost and schedule of changing items are estimated.
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4. Changes to the items under requirement change are approved.

5. Changes to the items under requirement change are implemented.

6. Changes to the items under requirement change are verified and validated.

7. Changed items deliverables are updated and communicated to concerned parties.

In the questionnaire survey, the industry practitioners were asked to give an opinion: to

either strongly agree, agree, disagree, or strongly disagree with the defined mapping. The

defined mapping and corresponding results are shown in Table 4.1 and Table 4.2.

Table 4.1: Mapping between RCM-In-house challenges and RCM process outcomes

Challenge

RCM
pro-
cess
Out-
comes

Organisations’
Observations (n=69)

Positive Negative

SA A % D SD %

Impact Analysis 2 28 41 100 0 0 0

Cost/Time Estimation 3 25 41 96 3 0 4

Requirements Traceability 1,7 26 40 96 3 0 4

Artefacts Documents Management 1,4,7 22 43 94 4 0 6

Requirements Dependency 1 15 50 94 4 0 6

Requirements Consistency 4,6 26 38 93 5 0 7

User Involvement 1,3,7 23 39 90 7 0 10

Change Prioritisation 4,5 21 40 88 6 2 12

Note: Strongly Agree (SA); Agree (A); Disagree (D); Strongly Disagree (SD)

The survey results show that more than 90% of the industry practitioners either strongly

agreed or agreed with the mapping we formed between RCM-in-house challenges, RCM-

GSD challenges, and RCM process outcomes. However, regarding change prioritisation,

88% of the industry practitioners either strongly agreed or agreed with our mapping. A

thorough analysis reveals that 100% of the industry practitioners positively responded to

the mapping between impact analysis and RCM process outcome number 2. Furthermore,

96% of the industry practitioners gave positive feedback for communication & coordina-

tion, knowledge management, and sharing. Similarly, 93% of the industry practitioners

either strongly agreed and agreed with the mapping between change control board man-

agement, cost/time estimation, and requirement traceability and RCM process outcomes.
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Table 4.2: Mapping between RCM-GSD challenges and RCM process outcomes

Challenge

RCM
Pro-
cess
Out-
comes

Organisations’ Observation
(n=69)

Positive Negative

SA A % D SD %

Communication and Coordination 1,3,7 19 24 96 2 0 4

Knowledge Management and Shar-
ing

1,4,7 20 22 93 3 0 7

Change Control Board Management 4 21 21 93 2 1 7

Note: Strongly Agree (SA); Agree (A); Disagree (D); Strongly Disagree (SD)

We could not find any suitable mapping between system instability and RCM process

outcomes. Therefore, we left this as an open question for industry practitioners, and they

gave the following comments regarding system instability.

“I think system instability requires consideration in parallel with other challenging in the

complete RCM process, however, more precisely, it can be mapped to outcome 5,6, and 7;

as they cover the implementation of the proposed change.” Team Lead

One of the other industry professionals revealed his experience as follows;

“It is a big challenge to keep system functionality working and requires considerable plan-

ning and effort in the change management process. I think system instability is better

correlated with the change implementation phase and will map to outcome numbers 5 and

6.” Project Manager

Based on the industry practitioner feedback, the system instability as a core RCM chal-

lenge can be mapped to RCM process outcome numbers 5, 6, and 7.

In the survey, practitioners were also asked to mention any best practices that they

were following in the RCM process in achieving the RCM process outcomes. Table 4.3

summarises the industry professionals’ feedback received as best practices followed while

managing changes.



RCM Process in ISO/IEC Standard 100

Table 4.3: Best practices followed for the RCM process outcomes

RCM Process
Outcomes

Best Practices

Change identifica-
tion

Use ’how’s along with five ’W’s

Impact Analysis � Use how’s along with five W’s
� Use requirements analysis matrix
� Use traceability matrix

Cost/time estima-
tion

� Use a combination of different techniques such as LOC,
FPA, use case points, and story points.

� Choice of techniques depends on the nature of the project
and the impact of the requested change.

Change approval � Change approved after negotiation with the client based on
impact analysis and cost/time estimation documents.

� Change control boards perform Change approval through a
well-defined process.

Change implementa-
tion

� Agile techniques are more suitable for implementing pro-
posed changes.

� Consider all the requirements which were impacted by the
requested change directly or indirectly in the implementa-
tion plan.

Change verification
and validation

� Quality assurance verifies and validates Implemented
change through informal techniques like inspection and for-
mal techniques like a black box, white box testing.

� The selection of appropriate technique depends upon the
nature of change such as a change in a graphical user inter-
face, change is system logic etc.

Changed artefacts
updating and change
communication

� Update all the baseline documents including requirements,
design, testing and more important schedule and cost doc-
ument.

� Communicate with all concerned stakeholders before releas-
ing the implemented change.

4.6 Conclusion

To fill in the gaps of the existing RCM related processes in ISO/IEC standards, we have

proposed a software RCM process in the format of ISO/IEC standards. The process is

analysed through a seven-step theoretical model. The seven steps are: identification,

analysis, negotiation and approval, implementation, verification and validation, updating

deliverables, and communication.

To avoid ambiguity, CTs are used to model the proposed process and the existing CMP
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process defined in ISO/IEC 12207:2017. We compare the two processes using their CTs. A

CCT is constructed to highlight the differences and similarities between the two processes.

The CCT reveals that the proposed RCM process addresses several RCM problems in more

detail than the existing CMP.

Furthermore, to help industry practitioners to implement RCM, a mapping has been de-

veloped between the RCM process outcomes and RCM challenges. The mapping has been

validated through a questionnaire survey to the industry. The survey shows that more

than 90% of the industry practitioners agree with the mapping except for one challenge,

‘change prioritisation’. In the survey, we also collected a set of best practices related to

RCM process outcomes.

The processed process address the limitations of the existing RCM related process and

cover every aspect of RCM domain. However, the proposed process is in the initial stage

and not mature enough. We are in contact with the ISO/IEC committee to further

improve it. We are also collaborating with our industry partner in china to use this

process in a pilot project.



Chapter 5

Change Impact Analysis

After identifying the RCM challenges in 3, there is a need to design approaches to address

some of the key RCM challenges. By considering it, we choose one of the highly cited

RCM challenge identified through SLR and propose an approach to address that issue.

Usually, in real-world systems, the system components are linked with each other to per-

form collectively to solve any problem. Due to changes in customer demands, and some

other factors, the majority of system components are accompanied by frequent change

because they are required to keep the system operational. To gain an accurate under-

standing of the implications of the proposed changes, an effective and efficient Change

Impact Analysis (CIA) approach is required.

This chapter proposes an approach to estimate the impact of the proposed requirements

changes on other requirements and corresponding design and architecture artefacts. In

this work, we use Behaviour Engineering (BE) models such as Behaviour Tree (BT), Com-

position Tree (CT), Component Interface Diagram (CID), and Requirements Dependency

Network (RCDN) a newly introduced model, to perform CIA. Moreover, we proposed a

Change Impact Indicator (CII) metric to quantify proposed requirements change impact.

This chapter proposes an approach to estimate change impact, which is one of the

highly cited Requirements Change Management (RCM) challenges discussed in Chapter

3. Therefore, this chapter increases the depth of our work related to the RCM problem.

102
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5.1 Introduction

Software requirements keep on changing through the Software Development Life Cycle

(SDLC). Frequently, even though the newly introduced requirements only occupy a small

portion of system requirements compared to the entire system, the changes could affect

some other requirements; they might also impact some critical design artefacts, including

the architecture.

The software system’s size and complexity make the process of identifying all the change

impacts very difficult. According to our previous study [201], understanding the proposed

change’s impact is one of the major challenges faced during RCM. In another study, it has

been reported that 85-90 percent of the software systems budget goes to system operation

and maintenance [202]. Therefore, a systematic approach that could be enhanced by

automated tools to identify all change impacts is necessary for cost-effective software

development [203].

CIA is the term for the kind of systematic approach needed. It is defined as “the activity

of identifying the potential consequences, including side effects and ripple effects, of a

change, and estimating what needs to be modified to accomplish a change before it has

been made” [31]. CIA helps to estimate the extent and cost of implementing the proposed

changes. For many decades, various CIA techniques have been introduced and applied at

different stages of the SDLC on different artefacts, for example, on requirements [204, 205],

architecture [206–209], source code [210–212], and a combination of them [213].

Furthermore, a few studies have been conducted that trace back the changes from one

software artefact to another artefact; for example, from source code to software design.

Hammad et al. [71, 214] presented an approach that monitors the evolution of a design

based on the changes in source code.

In the context of change propagation from requirements to design, Al-Saiyd and Zriqat

[215] presented a traceability based approach that uses traces between requirements and

design. Similarly, Sudin and Kristensen [70] presented an approach to understand how

changes in requirements are carried out during the design process. However, both of

these approaches manually identify the potentially impacted design elements based on

requirements changes.
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In another more relevant work, Goknil et al. [34] proposed a rule-based CIA approach to

identify potentially impacted elements in software architecture. They used requirements

relations, which they also proposed in other of their work [216]. After that, they used

traces between requirements and architecture elements to determine candidate architec-

tural elements for the impact of requirements change in the architecture.

Generally, the above-discussed approaches have the following limitations. Firstly, they will

only provide a rough set of candidate elements that might be impacted due to requirements

change [34]. And it is laborious to identify the actual impacted elements from the list of

candidate impacted elements in large systems because the set often contains too many

potentially impacted elements.

Secondly, existing CIA approaches usually define system artefacts at the abstract level

without specifying them in more precise modelling languages. The change impacts are

described in natural languages rather than in more formal and precise modelling lan-

guage such as Unified Modelling Language (UML) and Behaviour Tree (BT); therefore,

they usually lack the capability to illustrate the propagation from requirements to other

software artefacts in an understandable and verifiable way.

Thirdly, most of the approaches do not provide any suitable measure to quantify the

change impact. They usually only provide the list of potentially impacted elements with-

out considering their complexities, which helps estimate implementation cost more objec-

tively. Without quantifying the change impact, estimating the implementation cost for

the proposed change is very challenging [36].

To address these limitations, we proposed a Behaviour Engineering-based approach for

Change Impact Analysis (BECIA). This approach addressees all three limitations very

well. To achieve that, we have fully taken advantage of the advanced features of BE and

so make the following contributions:

� Our approach uses models from BE such as Integrated Behaviour Trees (IBT) and

Integrated Composition Trees (ICT) to analyse requirement changes and affected

components. Both IBT and ICT are important models of a software system, and

details are discussed in Chapter 2 and section 2.5. We have proposed a new model

called Requirements Components Dependency Network (RCDN), which captures

relationships between requirements and corresponding components, and it helps to
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identify candidate impacted components. RCDN can be used with another BE

model to identify impacted components, which helps to address the first limitation.

� Moreover, this approach systematically transforms models of one software artefact

into another software artefact instead of creating artefacts from natural languages.

In particular, we introduce algorithms to transform IBTs to ICTs, and then to

RCDNs. This translation maintains traceability links between these artefacts, which

helps to demonstrate change propagation between these artefacts; therefore, it ad-

dresses the second limitation.

� To quantify change impacts (third limitation), we introduced a Change Impact In-

dicator (CII). We use the concept of Kolmogorov Complexity (KC) [217] to estimate

a component’s complexity and then use it to calculate CII. With an objective mea-

surement of change impact, our approach, aligned with historical data, produces

a reliable benchmark to estimate the cost associated with a proposed change. It

might also help to identify an optimised change solution among several possible

change solutions.

� We show the applicability of the proposed approach using a real-world system

named Shaanxi Transportation and Logistics Information Standardisation Manage-

ment System (STLISMS). Our approach successfully identifies the components that

are impacted due to the proposed change.

The rest of this chapter is organised as follows: Section 5.2 introduces all the key elements

(contributions) of the BECIA approach. Section 5.3 illustrates the workflow of BECIA

with a simple abstract example, and a real-world case study is given in Section 5.4. Section

5.5 presents relevant existing works and compares the proposed approach with relevant

existing approaches. Finally, the conclusion is discussed in section 5.6.

5.2 Key Elements of BECIA

This section introduces the four key components of our approach, which are: a translation

from IBTs to ICTs, from ICTs to RCDNs, from IBTs to CIDs, and the CII metrics. We

introduce each of the components below.
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5.2.1 Conversion of an IBT into an ICT

The original BE methodology translates both BTs and CTs directly from the require-

ments. The CT translation and integration process helps to identify requirement defects

and fix ambiguity in the terminologies of the requirements. It is a useful process if

the requirements are not well written and the design team is not familiar with the re-

quirements. However, once most requirement defects are fixed and the design team has

sufficient knowledge of the project, to stick on this manual process may have the following

problems:

Firstly, as the translation and integration process requires manual effort, it could cause

inconsistency between the IBT and the ICT due to human errors. Secondly, if the re-

quirements change, it involves more work to update both the IBT and the ICT to keep

them consistent with the latest version.

In this research, we have proposed an algorithm to convert an IBT to an ICT. Besides the

benefit of preserving links between artefacts, as discussed before, the automated transla-

tion has two additional benefits: it will save the human effort required for the updating

of IBT and ICT during change management, and guarantee consistency between the two

diagrams.

Now we will explain the conversion of IBT into the ICT with a simple abstract example.

Supposing a system of four requirements has its corresponding IBT shown in Figure 5.1.

It has five components: C1, C2, C3, C4, C5, and eight behaviours from B1 to B8. In this

example, all the three-leaf nodes have a reversion sign ‘ ˆ ’ , which mean to revert to the

closest parent node of the same behaviour.

The process to convert an IBT to an ICT involves applying a tree traversal algorithm; it

starts from the root node of the IBT and walks through all the nodes. As an ICT shows

static aspects of the system, therefore, it does not matter whether one walks through the

IBT in a depth-first order or a breadth-first order, as long as all the behaviour nodes are

covered.

Before constructing the ICT, we need to identify the system component which serves as

the root node of the ICT. The system component is usually also a component of the IBT’s

root node, as it is a recommended practice in developing BTs. Even if it is not the IBT’s
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Figure 5.1: Example IBT

root node, we can still identify a system component, which is drawn in a double-lined

rectangle.

To process each behaviour node in the IBT, the following procedure will be applied.

1. Check the component name; if the component is not in the ICT yet, we will create a

component node in the ICT. A simple ICT contains one system component, and then

all the other components are direct child components under the system component.

A more complex system may have a system of systems, and then it will have more

complex composition trees. However, the composition structure of the ICT could

be adjusted based on design decisions.

2. Check the node’s behaviour and requirement link. It could be in one of the three

different situations:

(a) If the ICT does not have a node with the same behaviour under the component,

then it will create a new node with the behaviour and requirement link under

the component, as shown in Figure 5.2 (a).
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(b) If the ICT already has a node with the same behaviour under the component,

but the requirement links cell (of the CT node) does not contain the require-

ment link of the BT node. The new requirement link from the BT node will

be added to the CT node’s requirement link cell, which contains a list of all

requirement links associated with this behaviour. For example, the last node

of requirement R3 has component name C1 and behaviour B1, which are al-

ready included in ICT; however, requirement link R3 is not included in the

requirement links cell. Therefore, we add requirement link R3 is the left cell,

as shown in Figure 5.2 (b).

(c) If the ICT already has a node with the same behaviour under the component,

and the requirement link from the BT node is already in the CT’s requirement

link cell, nothing needs to be done. For example, behaviour B3 appears in two

nodes of requirement R3, but we write it only once, as shown in Figure 5.3.

(a)

C1C1

State

[B1]R1+ [B1]R1+

State

[B1]R1+

C1

(b)

State

[B1]R1+, R3+ [B1]R1+, R3+

Figure 5.2: Steps to model example ICT

An important point regarding step 2 is that if the associated behaviour changes the

component state, it means that the component state before and after executing that

requirement is different. In other words, if any requirement introduces a new state of a

component, then it shows that requirement changes that component state. Then we write

plus sign ‘+’ with the requirement ID; otherwise, simply write the requirement ID in ICT.

Lastly, after following similar steps (1 &2), we will get the ICT for all four requirements,

shown in Figure 5.3. An important point related to this process is that the integration

node of IBT will be shown with both requirements links in ICT because this node is
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Figure 5.3: Example ICT

a postcondition of one requirement and a precondition of the second requirement. For

example, in Figure 5.1, an IBT node with @ sign is used to integrate R1 with R2, R3 and

R4. So, in ICT, the behaviour B3 of component C1 is shown with requirements links R1,

R2, R3, R4 in Figure 5.3.

5.2.2 Conversion of an ICT into RCDN

As the original requirements are individual functional requirements, the implementation

dependency relationship among them is not visible. Efficient requirement analysis is

necessary to represent the relationships clearly and visibly.

Traditional techniques identify the relationships manually, and they usually reveal the

requirements relationship in the problem domain. For example, in a use case diagram,

“to create an order” and “to pay an order” are drawn as two use cases closely related in the

problem domain. Because those diagrams are created before considering implementation,

they usually will not reflect the relationship of two requirements in the solution domain.

As design moves closer to the solution domain, current programming tools increasingly

focus on components, which are connected through complex dependencies. Therefore,

a hidden dependency between requirements in the solution domain might cause other

requirements affected if one requirement is changed. For example, in the Year 2000

Problem (Y2K) situation, the date format change might cause the wrong calculation of

retirement pensions. Hence, we aim to develop a new diagram that reflects the dependency

relationship in the solution domain.
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Our new model captures the dependency relationships among requirements based on their

connection with components. Intuitively speaking, if two requirements both involve the

state of the same component, those two requirements are closely related; similarly, if

the implementation of two requirements does not involve any mutual components, these

two requirements are relatively independent. To achieve that, we have introduced a new

RE model called RCDN, which connects all the requirements through the components

involved in the implementation of those requirements.

An RCDN is a hypergraph H = (V,E), where V is the set of requirements as vertices

and E is the set components as hyperedges. Requirements v1,. . . ,vn are connected by a

component e if v1,. . . ,vn all involve the state of e. The usual graphs are inappropriate

in this situation because, in usual graphs, one edge can connect to at most two vertices.

However, our approach uses hypergraph because one component (hyperedge) can connect

to more than two requirements (vertices). Hypergraph models have shown great effec-

tiveness in capturing higher-order relationships. An RCDN visualises which requirement

or component is critical by investigating the number of their connections with other re-

quirements and components. Intuitively, if the change involves a critical requirement, it

will most likely require more effort for implementation than for less critical requirements.

Similar to our translation from IBTs to ICTs, our approach translates ICTs into RCDNs.

To explain the conversion from an ICT into an RCDN, we used the same example that

we have used in the previous subsection and the ICT in Figure 5.3. We will take one

component and read all the associated requirement IDs to form hyperedges. We will start

with the root component, C1, and will form an RCDN by using the following steps:

1. Check the component name; if the component is not in the RCDN yet, we will create

a component as a circle.

2. Check the requirement links in the left cell of the ICT node under the state’s section

of that component. It could be in one of the three different situations:

(a) If the RCDN does not have that requirement, then create a new requirement

as a rectangle. If there is a ‘+’ sign next to the requirement, add a strong

connection (represented by a solid line) between the requirement and compo-

nent; otherwise, added a weak connection (represented by a dotted line). For

example, in component C1, the first requirement is R1 in the requirement links
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(a) (b)

R1

C1

R3

R2

C1

C5 C2

R1

C3

R4 C4

Figure 5.4: The RCDN for the example ICT

cell, so we create a new requirement R1 and connect it with component C1 as

a strong connection, as shown in Figure 5.4 (a). Because requirement R1 is

listed with a plus sign means R1 changes component C1.

(b) If the RCDN already has a requirement, we only connect with the component

based on the connection type.

(c) If the RCDN already has a requirement and is connected to that component

through a weak connection, but the same requirement entry with another be-

haviour in another node requires a strong connection, then, replace the weak

connection with a strong connection.

Lastly, we will get a complete RCDN for all four requirements and five components after

following similar steps, as shown in Figure 5.4 (b).

After generating an RCDN, we define different relationship types between requirements

(vertices) based on their connections. The three types are: competing, supporting, and

sharing. The definition of the three different types and the rules to apply them for checking

possibly impacted requirements, are given in Table 5.1.

Among the three different relationships, ‘competing’ has the highest precedence and ‘shar-

ing’ has the lowest precedence. It means if two requirements are both competing and sup-

porting, they are ‘competing’; if both are supporting and sharing, they are ‘supporting’.
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Table 5.1: The relationship types in RCDN and their interpretation rules for indirect
impact analysis

# Relationship
Type

Definition Rules for indirect impact
analysis

1 Competing Two requirements are called com-
peting if both of them may up-
date the state of one component.
In other words, both of them have
strong connections to a component.
For example, in Figure 5.4 (b), both
R1 and R3 have a strong connection
to C1; therefore, they are competing
requirements.

Requirements Change
Propagation Rule 1: If
two requirements are com-
peting, and one is changed,
then the other requirement
needs to be checked if the
change may impact it.

2 Supporting
If two requirements are connected
to one component, with one strong
connection (updating the compo-
nent’s state) and one weak connec-
tion (reading the state), the two re-
quirements are supporting. For ex-
ample, in Figure 5.4 (b), R1 has a
strong connection to C2, and R2 has
a weak connection to C2; therefore,
they are supporting requirements.

Requirements Change
Propagation Rule 2: If
two requirements are sup-
porting and the changed
requirement has a strong
connection to the linking
component, then we need
to check if the other re-
quirement might have been
impacted.

Requirements Change
Propagation Rule 3: If
two requirements are sup-
porting and the changed
requirement has a weak
connection to the linking
component, then we do not
need to check if the other
requirement is impacted.

3 Sharing If two requirements are connected to
a component through weak connec-
tions (reading state from the com-
ponent), the two requirements are
sharing.

Requirements Change
Propagation Rule 4: If
two requirements are shar-
ing and one requirement is
changed, then we do not
need to check if the other
requirement is impacted.
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For example, in 5.4 (b), R2 and R4 are competing through C5 and supporting through

C1; therefore, the relationship between R2 and R4 is competing.

5.2.3 Transform IBT into CID

This subsection briefly describes another key element of BECIA: transforming an IBT into

a CID. This concept is already explained in the existing published research [91]. An IBT

is the system’s analysis domain view that shows all the states and the flows of control,

modelled as component-state interactions. In an IBT representation, a given component

may appear in different parts of the tree in different states. Due to this, it becomes hard to

understand any specific component details. To get a detailed understanding of individual

components, we need to convert the IBT to CID.

A CID shows the interface of a component that includes both what other components are

linked to the component and what other components it links to. A CID acts as a blueprint

for the implementation of a component. In this research, we use CID to check whether

a component is actually changed or not, and if changed, what types of change happen in

that component. A CID can be directly projected from the IBT. The first step to project

a component’s CID is to highlight all the nodes in the IBT of the given component. As a

result, we have all the links both coming in and going out of the component. Figure 5.5

shows the CID for component C1 projected from the IBT shown in Figure 5.1.

C1

[B1] C2: ??B2??C3: [B6]

[B3]

C2: ??B2??

C4: ??B5??

C5: ??B7??

C2: ??B2??

C5: [B4]

Figure 5.5: The CID for component C1
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5.2.4 Change Impact Analysis Metric

Existing CIA techniques are usually on the qualifying level, and this research will be on

the qualifying level as well as quantifying level. That means we will not only identify

which components and requirements will be affected by the proposed change, but also

quantify the change impact through a newly introduced Change Impact Indicator (CII).

Comparing the change impact indicators might help identify an optimal change solution

among many possible change solutions and provide more accurate and objective change

effort estimation based on historical change benchmarks.

According to requirements change taxonomies [218–220], changes can be classified into

three categories: adding new requirements, deleting an existing requirement, and mod-

ifying an existing requirement. Therefore, our proposed metric covers these aspects of

requirements change.

In BECIA, we first identify a set of components from RCDN that might be impacted due

to the proposed change. After that, we use CID to quantify the actual impact on each

component. The set of impacted components is defined as follows:

Θ = Θn ∪Θm ∪Θd (5.1)

Here Θ is the set of impacted components, Θn is the set of new components, Θm is the

set of modified components, and Θd is the set of deleted components.

To quantify the change impact on a component, we have applied a method similar to

the one for estimating the descriptional complexity of the component. After that, the

change impact on the entire system is defined as the sum of the change impacts on all the

components.

In a CID, each component contains a number of states (or interfaces), and each state has

a connection with a number of incoming and outgoing components. As shown in Figure

11, component C1 has two states [B1] and [B3], while [B1] has one incoming component

and one outgoing component; [B3] has two incoming components and three outgoing

components.
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In this work, to objectively measure the impact of the proposed change, we propose a

two-fold approach. Firstly, our aim is to identify which component might be changed or

affected due to the proposed change. Secondly, we are interested in investigating how

difficult it is to change the changed component because each component structure is

different from others and different amount of effort is required to implement a change in

it [221]. Intuitively, a component with more states and more incoming and outgoing links

is more complex. However, manipulating this set of numbers to estimate a convincing

measure of complexity is not an easy task. Kolmogorov Complexity (KC) [217] has been

studied and accepted as a good complexity measure. KC has been applied in software

engineering for many different applications and received positive results [222]. KC will help

to estimate the complexity of each changed component based on its structural proprieties.

In our approach, we use the KC to measure the complexity of individual impacted com-

ponents and use it as a change impact indicator on the component, and then estimate

the overall change impact by combining the change impacts on all impacted components.

Before introducing how we use the KC concept to measure the complexity of a component,

we introduce a general formula to estimate an upper boundary of KC of an integer n.

K(n) ≤ log∗ n+ c (5.2)

Where n is an integer, K(n) is the KC of n, and c is a constant, which can be ignored

when making the comparison. Where log is with base 2 and log∗ n is defined as:

log∗n= logn + log logn + log log logn + ... untill the last positive term.

Considering the practical situation and simplifying the calculation, we use logn+ 1 to

estimate the complexity of non-negative integer value n.

K(n) ≤ log (n+ 1) + c (5.3)

After defining the fundamental equation to measure an integer’s complexity, we now

calculate the complexity of a component. In CID, each component is composed of a

number of states; therefore, the complexity of a component can be estimated as the sum

of all states’ complexities. Let S be a state in component C, nc is the number of states
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in C. The complexity of state S can be estimated as:

K(S) ≤ log (nc + 1) log (nsi + nso + 1) (5.4)

Where K(S) is the complexity of a state in a component, nc is the number of states in

that component, nsi is the number of incoming components of S, and nso is the number

of outgoing components of S. We have omitted the constant c while calculating the

complexity of a state because the value is meaningful only when they are compared to

one another; therefore, the constant c could be omitted as it appears in all the compared

items.

For example, in Figure 11, the KC of state B1 can be calculated as:

K(B1) ≤ log(2+1)log(1+1+1) = 1.58 x 1.58 = 2.51

After estimating the complexity of individual states, the complexity of a component can

be calculated as:

K(C) =
∑
Sϵϕ

K(S) (5.5)

Where K(C) is the Complexity of component C and ϕ is the set of states of component

C. Based on this, we can calculate the complexity of C1 in Figure 11 as:

K(C1) = 2.51 +4.08 = 6.59

After measuring the individual component’s complexity, we now calculate the impact of

the proposed change on system components. In this research, we define a change im-

pact indicator as the complexity of the components involved in the proposed change. As

we have discussed earlier in this section, three types of change can be made in software

systems: adding a new requirement, modifying, and deleting an existing requirement.

Similarly, there are three types of changes at the components level: adding a new com-

ponent, modifying, and deleting an existing component. To estimate the overall impact,

first, we estimate the impact on individual components.
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We use δC to denote the change impact factor on component C, For a new component,

we define the change impact factor as the component’s KC, calculated in Equation 5.5

δC = K(C) (5.6)

For a modified component, we classify its states in three different sets: newly introduced

states, modified states (some may have an incoming component number and/or outcoming

component number changed), and deleting states as below:

Φ = Φn ∪ Φm ∪ Φd (5.7)

While Φ is the set of all states in component C, which is equal to the set of newly

introduced states Φn, the set of modified states Φm, and the set of deleted states Φd.

If any state name is changed, we assume to delete that state and then create it as a

new state. We define the change impact indicator on the deleted states as 0; therefore,

the change impact indicator of the modified component contains two parts: the first

part calculates the change impact on the set of newly introduced state Φn , while the

second part calculates the change impact on the set of modified states (means incoming

or outgoing components changed) Φm. The formula is given as:

δC =
∑
SϵΦn

K(S) +
∑
SϵΦm

max(K(S′)−K(S), 0) (5.8)

Where δC is the complexity of a modified component, K(S) is the Complexity of the new

state and also Complexity before making a change, K(S′) is the complexity of a modified

state after performing a change. We use ‘max’ here to avoid negative values, which means

if complexity is equal to any negative value, then we take zero.

An important point related to this process is that we will not introduce a separate equa-

tion to calculate the impact of deleting a component. The reason is that during the

deletion activity, we need to update the interfaces of the components connected to the

deleted components. Therefore, a separate equation to calculate the impact of deleting a

component will be covered in the modified and new components.



Change Impact Analysis 118

Finally, the cumulative impact of the proposed change in the context of complexity can

be estimated as follows:

∆ =
∑
CϵΘ

δC (5.9)

Where ∆ is the overall change impact factor, Θ is the set of impacted components defined

in Equation 5.1.

In the next section, we will use a simple example to demonstrate the detailed procedure

to calculate the change impact indicator.

5.3 BECIA Workflow with an Example

This section first explains the BECIA workflow by combining all the key elements and

then uses an example to demonstrate the process.

5.3.1 BECIA Workflow

The workflow of BECIA is given in Figure 5.6, which is composed of seven steps. Step 1

is in the problem domain, steps 2-4 in the analysis domain, and steps 5-7 in the solution

domain of the software development life cycle.

3. RBTs to 

form an IBT 
6. Component Interface 

Diagram

2. Draw/

Modify  

RBTs

1. Functional 

Requirements

4. IBT Into 

ICT 

System DesignRequirements Analysis

Analysis Domain Solution DomainProblem

 Domain

7. Perform 

Change Impact 

Analysis 

5. ICT into 

RCDN

Convert

Transform 

Help to

Help to

Convert

Integrate

Figure 5.6: BECIA workflow

� In step 1, System requirements described in natural languages are gathered. In this

research, we only consider functional requirements.
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� In step 2, new RBTs are designed, and/or existing RBTs are modified based on the

changed requirements by using BT drawing tools such as iRE [104].

� In step 3, new and/or modified RBTs are integrated into the existing IBT.

� In step 4, the IBT is converted into the ICT.

� In step 5, the ICT is converted into the RCDN.

� In step 6, the CIDs of all impacted components are projected out. This step can be

performed parallel to step 5 because both these paths originate from step 3.

� In step 7, calculate the change impact indicator from the RCDN and CIDs.

The first step is related to the software requirements gathering and will be performed

according to the guidelines of the requirements engineering phase of the software develop-

ment life cycle; therefore, we will not describe it in this paper. Steps 2 and 3 are standard

practices in the BE approach that were introduced in the background section and has

been published in previous papers [91, 104], so we will only provide the results of those

steps without explaining the detailed process.

5.3.2 Impact Analysis Example

This section uses a simple example to explain the BECIA workflow, particularly step 7,

which is to calculate the change impact indicator.

We reuse the IBT example in Figure 5.1 and then create a new RBT based on an assumed

new requirement. Then we perform steps 3-7 of BECIA based on the IBT and RBT.

After that, as it is possible to have multiple designs based on the same requirements, we

slightly adjust the new RBT to represent a new design for the change request. And then

repeat the BECIA process to calculate the change impact indicator of the second design.

By comparing the change impact indicators associated with different designs, the designer

might be able to identify an optimised design.
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state of component C1, so we connect requirement R5 to component C1 through a weak

connection, as shown in Figure 5.10.

R3

R2

C1

C5 C2

R1

C3

R4

C4

R5

C6

Figure 5.10: Updated RCDN

5.3.2.4 Steps 6 and 7- Project out CIDs from an IBT and Calculate Change

Impact

Step 6 is to project out CIDs from the updated IBT. However, we don’t need to project out

CIDs for all components; we only need to get the CIDs that are impacted by the proposed

change. To identify the possibly impacted components, we only need to check the RCDN,

which shows all the newly introduced components as well as modified components. We

will apply four rules for requirements change propagation defined in subsection 5.2.2 to

RCDN to identify the potentially impacted components and then use CID to find the

actually impacted components.

Let’s investigate the CIDs of potentially impacted components. Checking Figure 16, we

find one new component C6 and two modified components C1 and C4. We project out

the CIDs of the three components from the IBT in Figure 5.8. The CID for C1 is shown

in Figure 5.11, and it shows that a couple of interfaces get updated due to this change.

The CID of C4 is shown in Figure 5.12, and it reveals that one new state is added in

component C4 and one outgoing interface is also changed.

Now we investigate the possible indirect impacts of the proposed change based on the

relationships between a changed requirement and other requirements. As R3 and R5 are

competing requirements, based on requirements change propagation rule 1, we need to
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C1

[B1]

C2: ??B2??C3: [B6]

[B3]

C2: ??B2??

C4: ??B5??

C5: ??B7??

C2: ??B2??

C5: [B4]

C6: ??B9??C4: [B8]

Figure 5.11: The CID for component C1

C4

??B5?? C3: [B6]

C6: ??B9??

C1: [B3]

C1: [B1][B8]

Figure 5.12: The CID for component C4

check components connected to R3 as well. Requirement R3 is connected to components

C1 and C3; C1 is already checked, so now we only check C3. The CID of C3 in Figure

5.13 shows that no change happens in component C3.

C3

C4: ??B5??

C1: [B1][B6]

C5: ??B7??

Figure 5.13: The CID for component C3

Furthermore, The RCDN in Figure 5.10 shows that the new requirement R5 is connected
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to R1, R2, R3, and R4 by supporting and sharing relationships through component C1.

However, R5 is connected to C1 through a weak connection; therefore, according to re-

quirements change propagation rule 3, change cannot propagate through component C1.

As no new component is identified that needs to be checked, so we terminate this process.

After identifying the actually impacted components, now we measure the complexity of

these components. We use the CID of these components and Equation 5.5 to calculate

the complexity of each state in the new component. The CID of C6 is shown in Figure

5.14, and the complexity of its state ‘B9”, would be calculated as follows:

K(B9) ≤ log(1+1)log(1+1+1) = 1 x 1.58 = 1.58

C6

[B9]C1: [B1] C1: [B8]

Figure 5.14: The CID for component C6

There is only one state in the new component, so this complexity is also a complexity of

a new component, C6. After calculating the complexity of a new component, based on

Equation 5.6, the change impact of the new component will be:

δC6 = 1.58

Now we calculate the complexity of the modified component. First, we show the calcu-

lation process for component C4 (CID in Figure 5.12), which has two states, one state

(B5) is unchanged, and one is a new state (B8). In the case of an unchanged state, the

complexity would be zero, and for the new state, complexity would be:

K(B8) ≤ log(2+1)log(1+1+1) = 1.58 x 1.58 = 2.51

After measuring the complexity of all the states of C4, the change impact for modified

component (C4) can be calculated by using Equation 5.8 as follows:
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δC4 = (0 + 2.51) = 2.51

Similarly, for component C1 (CID in Figure 5.11), one state (B3) is unchanged, its com-

plexity is zero, and for the modified state (B1), complexity will be:

K(B1) ≤ log(2+1)log(2+2+1) = 1.58 x 2.32 = 3.68

Similarly, the change impact for C1 can be calculated as follows:

δC1 = (0 + 2.51) = 2.51

After measuring the change impact of new and modified components, based on Equation

5.9, the overall change impact will be:

∆ = 1.58 + 2.51 + 3.68 = 7.77

This complexity value is on a logarithmic scale in the bits unit. The change impact

in terms of complexity will help to calculate more accurate and objective change effort

estimation based on historical change benchmarks.

5.3.3 Alternative Design Approach

In software systems, it is possible to have multiple designs based on the same requirements.

Therefore, in this subsection, we slightly adjust the new RBT to represent a new design

for the change request. In the new RBT, instead of introducing a new component C6

to implement the proposed change, we include the requested functionality in the existing

component, which is C4.

And then, we illustrate change impact calculation based on the second design. Due to the

space limitations, we only show the diagrams of each step without any explanation and

then calculate the final complexity. The RBT for R5, updated IBT, updated ICT and

updated RCDN based on the second design are shown in Figure 5.15, Figure 5.16, Figure

5.17, Figure 5.18, respectively.
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R3

R2

C1

C5 C2

R1

C3

R4

C4

R5

Figure 5.18: Updated RCDN for the second design

C1

[B1]

C2: ??B2??C3: [B6]

[B3]

C2: ??B2??

C4: ??B5??

C5: ??B7??

C2: ??B2??

C5: [B4]

C1: ??B9??C4: [B8]

[B9]C1: [B1] C4: [B8]

Figure 5.19: The CID for component C1 based on the second design

C4

??B5?? C3: [B6]

C1: ??B9??

C1: [B3]

C1: [B1][B8]

Figure 5.20: The CID for component C4 based on the second design
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δC4 = 2.51

Finally, based on Equation 5.9, the overall impact of this change will be:

∆ = 2.51 + 7.81 = 10.32

Regarding the indirect impact, we access the requirements connected to modified compo-

nents (C1 and C4) based on our four rules. A thorough analysis reveals that we need to

check the remaining three components (C2, C3, C5) to investigate the indirect impact.

The CID for C2 and C5 is shown in Figures 5.21 and 5.22. The CID for component C3 is

the same as in design approach one, which is shown in Figure 5.13. However, no change

happens in these three components.

C2

C1: [B1] 

[B3]

C1: [B3]

??B2??

C5: [B4]

Figure 5.21: The CID for component C2 based on the second design

C5

??B7?? C3: [B6]

C2: ??B2??

C1: [B3]

C1: [B3][B4]

Figure 5.22: The CID for component C5 based on the second design

In summary, the overall change impact factor associated with the first design is 7.71,

which is less than the change impact factor associated with the second design (10.32).

Intuitively, the CII value shows that the proposed change implementation requires less

effort in the first design approach as compared to the second design approach. Therefore,

regarding the change impact indicator, the first design is a better solution.
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5.4 Case Study

This section demonstrates our proposed approach’s effectiveness by using a real-world

system named Shaanxi Transportation and Logistics Information Standardization Man-

agement System (STLISMS). Currently, this system is in the development phase in South

Facing Alliance company [223], which is developing a Transport and Logistic Informa-

tion Service Platform (TLISP) for Shaanxi Province, China. The project is expected

to serve more than ten thousand transport companies that provide logistic services in

Shaanxi Province, China. STLISMS is an information management system related to

transportation and logistics, and it is designed to promote the standards and enforce the

implementation of the standards in the relevant projects. STLISMS provides the following

major functions:

1. It provides an official portal for customers to search and download all relevant

standards.

2. It broadcasts new standards and provides educational materials.

3. All new projects related to the Shaanxi transportation and logistics management

system must be registered in STLISMS, and the project plan must be uploaded for

review and approval.

4. Each new project must be approved through STLISMS before it can be developed

and used.

5. Each project must regularly upload a progress report to ensure the project complies

with the relevant standards.

In compliance with the above listed major functions, we collected 18 functional require-

ments from the users. We take 16 of them as initial requirements and two of them as new

requirements emerges due to the proposed change in the system functionality. The initial

set of requirements and new requirements is shown in Table 5.2. The new requirements

are listed at the end in shaded cells.
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Table 5.2: STLISMS functional requirements

# Requirements Description

R1 When the system is idle, a customer can create an account; to create an account,
the customer needs to provide relevant information and documents. After that,
the account is in the state of new and the system is still in the state of idle.

R2 When the system is idle, a valid customer can log in to the system. After the
customer logs in, the system will be in the state of ready.

R3 When the system is in the state of ready, the customer can log out and then the
system is in the state of idle.

R4 When the system is in the state of ready, the customer can create a new project.
After that, the state of the project is new. The system will be back to ready.

R5 When the system is ready, and a project is new, the customer can provide sup-
porting material; if all supporting materials have been provided, the customer
can submit the project. Then the project will be in the state of submitted and
the system back to ready.

R6 When the system is ready, the customer can enter search criteria and click search
standards; the system will display a list of standards that match the searching
criteria.

R7 When the list of standards is displayed, the customer can click on a specific
standard, then the content of the standard will be displayed on the screen.

R8 When the system is in the state of ready, and if there is a notification to the
customer, the customer can click ‘show notification’. Then the notification will
be shown to the customer.

R9 When the system is in the state of idle, an admin can input the admin id and
password to login. Once an admin is login, the system is in the state of manage-
ment.

R10 When the system is in the state of management, the admin can log out and then
the system is in the state of idle.

R11 When the system is in the state of management, if there is a new customer created,
the system will show a customer notification.

R12 When the notification is shown to the customer, the admin clicks the check button,
the new customer information will be displayed, and the system will display the
new customer.

R13 When the customer information is displayed, the admin can check the customer’s
detail and if the admin clicks ‘approves’, the customer’s state will be valid, if click
rejects, the customer’s state will be invalid. Either way, the system will revert to
the state of management.

R14 When the system is in the state of management, if there is a new project created,
the system will show a project notification.
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Figure 5.25: STLISMS updated RCDN

Now we calculate the impact of the proposed requirements change. RCDN in Figure 5.25

shows that no new component is introduced, and three existing components (C1, C5 and

C10) are modified due to the proposed requirements change. Based on Equation 5.4, the

complexity of new and modified states for component C1 (SYSTEM) will be:

K(C1 B2) ≤ log(3+1)log(5+4+1) = 6.64

Based on Equation 5.8, the change impact for component C1 (CID in Figure 5.26 will be:

δC1 = 6.64
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Figure 5.26: STLISMS-The CID for C1
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Figure 5.27: STLISMS-The CID for C5
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Figure 5.28: STLISMS-The CID for C10

An important point related to this calculation is that we calculate complexity after mod-

ifying a state such as for C5-B3 because Complexity before modification is less and will

be ignored in Equation 5.8.

Similarly, based on Equation 5.4, the complexity of new and modified states for component

C5 (NOTIFICATION) will be:

K(C5 B3) ≤ log(7+1)log(1+1+1) = 4.75

K(C5 B6) ≤ log(7+1)log(1+1+1) = 4.75

K(C5 B7) ≤ log(7+1)log(1+1+1) = 4.75

Now, based on Equation 5.8, the change impact for component C5 (CID in Figure 5.27

will be:

δC1 = 4.75 + 4.75 + 4.75 = 14.25

The complexity of new and modified states for component C10 (STANDARD) will be:

K(C10 B3) ≤ log(5+1)log(1+1+1) = 4.1

K(C10 B4) ≤ log(5+1)log(1+1+1) = 4.1

K(C10 B5) ≤ log(5+1)log(1+1+1) = 4.1
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Based on Equation 5.8, the change impact for component C10 (CID in Figure 5.28 will

be:

δC1 = 4.1 + 4.1 + 4.1 = 12.3

After calculating the change impact for modified components, now we analyse RCDN

based on our defined rules to investigate the indirect impact of the proposed change.

RCDN in Figure 5.25 shows that the new requirement (R17) is connected to R6 and R7 by

a competing relationship. Therefore, based on rule 1 of requirement change propagation,

we will check components connected to R6 and R7, which are C6 and C1. C1 is already

checked, and C6 CID (shown in Figure 5.29) investigation reveals that no change happens

in C6 due to new requirements R17. Moreover, R17 is connected to R1-R6, R8-R11, R14,

R16 and R18 by a supporting and sharing relationship through C1. However, R17 is

connected to C1 by a weak connection; therefore, based on rule 3 of requirement change

propagation, we will not check the connected requirements and their components in the

impact analysis process.

C6: SEARCH-CRITERIA

C6_B1: 

??Entered??
SYSTEM: [Ready]

SEARCH-CRITERIA: 

??Available??

C6_B2: 

??Clicked??

STANDARD: [List-

Displayed]

SEARCH-CRITERIA: 

??Available??

Figure 5.29: STLISMS-The CID for C6

Similarly, for the new requirement R18, RCDN in Figure 5.25 shows R18 is connected to

R8, R11, and R14 by a competing relationship. Therefore, based on rule 1 of requirement

change propagation, we will check components connected to these three requirements,

which are C1, C2 and C4. C1 is already checked, C2 and C4 CIDs (Shown in Figure 5.30

and Figure 5.31) reveals that no change happens in C2 and C4 due to new requirement

(R18). Moreover, R17 is connected to R1-R6, R8-R11, R14, R16 and R17 by a support-

ing and sharing relationship through C1. However, R18 is connected to C1 by a weak

connection; therefore, based on rule 3 of requirement change propagation, we will not

check the connected requirements and their components in the impact analysis process.
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No new component is identified for investigation, so we terminate the impact analysis

process here.

Finally, based on Equation 5.9, the overall impact of this change will be:

∆ = 6.64 + 14.25 + 12.3 = 33.19

This change impact is in terms of KC complexity, and it estimates the descriptional

complexity of the proposed change. Along with the comparison of historical data, it

could be used to estimate the implementation cost for the proposed change.

C2: CUSTOMER

C2_B1: ??Doc-

Provided??
SYSTEM: [Idle]

C2_B3: [Logout]

C2_B4: 

??Created??

SYSTEM: [Ready]

C2_B2: 

??Login??

SYSTEM: 

??Management??

NOTIFICATION: 

??Show-Cust??

ACCOUNT: 

[New]

SYSTEM: [Ready]

C2_B7: [Info-

Displayed]

BUTTON: ??Cust-

Clicked??

ADMIN: ?CUST-

Approved?

?Cust-Rejected?

C2_B5: [Valid]

C2_B6: [Invalid]

ADMIN: ?Cust-

Approved?

?Cust-Rejected?

SYSTEM: 

[Management]

Figure 5.30: STLISMS-The CID for C2

5.5 Related Work

Most of the existing research focuses on performing the CIA in the source code compared

to other SDLC phases. According to Kretsou [224], 62% of the existing research focuses

on performing the CIA in the source code, followed by 22% in the design phase, 14%

in architecture, and 2% in requirements. In the context of CIA at various development

phases, our approach presents a technique for understanding change impact starting from

requirements and moving through to the design & architecture. Therefore, it covers the

phases of SDLC that have not been thoroughly explored before.
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C4: PROJECT

C4_B1: 

??Created??
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PROJECT: 
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C4_B4: 
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C4_B5: 

[Rejected]

C4_B6: [Pushed]

C4_B2: [New]

PROJECT: [New]

NOTIFICATION: 

[Show-Project]

C4_B3: [Info-

Displayed]

BUTTON: ??Proj-

Clicked??

ADMIN: ?Proj-

Approved?

?Proj-Rejected?

?Proj-Pushed?

ADMIN: ?Proj-

Approved?

?Proj-Rejected?

?Proj-Pushed?

SYSTEM: 

[Management]

Figure 5.31: STLISMS-The CID for C4

Regrading the techniques used to perform CIA, according to Kilpinen [225], there are

two main categories of CIA related research, i.e. traceability based and non-traceability

method or dependency matrix-based. Also, some studies use a combination of these

approaches.

5.5.1 Change Impact Analysis in System Requirements

In traceability approaches, Ibrahim et al. [161] and Li et al. [226] proposed a traceability-

based approach to analyse the impact of requested change at the requirements level. They

used a traceability matrix and dependency graph to calculate the impact of requirements

change on the other requirements.

In another approach, Spilkerman [67] and Goknil et al. [216] proposed different require-

ments relations to understand the impact of the proposed change. The main contribution

of their work is to refine requirements relations, which are captured by a set of impact

rules and traceability links. They used formal semantics of requirements relations types

that are also used in another study [227].

Some of the existing studies [228, 229] used goal-oriented requirement language (GRL)

based approaches to perform impact analysis. Alkaf et al. [230] proposed an automated

approach to perform impact analysis by using use case maps and GRL. Similarly, Lee et al.
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[231] proposed a goal-driven traceability technique for analysing requirements; they used

use cases and the concept of GRL to perform impact analysis at the system requirements

level.

Regarding non-traceability techniques, Hassine et al. [232] proposed a CIA approach

based on the categorisation of dependencies between use case scenarios. In another study,

Ali and Lai [233] proposed an impact analysis approach for global software development

projects. They used a dependency matrix to understand the impact of the proposed

change on the set of other software requirements. Similarly, Jayatilleke et al. [210] used

dependency between functions to analyse the impact of changes on the existing system.

5.5.2 Change Impact Analysis in System Design and Architecture

Briend et al. [234, 235] proposed a CIA technique for an architectural model, which oper-

ates on UML models. They designed 97 OCL rules to search impacted elements between

different UML models. They used a distance measure to understand the propagation of

changes to indirectly related software entities. Similarly, Xing and Stroulia [236] proposed

an approach to investigate change impact by analysing the difference between two UML

models (class diagrams).

Kchaou et al. [237] proposed a technique to understand the change impact between dif-

ferent UML models. They used a graph technique to model the structural dependencies

and used information retrieval to control the semantic traceability between use case doc-

umentation and sequence diagrams.

In another study, Feng and Maletic [238] proposed a taxonomy of changes to analyse

change impact in component-based architectures. Their approach drives component in-

teraction traces from class and sequence diagrams, which are sliced by impact rules to get

the set of impacted entities.

5.5.3 Change Impact Analysis in Source Code

Existing research that used non-traceability based approaches to estimate CIA at source

code level can be divided into three major classes: dependency graphs, mining software

repositories, and structural information such as coupling.
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Regarding the traceability based approaches, Kama and Azli [239] presented a traceability

based approach to perform CIA at the source code level. They used horizontal traceability

to understand the change in the same version of code and vertical traceability between

different source code versions. Similarly, Rahimi and Cleland-Huang [240] presented a

traceability approach to establish links between requirements and source code and then

used these links to measure the impact of the proposed change at both levels.

Regarding the dependency graph category, Malhotra and Chhabra [241] proposed a CIA

approach based on the source code dependencies. Their approach uses seven types of

dependencies, including symbol dependency, temporal, include, data, control, semantics,

feature, and environment dependencies to calculate change impact. Similarly, Lutillier

et al. [242] used include and symbol dependencies and Cafeo et al. [243] used feature

dependencies to measure the change impact. In another study, Angerer et al. [36] used

control flow and data flow information of the source code and proposed a dependency

matrix to understand the change impact.

In mining repositories, Behnamghader et al. [244] proposed a CIA technique based on

the commit information of every release to understand the impact of implemented change

on other code segments or system parts. Similarly, Dyer et al. [245] developed a query

system specifically for mining repositories and performed code analysis to understand the

impact of the proposed change. In another study, Ahsan and Wotawa [246] proposed a

machine learning-based approach to predict and calculate the impact of requested change

on other code segments.

Regarding CIA measurement based on structural information, Beszedes et al. [247] pro-

posed a dynamic coupling function based CIA approach. Their approach investigates the

execution sequence by using a dynamic coupling function and then measure the CIA based

on this execution information. Similarly, Poshyvank et al. [248] proposed a new coupling

matrix named conceptual coupling and measured the impact of the implemented change

in the set of other system elements.

5.5.4 Comparison with Existing Work

Analysing the above-discussed approaches for CIA, the following conclusions can be made:
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� Regarding change propagation across different software artefacts, most of the exist-

ing research uses traceability techniques to establish links among different software

artefacts and then uses these links to understand the propagation of the proposed

change through different software artefacts. They use different techniques such as

dependency graph [226, 237], dynamic slicing [249, 250], distance measure [234, 235],

and reverse engineering [251]. Although the traceability based approaches are close

to our approach, there are some inherent issues with them.

– Firstly, it requires time and cost to establish traceability links between different

software artefacts [252].

– Secondly, excessive use of traceability produces more links between artefacts,

which are not easy to manage.

– Thirdly, there is limited support for automatically generating a traceability

matrix, which is very important for the effective use of traceability analysis for

CIA [253].

On the other hand, our approach offers traceability benefits with the inherent prop-

erties of the modelling language, BT, we used to model system requirements [93].

We exploit these properties and propose two algorithms to systematically transform

system requirements from one software artefact to another software artefact, such

as from IBT to ICT and then ICT to RCDN. This translation maintains traceabil-

ity links between these artefacts, which helps to demonstrate change propagation

between them.

� Regarding identifying the impacted architectural elements, the existing research

mostly provides a rough set of candidate elements that might be impacted instead

of pinpointing the actually impacted elements such as [34]. On the other hand, our

approach uses one newly introduced model, RCDN, to identify a set of candidate

elements and then uses CID to identify actually impacted elements. Furthermore,

our approach not only identifies the impacted components but, by using CID, also

highlights the segments of the models that need to change due to the proposed

change.

� Regarding quantifying change impact, most of the existing studies perform CIA

without quantifying the change impact. Only a few studies propose some met-

rics to quantify change impact but they are mostly performed in source code such
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as [72, 210]. In contrast, our approach estimates change impact in architecture,

identifies the impacted components, and estimates the complexity of the impacted

components. The advantage of this approach is that the estimation of individual

components complexity will help to assess an accurate and objective measure of the

development cost for the proposed change.

� Our approach is fully automatic except for the first step of translating functional

requirements into RBTs. All the other steps are based on well-defined rules and

processes. Our approach also provides visible and easily verifiable traceability across

all different design artefacts.

� Lastly, in a software system, it is possible to have more than one design solution for

the same requirements change request. After computing and comparing the CII of

each different design solution, it is possible to help the designer find the best design

solution.

5.6 Conclusion

In this chapter, we have proposed a novel behaviour engineering-based approach to per-

form change impact analysis, BECIA. In BECIA, we use IBT to model system require-

ments and design algorithms to convert an IBT into an ICT, and then to convert an

ICT into an RCDN. The RCDN helps to capture relationships between requirements and

associated components. It shows which components are connected to which requirements

and how requirements are connected through components. Moreover, an RCDN helps to

identify a set of potentially impacted components.

After that, we use CIDs retrieved from the IBT and the RCDN to investigate which

components are actually impacted due to the proposed changes and the details of the

impacts. Lastly, we propose a change impact indicator to quantify the change impact,

which will help to identify optimal change solutions among many possible options. It also

helps to estimate the development cost for a proposed change based on historical change

benchmarks.



Chapter 6

A Formal Model for Behaviour

Trees based on Context-Free

Grammar

We propose an approach to address one of highly cited RCM challenges (Change impact

analysis) identified in Chapter 5. To move on, we choose another important RCM chal-

lenge, requirements defects, and propose an approach to address them in this chapter and

in Chapter 7.

Modelling languages helps to express natural language system requirements in a structure

that is defined by a consistent set of rules and they help to improve the quality of software

development. However, the lack of systematic approaches to faithfully translating natural

languages into modelling languages limits the applicability of modelling languages. The

formalisation of this process is useful for addressing this limitation.

In this chapter, we firstly define normal formed Behaviour Trees (BTs). This normal form

works as a template that significantly simplifies the process of translating a requirement

from a natural language into its BT representation. We then use Context-Free Grammar

(CFG) to verify the formalised structure. This formalisation helps to expose some common

requirements defects, such as the incompleteness of individual requirements.

This work further increase the depth of work related to problem 1 by addressing another

key RCM challenge i.e. requirements defects, identified in this research. It is important to

143
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note that requirements defects can also arise during requirements elicitation and analysis,

so in this context, this is another problem (problem 2) related to the RE phase of SDLC.

Therefore, from this perspective, this approach also expands the breadth of our work

related to the RE phase of SDLC.

The work introduced in this chapter constitutes a foundation for requirements defects

detection and the work is extended in the next chapter.

6.1 Introduction

key activity in requirements engineering is to use different semi-formal modelling languages

such as Unified Modelling Language (UML) and BT to model requirements [254]. The

visual models capture the precise requirements and are usually easy to understand for

both customers and developers [255]. Using semi-formal languages as a bridge to connect

software requirements from natural languages to their formal representations offers many

advantages . For example, without a bridge, the customers who provide the requirements

may find it difficult to understand formal languages, while the engineers may not have

the domain knowledge to interpret the customers’ requirements correctly [75]. Therefore,

it is not easy to verify whether the formal representation is correct.

UML and Behaviour Engineering (BE) are the most widely used modelling languages

in the requirements engineering domain. Conventional software engineering approaches,

such as UML, construct system designs that will satisfy the requirements, while BE

approaches such as BT tends to construct a system design out of the requirements. This

innovative approach allows stakeholders to cross-refer the design elements with the original

requirements and guarantees that the design conforms to the minimum criterion to satisfy

the requirements [92].

As a powerful notation, BT demonstrates many advantages to capture functional require-

ments. However, the existing research related to BT formalisation mainly focuses on

mapping from BTs to other formal languages but misses the formalisation from natu-

ral languages to BTs. The translation from natural languages to BTs is challenging, as

the original requirements may contain many defects [256]. The original BT approach

tries to translate any arbitrary sentences into RBTs. However, due to human languages’

flexibility, natural language requirements could be ambiguous and incomplete and then
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produce wrong BTs. If a Requirements Behaviour Tree (RBT) is incomplete and contains

mistakes, the Integrated Behaviour Tree (IBT) will be wrong as well [257]. As a result,

it will be much more difficult to identify the mistakes and fix them if the defects can’t

be identified and fixed from the original requirements. The original BTs are semi-formal

because they might inherit the incompleteness from the requirements described in natural

language, but formalised BTs have enforced completeness in the normal form for RBTs

and serve as a formal specification.

Given this need to formalise the translation from natural languages to BTs, we propose a

concept of normal formed BTs. The proposed formal model consists of two key elements.

Firstly, we define a normal form for RBT based on a new axiom called Inertia Axiom, and

then define a valid BT as a normal formed RBT or an IBT integrated through a finite

set of normal formed RBTs. Secondly, we develop a CFG that can verify or generate all

valid BTs. The developed CFG form a theoretical foundation to verify BT structure and

helps to detect and eliminate requirements defects from the beginning. A simple system

is used to demonstrate the applicability of our approach. The proposed formal model has

successfully identified potential defects present in natural language requirements of the

given system.

Moreover, to evaluate the proposed formal model and provide an end-to-end support for

requirements analyst, we develop a tool named Behaviour Tree Compiler (BTC) based

on the developed CFG. BTC uses iRE which has already been published [104], as a BT

editor and take the output from the iRE as input to process the IBT and then verify it by

using our proposed CFG. The results show that the proposed grammar has successfully

identified all syntactic errors, which were present in the given system and fails to abide

normal formed BT rules.

The rest of this chapter is organised as follows: The existing works related to BT formal-

isation and CFG applications in the software engineering domain are discussed in section

6.2. Section 6.3 introduces the formal model proposed to verify valid BTs, following

which, an example to demonstrate the applicability of the proposed model is presented

in section 6.4. The developed tool is introduced in section 6.5. Finally, the conclusion is

discussed in section 6.6.
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6.2 Related Work

This section summarises the existing research related to BT formalisation and CFG ap-

plications in the software engineering domain for verification and validation.

Formalisation of BT: In the past, a number of studies have been carried out to formalise

BT semantics. For example, Colvin and Hayes [99], and Ahmad et al. [258] proposed the

semantics of BT by using CSP and also BTs integration rules. Moreover, BT also has been

used for model-checking; for example, Grunske et al. [259, 260] used failure modes and

effects analysis to perform model checking and assess the safety and security of software

systems. Likewise, Lindsay et al. [261] generated test cases by using BT to verify the

completeness and correctness of a BT model. Moreover, a hierarchical component model

has been proposed and demonstrated through a BT simulator called BECIE [262].In

another study, Saad et al. [263] translated BT directly to datalog, a formal language and

then performed requirements validation.

CFG Applications in Software Engineering: Besova et al. [264] proposed a model

transformation approach to improve overall model quality by using CFG graphs. In

another study, Damasceno et al. [265] used CFG and Mealy machine to design family

models for software product lines. Javed et al. [266] and Chanda et al. [38] used CFG

to verify the syntax of two widely used UML diagrams (class and sequence diagram).

Similarly, Ruiz-Rude et al. [267], and Manda et al. [268] used grammar techniques to

perform static code analysis of domain-specific languages.

In summary, even though some studies have been carried out to formalise BT semantics.

However, existing research mostly focuses on formalising requirements models into other

formal languages and misses the translation of natural languages requirements into BTs.

The translation from natural language into BTs is challenging and may introduce many

requirements defects [256]. To address this research gap, we first propose a normal form

for RBT to define a valid BT and then develop a CFG that can generate all valid BTs. The

valid BTs helps to detect and eliminate requirements defects such as incompleteness from

the beginning, which usually arise due to natural language issues such as incompleteness

and ambiguity.
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6.3 Formal Model

In this section, we define a formal model to validate a valid BT. The model contains two

steps. In the first step, we define a normal form for RBT based on the Inertia Axiom ,

which is also introduced in this research. A valid BT is defined as a normal formed RBT

or an IBT integrated through a finite number of normal formed RBTs. In the second

step, we propose a set of CFG rules to verify or generate a valid BT (RBT & IBT).

6.3.1 Normal Form of Requirement Behaviour Tree

In this subsection, we define a normal form for RBT based on the Inertia Axiom. The

important point is that our normal formed RBT complies with BT taxonomy[96] and

preserves the syntax and semantics of BTs. The normal formed BTs are relatively more

“formal” than original BTs, and they will help to improve the quality of requirements

modelling and help to identify some common requirements defects such as the incom-

pleteness of individual requirements.

Before defining the normal form for RBT, we would like to explain the rationale behind

doing that with a simple example. Consider two requirements (R1 and R4) of a microwave

oven system, a well-known software engineering example and that has been used in the

existing published research [91].

R1: Originally, the oven is in an Idle state, and the Door is closed, and when the button

is pushed, the Power-tube will be energised and the oven will start cooking.

R4: Whenever the oven is cooking, or the door is open, the light in the oven will be on.

Figure 6.1 shows the IBT constructed based on these two requirements. A thorough

analysis reveals that there is no new action or event described in R4, and it contains

only some additional information for R1; therefore, it is not a complete independent

requirement.

Sometimes, the end-users tend to describe the result (postcondition) while describing the

system requirements without mentioning the event that triggers a system to reach that

result. In other situations, a user might also skip preconditions that need to be met so

that the later events can be accepted. As a result, a requirement analyst has to add

in these missing parts based on their domain knowledge, but it may lead to incorrect
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OVEN

[Idle]
R1

OVEN

[Idle]
R1

BUTTON

??Pushed??
R1

BUTTON

??Pushed??
R1

POWER_TUBE

[Energized]
R1

POWER_TUBE

[Energized]
R1

OVEN

[Cooking]
R1

OVEN

[Cooking]
R1

LIGHT

[ON]
R4

LIGHT

[ON]
R4

DOOR

[Closed]
R1

DOOR

[Closed]
R1

Figure 6.1: Oven IBT for (R1 & R4)

interpretation of system requirements. The proposed grammar helps to identify these

missing parts by verifying the syntactic correctness of an individual requirement.

Now, we define the normal form for RBTs. The original BT approach introduces two

axioms, Precondition Axiom and Integration Axiom [91]. Here we introduce a third axiom

called Inertia Axiom,

Definition (Inertia Axiom): A system will be in a state unless an external or internal

event happens to trigger it into a new state, while the new state could be the same as the

original state.

Our proposed axiom is well aligned with software engineering principles. According to

this principle, each software requirement should usually be analysed in the context of

three key elements: 1, precondition, 2, event, and 3, postcondition. The precondition

enforces the conditions that need to be met, so the expected event can be accepted; the

consequence of the event is called the postcondition. Based on the above-defined axiom

and intuition of an individual software requirement, we define a normal form of RBT.

Normal Formed RBT: A RBT is called normal formed if and only if it consists of three

sequential parts: precondition, event, and postcondition.
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The precondition and postcondition of an RBTmust consist of at least one state realisation

node. An RBT event is usually a node with the behaviour type as an event, but it could

be a node with selection or guard behaviour types.

We take one requirement from the same example to explain the normal formed RBT.

R5: Whenever the oven is cooking, then opening the door stops the cooking.

Figure 6.2 (a) shows the RBT for R5. The first node is the precondition. It shows the

“OVEN” component is in the state of “Cooking”. The square brackets around “Cook-

ing” indicates the behaviour type as “state realisation”. After that, the second node is

the event. In this node, the “DOOR” component is in the state of “Opened”, and the

double question marks around “Opened” indicates its behaviour type as an event. Due

to the event of “DOOR” ??Opened??, the system gets to the postcondition represented

in the third node with the “OVEN” component in the state of “Cooking-Stopped”. The

behaviour type is also a “state realisation”. As discussed above, the precondition and

postcondition of an RBT must consist of at least one state realisation node. The RBT for

requirement (R1) with more than one node in precondition and postcondition is shown in

Figure 6.2 (b).

R1: Originally, the oven is in an Idle state, and the Door is closed, and when the button

is pushed, the Power-tube will be energised and the oven will start cooking.

Inertia axiom aims to formalise an RBT and formalised RBTs can be used to form an

formalised IBT. Because an IBT is formed by integrating a set of individual RBTs, as

discussed in chapter 2 (2.5.1). If an IBT is formed by integrating a finite set of normal

formed RBTs, it is called a normal formed IBT. The concept of normal formed IBT sets

up a solid foundation to improve requirements modelling quality and helps to formalise

requirements defects. The important point is that our normal formed RBT is a subset of

the original RBT; therefore, it complies with BT taxonomy [96] and preserves the syntax

and semantics of BT modelling notation.

6.3.2 Context-Free Grammar for Normal Formed BT

In this subsection, we introduce a CFG that can generate all valid BTs. This grammar

helps to verify if a BT is valid. Here a BT could be an RBT or an IBT.



Formal Model for BT 150

BUTTON

?? Pushed ??
R1

BUTTON

?? Pushed ??
R1

POWER-TUBE

[Energised]
R1

POWER-TUBE

[Energised]
R1

OVEN

[Cooking]
R1

OVEN

[Cooking]
R1

OVEN

[Idle]
R1

OVEN

[Idle]
R1

DOOR

[Closed ]
R1

DOOR

[Closed ]
R1

(b) R1-RBT

(a) R5-RBT

DOOR

?? Opened ??
R5

DOOR

?? Opened ??
R5

OVEN

[Cooking-Stopped]
R5

OVEN

[Cooking-Stopped]
R5

OVEN

[Cooking]
R5

OVEN

[Cooking]
R5

Figure 6.2: Normal formed RBT

Let the grammar be in the form of (S, N , T , P ) where S, N , T , P represent start sym-

bol, non-terminals, terminals, and production rules, respectively. The non-terminals N

= {COND,FL,EVT,

CONDˆ, SR NODE, SR NODEˆ,WH NODE, SEL NODE,GRD NODE,BN,CN,RT}, and ter-

minals T = {CNS,BNS,RTS,KEYS}, where CNS is the set of all component names, BNS

is the set of all behaviour names, RTS is the set of all requirement tags, and KEYS are

some special key characters including “·”, “(”, “)”, “{”, “}”, “[”,“]”, “?”, and “ˆ”. We

used “·” to show connection between two nodes. The following two CFG rules are used

to generate a valid IBT structure with a minimum number of nodes. The symbol of “ϵ”

means termination with an empty string.

S−→COND·FL(EVT·COND·FL) | COND·FL(EVT·CONDˆ) (6.1)

FL−→FL(EVT·COND·FL) | FL(EVT·CONDˆ) | ϵ (6.2)

Where S, COND, EVT, and FL are non-terminals and indicate start symbol, condition,

event, and flow type, respectively. We use the same non-terminal COND to show precon-

dition and postcondition of a requirement because during integration of RBTs to form an

IBT, the postcondition of one RBT may be the precondition of another RBT. The EVT
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indicates an event that can belong to one of the three event types discussed in subsection

2.5.1, and corresponding rules will be defined later in this section.

The parenthesis in production rules is used to combine nodes that belong to the same

requirement. The FL indicates the sequence of nodes that can be organised either in

sequential or branching flow. In production rule (6.1), the FL after the first instance

of COND is used to organise nodes in a way that both branches will share the same

precondition. The FL after the second instance of COND is used to organise nodes in

sequential form, and postcondition of an existing branch will become a precondition of a

new branch. The simple sequence with two nodes (event, condition) either belongs to an

individual requirement or forms a part of a requirement. The CONDˆ exhibits a reversion

node.

COND

COND

EVT

EVTEVT

COND COND

Figure 6.3: An abstract IBT example

We use one abstract BT example to demonstrate how these two rules will help to verify

or generate a valid BT structure. Figure 6.3 shows an abstract BT structure, and Figure

6.4 displays the corresponding parse tree to generate that BT. The COND and EVT non-

terminals show abstract condition, and an event, respectively and the production rules to

define these non-terminals will be discussed later in this section.

We concatenate · with the preceding non-terminal to make a simple diagram. The parse

tree starts with a start symbol S, which is replaced with the production rule (6.1). After

that, the two instances of non-terminal FL are replaced with different options of the
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S

COND. FL (EVT. COND. FL)

↋ ↋ 

COND. FL (EVT. COND. FL)

↋ 

FL (EVT. COND. FL)

↋ ↋ 

FL (EVT. COND. FL)

↋ ↋ ↋ ↋ 

Figure 6.4: Parse tree for an abstract IBT

production rule (6.2). By following LR parser, we first read COND, then start parenthesis,

which shows the start of flow followed by an EVT, and a COND. After that, we read the

start parenthesis again to start another flow, followed by another EVT, COND, and an end

parenthesis, which terminates the closest started flow. After that, we read another flow

with the same pattern. An important point here is that both flows become two separate

branches with the same precondition, as shown in Figure 6.3. Lastly, we read the end

parenthesis to end the overall tree. The resulting sentence will generate an IBT structure

equivalent to one which is shown in Figure 6.3.

Now we introduce the remaining production rules in our CFG as follows:
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COND−→SR NODE·COND′ (6.3)

COND′−→SR NODE·COND′ | ϵ (6.4)

CONDˆ−→COND′·SR NODEˆ (6.5)

SR NODE−→{CN, [BN],RT} (6.6)

SR NODEˆ−→{CN, [BN],RT, ˆ} (6.7)

EVT−→WH NODE | SEL NODE | GRD NODE (6.8)

WH NODE−→{CN, ??BN??,RT} (6.9)

SEL NODE−→{CN, ?BN?,RT} (6.10)

GRD NODE−→{CN, ???BN???,RT} (6.11)

CN−→cn; where cn ∈ CNS (6.12)

BN−→bn; where bn ∈ BNS (6.13)

RT−→rt; where rt ∈ RTS (6.14)

Where a COND can be both a precondition and a postcondition, an SR NODE indicates a

state realisation node. COND′ is used to get more than one node in a precondition and a

postcondition. The BT node consists of three elements, behaviour name, behaviour type,

and requirement tag. We used a pair of curly brackets {} to display one node with all these

elements. The CN, BN, and RT are non-terminals and would be substituted with cn, bn,

and rt, which are elements of the set of component names, the set of behaviour types, and

the set of requirement tags, respectively. The behaviour types are already discussed in

subsection 2.5.1, and we mentioned behaviour types with corresponding symbols instead

of writing in strings such as [···] for state realisation.

Now we will demonstrate the working of all these rules with a simple example, a Security

Alarm System (SAS), with only two requirements. Both requirements of the SAS are

listed below, and the corresponding RBTs are shown in Figure 6.5(a) and 6.5(b).

R1: The SAS is activated by pressing the SET-BUTTON.

R2: The SAS is deactivated once the three-digit code is entered.

The two RBTs are integrated to form an IBT, which is shown in Figure 6.5(c). After

that, by using our CFG rules, we designed the parse tree, which is shown in Figure 6.6.
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(a) RBT - R1 (b) RBT – R2

(c) IBT

SAS

[Deactivated]
R1

SAS

[Deactivated]
R1

SET-BUTTON

??Pressed??
R1

SET-BUTTON

??Pressed??
R1

SAS

[Activated]
R2

SAS

[Activated]
R2

3-DIGIT-CODE

??Entered??
R2

3-DIGIT-CODE

??Entered??
R2

SAS

Deactivated]
R2

SAS

Deactivated]
R2

SAS

[Activated]
R1

SAS

[Activated]
R1

SAS

[Deactivated]
R1

SAS

[Deactivated]
R1

SET-BUTTON

??Pressed??
R1

SET-BUTTON

??Pressed??
R1

SAS

[Activated]
R1

SAS

[Activated]
R1

3-DIGIT-CODE

??Entered??
R2

3-DIGIT-CODE

??Entered??
R2

SAS

Deactivated]
R2

SAS

Deactivated]
R2

Figure 6.5: An IBT for SAS

S

FL (EVT. COND. FL)COND.

↋ ↋ SR_NODE. (WH_NODE.COND’.

↋ {SAS,[Deactivated],

R1}

{SET_BUTTON,

??Pressed??,R1}

COND’

↋ 

SR_NODE.

{SAS,[Activated]

,R1}

FL (EVT. COND

↋ (WH_NODE. COND’

↋ 

FL)

↋ SR_NODE.

{3-DIGIT-CODE, 

??Entered??,R2}

{SAS,[Deactivated],

R2}

Figure 6.6: The parse tree for SAS IBT
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By following a similar approach to that taken to read the parse tree, the sentence is given

below:

SR NODE·(WH NODE·SR NODE·(WH NODE·SR NODE))

{SAS, [Deactiavted],R1}·({SET− BUTTON, ??Pressed??,R1}·

{SAS, [Activated],R1}·({3− DIGIT− CODE, ??Entered??,R2}· {SAS, [Deactiavted],R2}))

This sequence of nodes will generate an equivalent IBT, as shown in Figure 6.5(c). By

analysing the SAS requirements described in natural language, we can find that the system

state (precondition) required before an event is missing in both requirements. However,

the proposed grammar helps to identify this missing part by enforcing a minimum number

of single RBT elements.

6.4 An Example

This section uses n example to demonstrate the working of the proposed formal model.

We choose the microwave oven system with 7 requirements listed in Table 6.1 and the cor-

responding IBT is shown in Figure 6.7. This IBT is reproduced from previously published

research [91].

Table 6.1: Functional requirements of microwave oven

# Requirement Description

R1 Originally, the oven is in Idle state and the Door is closed and when the button
is pushed, the Power-tube will be energised the oven will start cooking.

R2 If the button is pushed while the oven is cooking it will cause the oven to cook
for an extra minute.

R3 Pushing the button when the door is opened has no effect (because it is disabled).

R4 Whenever the oven is cooking or the door is opened the light in the oven will be
on.

R5 Whenever the oven is cooking, opening the door will stop the cooking.

R6 Whenever the oven is open, then closing the door turns off the light. This is the
normal idle state, prior to cooking when the user has placed food in the oven.

R7 If the oven times-out the light and the power-tube are turned off and then a
beeper emits a sound to indicate that the cooking is finished.

A thorough analysis of the given IBT reveals that R3 and R4 do not follow the normal

formed RBT structure. Neither requirement is well-defined, and they are incomplete
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because they have just provided some extra information on other requirements. The

parse tree generated from the microwave oven original requirements is shown in Figure

6.8, and we have only shown R6 and R3 nodes to illustrate the potential defect in R3.

A similar problem is associated with R4. The given parse tree shows that we could not

achieve a final sentence with all terminals in the leaf nodes due to the defect in R3.

One non-terminal WH NODE, circled in the rectangle, shows that R3 is not a complete,

independent requirement.

Although the given example has been used in many existing studies, when it is checked

against our CFG, some issues are discovered, and it does not in normal form because

these two requirements (R3 and R4) were modelled as individual requirements. In this

research, we address this issue to generate quality or a valid IBT.

Now, we will modify the oven requirements based on the normal formed RBTs. According

to the defined normal form, a normal formed requirement should contain a precondition,

event, and postcondition. The absence of precondition or postcondition shows the incom-

pleteness of an individual requirement and this incompleteness can be derived from an

event. However, the absence of an event shows that the given requirement is not well-

defined and should be further analysed and merged with an event relevant to the described

information. R3 and R4 have the same issue (absence of event); therefore, further analysis

is required to make them complete.

After thorough analysis, we merged these two requirements with other relevant require-

ments, and the modified requirements for the microwave oven system are shown in Table

6.2, and the new corresponding IBT is shown in Figure 6.9. To trace the modified require-

ments back to the original requirements, the mapping between the new set of requirements

and the original set of requirements is shown in Table 6.3.

Now, we will demonstrate how our proposed grammar can generate the sentence equivalent

to the IBT in Figure 6.9 by following the same approach to read the parse tree shown in

Figure 6.10. The sentence given-below is equivalent to the IBT shown in Figure 6.9.

{R4′,OVEN, [Open]}·({R4′,DOOR, ??Closed??}·{R4′,BUTTON, [Enabled]}·{R4′, LIGHT, [Off]}·

{R4′,OVEN, [Idle]}·{R1′,DOOR,[Closed]}·({R1′,BUTTON, ??Pushed??}·{R1′, LIGHT, [On]}·

{R1′, POWER− TUBE, [Energised]}·{R1′,OVEN, [Cooking]}·({R2′ ,BUTTON, ??Pushed??}·

{R2′,OVEN, [Extra Minute]}·{R2′ ,OVEN, [Cooking]ˆ})({R3′,DOOR, ??Opened??}·
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S

FL (EVT. COND.

FL)

COND.

SR_NODE. (WH_NODE.

↋ 

COND’

{OVEN, 

[Open], R6}

{DOOR, 

??Closed??, R6}

{DO, [Closed], 

R6]

COND’SR_NODE. COND’SR_NODE.

COND’SR_NODE. COND’SR_NODE.

{LIGHT, [Off], 

R6}
COND’

{OVEN,[Idle

, R6}.

↋ 

↋ ↋ 

FL (EVT. COND. FL)

(WH_NODE. COND’SR_NODE.

↋ {BUTTON, 

[Enabled], R3}

Figure 6.8: The parse tree for microwave oven original IBT

Table 6.2: Modified functional requirements for microwave oven

# Requirement Description

R1’ If the oven is idle with the door is closed and you push the button, the light will
turn on and the oven will start cooking (that is, energise the power-tube for one
minute).

R2’ If the button is pushed while the oven is cooking it will cause the oven to cook
for an extra minute.

R3’ Opening the door disables the button and stops the cooking.

R4’ Closing the door enables the button and turns off the light. This is the normal
idle state, prior to cooking when the user has placed food in the oven.

R5’ If the oven times-out the light and the power-tube is turned off, and then a beeper
emits a sound to indicate that the cooking is finished.
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Table 6.3: Mapping between original and modified functional requirements for mi-
crowave oven

New Requirements Tags Original Requirements
Tags

R1’ R1, R4

R2’ R2

R3’ R3, R5

R4’ R4, R6

R5’ R7

S

FL)
COND.

SR_NODE.

↋ 

COND

{OVEN, 

[Open], R4'}

FL (EVT. COND. FL)

(WH_NODE.
COND

SR_NODE.

{LIGHT, [On], 

R1'}

↋ 

{BUTTON, 

??Pushed??, R1'}

CONDSR_NODE.

CONDSR_NODE.

{POWER-TUBE, 

[Energised], R1'}

{OVEN, 

[Cooking], R1'}
↋ 

FL (EVT. COND.

(WH_NODE.

{DOOR, 

??Closed??, R4'}

{LIGHT, [Off], 

R4 }

CONDSR_NODE.

CONDSR_NODE.

{OVEN, [Idle], 

R4 }
COND

{DOOR,[Clo

sed, R1'}.
↋ 

↋ 

FL

↋ 

SR_NODE.

FL (EVT. COND^

(WH_NODE.

{BUTTON, 

??Pushed??, R2'}
SR_NODE.

SR_NODE^COND .

{OVEN, 

[Coking], R2',^}

↋ 

{OVEN,[Extra_

Minute,R2'}

↋ 

(EVT. COND.

(WH_NODE.

{DOOR, 

??Opened??, R3'}

{BUTTON, 

[Disabled], R3'}

CONDSR_NODE.

CONDSR_NODE.

{POWER-TUBE, 

[Off], R3'}
CONDSR_NODE.

↋ {OVEN,[Cookin

g-Stopped], R3'}.

(EVT. COND.

(WH_NODE.

{OVEN, 

??Time_out??, R5 }

{POWER-TUBE, 

[Off], R5'}

CONDSR_NODE.

CONDSR_NODE.

{LIGHT, [Off], 

R5 }

FL

↋ 

CONDSR_NODE.

{BEEPER,[Soun

ded], R5 }.
CONDSR_NODE.

↋ {OVEN,[Cookin-

Finished], R5'}.

CONDSR_NODE.

↋ {OVEN,[Cookin-

Finished], R5'}.

Figure 6.10: The parse tree for microwave oven modified IBT
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{R3′, BUTTON,[Disabled]}· {R3′,POWER− TUBE, [Off]}·{R3′,OVEN, [Cooking Stopped]})

({R5′,OVEN, ??Time Out??}·{R5′,POWER− TUBE, [Off]}·{R5′, LIGHT, [Off]}·

{R5′,BEEPER,[Sounded]}·{R5′,OVEN, [Cooking Finished]})))

The proposed formal model has a number of applications related to requirements en-

gineering and software requirements modelling. Firstly, valid BTs helps to identify the

most common requirement defects, such as incompleteness, by ensuring individual require-

ments’ syntactic correctness. Secondly, the proposed formal model can be applied in both

the initial requirement’s analysis phase and during requirements change management.

6.5 Tool-BT Compiler

In this section,we discuss the tool named BT Compiler (BTC), which is developed to

implement the proposed CFG and verify the IBT structure generated, based on the CFG.

Generally, a CFG can be used in two different ways: firstly, to generate sentences through

the CFG rules, and secondly, to verify if a sentence complies with the CFG rules. BTC

is based on the second way and will help to verify whether a given string corresponds to

a valid BT.

System 

Requirements

1. BT Tool 

(iRE)

2. Map IBT to 

XML  

4.Verify IBT

3. Pre-process 

XML  

Figure 6.11: BTC workflow

Figure 6.11 shows the BTC workflow in four key steps. The first two steps are already

implemented in the published research, and the last two steps are our main contribution in

this tool. In the first step, a BE tool called iRE, which has already been published, is used

to design IBT based on the system requirements. In next the step, the IBT is mapped

to an XML representation by using the same tool. In step 3, the XML representation is

pre-processed for converting into a format that can be used as the input for the next step.

In the last step, the IBT will be verified by using the CFG rules.
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Figure 6.12: BTC output for original requirements of microwave oven

Figure 6.13: BTC output for modified requirements of microwave oven

The BTC takes an input of an IBT in an XML format, which is the output of iRE and

outputs either successful verification of the given IBT or information about all syntacti-

cally incorrect RBTs. Figure 6.12 shows the BTC output corresponding to the original

IBT shown in Figure 6.7. Figure 6.13 shows the BTC output for the modified IBT, which

is shown Figure 6.9.

6.6 Conclusion

BT is one of the modelling languages and has proved useful through numerous studies

and industry cases. There have been several attempts to formalise the translation from

BTs to other formal languages. However, there is a need to formalise the translation from

natural languages to BTs to overcome some drawbacks in natural languages.

To address this research gap, we proposed a two-step formal model to generate valid BTs.

Firstly, we define normal formed RBTs based on a newly introduced Inertia Axiom and

then define valid BT as a normal formed RBT or an IBT integrated from a finite set of

normal formed RBTs. Secondly, we use CFG as a formal grammar to generate and verify

valid BTs. This chapter uses microwave oven, a commonly used example in the software
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engineering domain to demonstrate the applicability of the proposed method. Moreover, a

tool has been developed to support and validate the proposed formal model. The results

show that the proposed grammar has successfully identified all syntactic errors in the

original requirements of the example and those requirements defects that have not been

reported in previous studies.



Chapter 7

Formalisation of Requirements

Defects Detection

After defining the normal form for Requirements Behaviour Trees (RBTs) in the previous

chapter, this chapter further extends this work. It formalises the four most common

requirements defects in the Behaviour Tree (BT) context.

Based on the formalisation of the requirements defects, we propose a Behaviour Engineering-

based Requirement Defects Detection (BERDD) framework. In (BERDD), we translate

user requirements into BTs and then develop an algorithm to convert BTs into a formal

language called Web Ontology Language (OWL). To further support BERDD, we develop

a prototyping tool that uses SPARQL query language to retrieve information related to re-

quirements defects from the OWL knowledge base. We believe that this approach exceeds

all other requirements defects detection tools regarding coverage.

7.1 Introduction

Software projects often begin with unclear, ambiguous, and incomplete requirements from

the initial requirements elicitation that may introduce many requirements defects, which

could increase projects risks and even cause project failure [5, 20]. Software requirements

defects are not only introduced during the initial requirement elicitation process but may

also be introduced during requirements changes. Requirements defects detection is always

a challenging task in the Software Development Life Cycle (SDLC). To detect requirements

164
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defects during requirements engineering phases is less expensive and easy to fix than in

later phases of SDLC [40, 41, 269].

The RCM process may also introduce many requirements defects such as incompleteness,

inconsistency, etc., which are also common and faced during the requirements elicitation

and analysis phase. According to Anwer et al. [201], requirements inconsistency is one of

the major challenges faced during the RCM process in both in-house and global software

development.

In the past, several studies have been carried out to address defects detection during

the requirements elicitation and analysis phase [170, 270] and during the RCM process

[72, 233]. However, traditional approaches that use review and inspection to detect re-

quirements defects are time-consuming, error-prone, and make the system maintenance

process cumbersome. Moreover, few studies have been conducted to detect requirement

defects through logic reasoning and supported by tools. Goknil et al. [271] proposed a

first-order logic-based approach to perform change impact analysis and detect inconsis-

tency defects faced in requirement analysis and in the RCM process. Similarly, Reder and

Egyed [272] developed an automated tool based on the design rules. The developed tool

helps to detect inconsistency defects arising during the RCM process by validating the

design rules. The existing approaches produce good results; however, some limitations

need attention:

Limitation 1: Some existing approaches translate natural language requirements di-

rectly to some formal languages such as first-order logic or propositional logic by using

natural language processing techniques then apply reasoning techniques to detect require-

ments defects [82, 273]. However, the customers who provide the requirements may find

it difficult to understand formal languages, while the engineers may not have the domain

knowledge to interpret the customers’ requirements correctly. Therefore, it is difficult to

verify if the formal representation is correct.

Limitation 2: Most of the existing approaches based on formal logic do not provide

appropriate tool support. The reason is that they define requirements defects through

natural language descriptions, which might have ambiguous interpretations. Due to this,

it seems difficult to formalise defects, and as a result, it becomes challenging to develop

an automated tool.
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Limitation 3: Most of the existing approaches cover only inconsistency defects but miss

some other common defects such as incompleteness, redundancy, and ambiguity.

Given this need to formalise requirements defects (limitation 1) and limited coverage of

the existing approaches (limitation 3), we use BT as a modelling notation and introduce

Inertia Axiom as a foundation to define normal formed RBT. The normal formed RBT

is used as a foundation to define requirements defects. Based on this concept, we have

successfully defined four major requirements defects such as incompleteness, ambiguity,

redundancy, and inconsistency in the BT context and develop algorithms to detect them.

Simple examples are given to explain the algorithms to detect these four requirements

defects. This work provides significant coverage of requirements defects, and according

to Hayes [274], these four requirements defects types covers almost 83% of the total

requirements defects. Similarly, according to another study [275], our new work covers

73% of the total defects in the requirements engineering phase and according to our

literature research whose details are given in Section 3, none other researches have such

high coverage.

Based on BT notation, we also propose a Behaviour Engineering-based Requirement De-

fects Detection (BERDD) framework. In BERDD, we translate software requirements

into Behaviour Trees BTs, and then we develop an algorithm to translate BTs into a for-

mal logic language called OWL. One of the advantages of this approach is that behaviour

trees, which is a semi-formal modelling notation introduced in behaviour engineering,

have proved to be an ideal bridge to connect software requirements in natural languages

to their formal representations [104, 257, 263]. Therefore, BTs help the customers to

verify the accuracy of the formal representation.

To support BERDD and address limitation 2, we have developed a prototyping tool named

Requirements Defects Identifier (RDI). Although there are many commercial requirements

management tools available such as DOORS [276], and Requisite Pro IBM [277, 278] that

provide good coverage of requirements management, they are limited in analysis and

validation support for requirements defects detection [279]. RDI provides an end-to-end

support for requirements analysts to identify requirements defects. Good tool support

also reduces dependency on expert-level understanding of formal languages [45]. Our tool

uses SPARQL, a semantic query language, to query the OWL knowledge base and retrieve

data about requirements defects, but it does not require the user to know SPARQL.
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To prove the feasibility of our approach and demonstrate the capability of RDI, a real-

world system has been explored in this chapter. The results show that defects of all four

different types have been successfully identified.

The rest of the chapter is organised as follows. Section 7.2 presents relevant existing

works, and section 7.3 discusses the proposed framework BERDD. Section 7.4 is the most

important section in this chapter; it uses the Inertia Axiom as a foundation to define

requirements defects formally. It also introduces algorithms to detect those defects. The

developed tool is presented in Section 7.5, following this, an exmple to demonstrate the

applicability of the proposed approach is given in section 7.6. Implications and limitations

of this chapter are discussed in section 7.7. Finally, the conclusion is discussed in section

7.8.

7.2 Related Work

Existing research related to requirements defects detection can be classified into two main

categories: the first uses formal languages that allow automated analysis of Requirements

Engineering (RE) defects. The second uses Natural Language Processing (NLP) tech-

niques to detect RE defects. We also explore existing work that uses SPARQL to perform

different types of analysis on software requirements.

7.2.1 Requirements Defects Detection using Formal Languages

In this category, some studies have translated user requirements from natural languages

directly to formal languages, but some approaches first translated user requirements to

some semi-formal languages such as UML and then converted them into formal languages

and performed defects detection.

7.2.2 Requirements Translation directly to Formal Languages

Many different logics, including first-order logic, propositional logic, and description logic,

have been used as formal languages to represent software requirements. These logics also

provide the capability to perform analysis and reasoning.
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For example, Zowghi et al.[43] proposed a technique to detect inconsistencies in require-

ments formally. They developed a prototype tool called CARL to evaluate the proposed

technique. They translated the user requirements to propositional logic and then applied

reasoning on it to check inconsistencies. This approach’s limitation is that propositional

logic is not powerful enough to model complex system behaviour [116].

Similarly, Nguyen et al. [170] developed an automated knowledge-based engineering tool

called REInDetector to detect requirements inconsistencies and redundancies. Their ap-

proach translates user requirements directly to DL based ontologies and then performs

requirements defects analysis on them. However, this approach cannot detect conflicts

associated with requirements that cannot be translated directly into DL, such as temporal

operators [280].

In another study, Chanda et al. [38] presented an approach to check consistency between

different UML models (class, use case, activity diagram) using regular grammars. They

developed context-free grammars for each diagram using regular expressions to check

syntactic correctness and consistency between different models. This approach performs

well but only checks problems from a syntactic perspective without considering semantics

perspectives.

7.2.3 Requirements Translation using Semi-Formal Languages as a Bridge

In the past, many studies have been carried out to check requirements defects by using

semi-formal languages. These approaches have been conducted in two steps; first, they

translate natural language described requirements into semi-formal languages and then

into formal specifications.

For example, Kamalrudin et al. [281] developed a tool named MaramaAIC to check in-

consistencies in natural language requirements. They extracted abstract interactions, also

called essential use case patterns, from natural language requirements using an interaction

library and then highlighted the inconsistencies and incompleteness problems. However,

this approach depends on the developed interaction library, limiting the applicability of

this study.

In another study, Liu et al. [282] developed a technique to check requirements defects in

use case diagrams. They translated use case descriptions to an activity diagram through
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dependency parsing techniques and then defined formal rules to check defects in the

activity diagram. They designed eight rules to parse use case descriptions to activity

diagrams covering a limited set of constructs from use case descriptions.

Kroha et al. [283] implemented an approach to check the consistency of requirements

specifications by using OWL. They built UML models from user requirements for better

understanding and then transformed UML models to textual form by using off-the-shelf

tools; after that, they built an ontology from textual requirements. Finally, they used

automatic reasoners on OWL to perform consistency checks.

7.2.4 Requirements Defects Analysis using Natural Language Process-

ing

In the past, a few studies have been conducted by using NLP techniques to detect require-

ments defects. These studies used many techniques, for example, Mavin et al. [284] used

constrained natural language, Arora et al. [285] used pre-defined templates, and Tjong

and Berry [286] used a rule-based approach to detect RE defects.

Hasso et al. [287] proposed a rule-based approach to detect requirements defects expressed

in the German language. Similarly, Femmer et al. [288] proposed a rule-based RE defects

detection approach and achieved 59% precision.

7.2.5 Application of SPARQL for Requirements Analysis

In the past, some work has also been undertaken to analyse software requirements by

using SPARQL. Wei et al. [289] proposed an approach to perform analysis of different

UML diagrams using SPARQL queries. They converted class, sequence, and state machine

diagrams into OWL, and they used SPARQL queries to perform various types of analysis.

But their work does not cover requirements defect detection. Similarly, Sadowska and

Huzar [290] used SPARQL to perform different types of analysis on class diagrams.

In another study, Siegemund et al. [291] proposed an approach to detect inconsistency

and incompleteness defects in software requirements using SPARQL queries. Based on

the goals-oriented software engineering approach, they described natural language require-

ments as goals and developed rules for checking inconsistency and incompleteness based
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on the defined goals. Furthermore, Verma and Kass [292] proposed a similar approach to

detect requirements defects. They defined a controlled syntax to write software require-

ments and then developed rules for checking inconsistency and incompleteness based on

the defined syntax. SPARQL query is used in their approach.

7.2.6 Limitations of Current Research related to Requirements Defects

Detection

The existing research related to requirements defects detection has produced some good

results; however, there are a few limitations as follows:

� The above-mentioned formal approaches that translate natural language require-

ment directly into formal languages are useful to detect requirements defects; how-

ever, the success of using formal languages requires an expert-level understanding

of these languages [45]. In the absence of such knowledge, the customers who pro-

vide the requirements may find it difficult to understand formal languages, while

the engineers may not have the domain knowledge to interpret the customers’ re-

quirements correctly. Therefore, it is difficult to verify if a formal representation is

correct.

� The above-mentioned approaches that use UML to bridge requirements from natural

languages to formal languages address the problem of semantic ambiguity in natural

languages; however, inconsistency detection is difficult as there are so many different

types of UML diagrams [293]. UML offers 13 different types of diagrams to represent

the structure and behaviour of software systems [294, 295]. In contrast, BT was

developed to use a minimum set of coherent modelling notations throughout the

modelling process [91, 96, 97]. As a result, it is easier to detect inconsistency in a

minimum set of diagrams.

� The above-listed approaches that use NLP produce good results; however, there is

some inherent limitation with NLP based approaches. For example, Zhao et al. [296]

conducted a mapping study to investigate NLP based approaches for requirements

engineering activities. They reported that current research had been used on a

small scale, and that only 7.18% of the studies used some industrial case studies

for evaluation. Another limitation of this research is that they mostly focused on
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The problem domain is composed of two elements, the original software requirements

and the new software requirements. Even though the proposed framework is designed to

detect requirements defects during the requirement analysis phase, it can also be applied to

detect requirements defects raised during the RCM process. The modified requirements in

the RCM process are also considered as new software requirements. The problem domain

introduces the problems that need to be detected in the solution domain. The solution

domain comprises the four most common software requirements defects: requirements

incompleteness, inconsistency, redundancy, and ambiguity.

The techniques domain is composed of three techniques. Firstly, we use behaviour trees

to model software requirements. Secondly, OWL is used to represent the requirements

formally. Lastly, SPARQL query language is used to query the knowledge base and detect

defects from software requirements represented as OWL.

In the tool’s domain, two tools are used to implement the previously discussed techniques.

Firstly, the iRE, which has already been published [104], is used to design and modify BTs

and to map BTs into XML format. Secondly, the newly developed Requirements Defects

Identifier (RDI) is used to translate a BT from XML format to its OWL representation.

RDI can also execute SPARQL queries through a SPARQL engine on the knowledge base

and identify requirements defects. The combination of the two tools will provide end-

to-end support for the requirements analyst to identify requirements defects introduced

during the requirements analysis and RCM.

The solution domain contains the list of identified requirements defects. This paper gives

the algorithms to detect four of the most common categories of defects, but other types

of defects could also be detected if corresponding algorithms were given.

7.3.2 BERDD Workflow

The workflow of BERDD is given in Figure 7.2, and it is composed of three steps.

� In step 1, a new RBT is designed by using drawing tools such as iRE [104]. In

case of requirements change, an existing RBT is modified based on the change

type. An important consideration related to BERDD is that, before applying this

framework during RCM, the existing system should have all RBTs and the IBT
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common requirements defects in the BT context, and the algorithms to detect them.

Before providing the definitions, we recall Inertia Axiom and the normal form of RBT,

which was introduced in the previous chapter, Chapter 6. After that, we introduce the

four most common requirements defects and formalise them. It is usually much easier

to detect requirements defects in semi-formal or formal notation than natural language

requirements description; that is why we use modelling notation to formalise requirements

defects. In this subsection, we discuss these defects theoretically with simple examples;

in section 7.6, we will use a more complex example and developed tool to demonstrate

the defects detection process. The process, how SPARQL queries are used to detect these

defects, is also discussed in that section.

7.4.1 Requirements Defects Classification

In this subsection, we discuss the classification of requirements defects and their corre-

sponding definitions presented in the literature. Several requirements defects taxonomies

have been proposed in the existing research with many different definitions of each type

of defects. We choose the four most common requirement defects such as incompleteness,

ambiguity, redundancy, and inconsistency. The four most common requirements defects

and their corresponding definitions from different studies are listed in Table 7.1.

Even with the same name, the different definitions may give different coverage for each

type of requirement defect. This work will only cover some aspects of these requirements

defects. Regarding incompleteness, three listed definitions cover two different aspects

of incompleteness: the incompleteness of an individual requirement (1a, 1b) and incom-

pleteness of overall system requirements (1c). In this research, we will only address the

incompleteness defect of an individual requirement.

Regarding ambiguity, the first two definitions are similar and will be addressed during

the BT process’s translation phase. This research will address the third definition, which

states that two different terms refer to the same thing.

Regarding inconsistency, the first definition (3a) is more related to ambiguity, and we

cover it in the ambiguity defect part. This research covers the second and third definitions,

indicating that two or more stakeholders might have conflicting requirements.
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Table 7.1: Requirements defects classification

No. Defect Type Definitions

1 Incompleteness

1a. Information relevant to the requirement is missing [298].

1b. A requirement must have all relevant components [169].

1c. Required behaviour and output for all possible states under
all possible constraints [274, 299].

2 Ambiguity

2a. The requirement contains information or vocabulary that can
have more than one interpretation [298].

2b. The information in the requirement is subjective [274, 298].

2c. Two different terms are used to refer to the same thing [300].

3 Inconsistency

3a. Two or more requirements in a specification contradict each
other due to inconsistent use of words and terms [168, 274].

3b. Two or more stakeholders have different, conflicting require-
ments [301].

3c. The requirement or the information contained in the require-
ment is inconsistent with the overall document [298].

4 Redundancy 4b. Two different executions are redundant if they produce
indistinguishable functional results from an external viewpoint
[298, 302].

Regarding the coverage of this approach, as we have discussed above, these four require-

ments defects types cover almost 83% [274] and 73% [275] of the total requirements defects.

Regarding each category, it might be difficult to quantify the extent to which our approach

covers each category because no such study has been conducted in the past. However,

we believe that we cover a significant part of each defect types that can be detected

automatically with minimal human intervention and domain knowledge. For example,

domain knowledge is required to check the incompleteness of overall system requirements;

however, individual requirements’ incompleteness can be checked automatically without

domain knowledge, and we have checked it in our approach. Similarly, based on the con-

sistency and redundancy definition we have discussed above, we believe that our approach

covers the significant part of these two defects types.

7.4.2 Normal Form of Requirements Behaviour Tree

In this section, we simply recall the Inertia Axiom and normal form of RBT. The original

BT approach introduced two axioms, Precondition Axiom and Integration Axiom [91].
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Here we introduce a third axiom called Inertia Axiom.

Definition (Inertia Axiom): A system will be in a state unless an external or internal

event happens to trigger it into a new state, while the new state could be the same as the

original state.

Our proposed axiom is well aligned with software engineering principles. According to this

principle, each software requirement should usually be analysed in the context of three

key elements: 1, precondition, 2, event, and 3, postcondition. The precondition enforces

the conditions that need to be met so that the expected event can be accepted; the event’s

consequence is called the postcondition. Based on the above-defined axiom and intuition

of an individual software requirement, now we define a normal form of RBT.

Normal Formed RBT: A RBT is called normal formed if and only if it consists of three

sequential parts, precondition, event, and postcondition.

The precondition and postcondition of an RBTmust consist of at least one state realisation

node. An RBT event is usually a node with the behaviour type as an event, but it could

be a node with selection or guard behaviour types.

To explain the normal formed RBT, we take one requirement from a simple example, a

microwave oven, which has been used in existing published research [106]. We simplify

this requirement to explain the normal formed RBT concept effectively.

R5: Whenever the oven is cooking, then opening the door stops the cooking.

Figure 7.3(a) shows the RBT for R5. The first node is the precondition. It shows “OVEN”

component is in the state of “Cooking”. The square brackets around “Cooking” in-

dicates the behaviour type as “state realisation”. After that, the second node is the

event. In this node, the “DOOR” component is “Opened”, and the double question

marks around “Opened” indicates its behaviour type as an event. Due to the event of

“DOOR” ??Opened??, the system gets to the postcondition represented in the third node

with the “OVEN” component in the state of “Cooking-Stopped”. The behaviour type is

also a “state realisation”. As discussed above, the precondition and postcondition of an

RBT must consist of at least one state realisation node. The RBT for requirement (R1)

with more than one node in precondition and postcondition is shown in Figure 7.3(b).
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R1: Originally, the oven is in Idle state and the Door is closed and when the button is

pushed, the Power-tube will be energised and the oven will start cooking.
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Figure 7.3: Normal formed RBT

Based on the normal formed RBT, we can define a normal formed IBT. An IBT is formed

by integrating a set of individual RBTs, as discussed in chapter 2 (2.5.1). If an IBT is

formed by integrating a finite set of normal formed RBTs, it is called a normal formed IBT.

The concept of normal formed IBT sets up a solid foundation to improve requirements

modelling quality and helps to formalise requirements defects. The important point is

that our normal formed RBT is a subset of the original RBT; therefore, it is aligned with

BT taxonomy [96] and preserves the BT modelling notations.

A normal formed RBT helps to define the structure of an individual requirement, and

in this research, we formalise the four most common requirements defects based on this

defined structure. This research only defines the four most common requirements defects.

However, other types of defects, if they could be defined based on the normal formed IBT,

could also be formalised and might be automatically detected.
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7.4.3 Incompleteness Defect and its Detection

7.4.3.1 Definition

Requirements incompleteness can be discussed from two perspectives: the incompleteness

of overall system requirements and secondly, the incompleteness of individual requirements

and both types are discussed in detail in subsection 7.4.1. In this research, we are only

focusing on the incompleteness of individual requirements. According to normal formed

RBTs, each requirement must contain a precondition as the context, an event that triggers

the transition of state and a postcondition to consider a complete requirement. Based on

this definition, now we define incompleteness defect in the context of BT:

Definition: A requirement is incomplete if the precondition or event or postcondition is

missing.

Although missing any of these parts makes the requirements incomplete, the incomplete-

ness defect due to missing precondition and postcondition is more common than missing

event. Based on the definition of the incompleteness defect, for each requirement, the

analyst should ask the questions: what is the precondition? What is the event, and what

is the postcondition? If for an individual requirement, any of the above questions cannot

be answered, and then the requirement has an incompleteness defect.

In the context of the BT approach, the incompleteness problem as a missing precondition

can be discussed from two perspectives. Firstly, the behaviour type of the first node of the

new RBT is not state realisation, and secondly, the root node of any RBT, including the

new tree is not matched with any node of an IBT. If the new RBT’s root node has a state

realisation behaviour type but cannot be matched with any of the IBT nodes, the require-

ments analyst may consider the new RBT as a root requirement of an IBT. Otherwise,

it would be considered an incomplete requirement. The missing event means individual

requirement does not have an event node after precondition, and missing postcondition

means no node with state realisation behaviour type after an event node.

7.4.3.2 Example

We will demonstrate requirements incompleteness through a simple system microwave

oven [106]. As BERDD can be applied in both requirements analysis and RCM, so, in
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Table 7.2: The requirements of microwave oven-Incompleteness

# Requirement

R1 Originally, the oven is in Idle state and the Door is closed and when the button
is pushed, the Power-tube will be energised the oven will start cooking.

R2 If the button is pushed while the oven is cooking, it will cause the oven to cook
for an extra minute.

this example, we consider BERDD in the context of requirements change. For example,

initially, we have two functional requirements shown in Table 7.2, and the corresponding

IBT is shown in Figure 7.4. Here we use requirements number in the sequence, and

it might differ from numbering in the original paper. During the requirements change

process, the following new requirement comes from one of the system stakeholders, and

the corresponding RBT is shown in Figure 7.5.

R3: Opening the door stops the cooking.

First, we will design an RBT of the new requirement (R3), and after that, we evaluate the

new RBT based on normal formed RBT definition to check for an incompleteness defect.

Checking the new RBT (R3) shows that the root node does not have a state realisation

behaviour type, and the conclusion is that the precondition of the new requirement (R3) is

missing. Now it is the requirements analyst’s responsibility to analyse the new requirement

based on domain knowledge and either introduce the missing node as a precondition or

contact the corresponding stakeholder for further discussion.
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Figure 7.4: Oven IBT for incomplete-
ness defects
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7.4.4 Ambiguity Defect and its Detection

7.4.4.1 Definition

The software requirements written in natural languages can be ambiguous and ultimately

cause a system failure. Requirements ambiguity can appear in many ways: the first

is semantic ambiguity, in which a sentence has correct grammar but could have different

interpretations. For example, a man saw a woman on a hill with a telescope. This sentence

may have three different interpretations depending on what exactly “with a telescope”

describes. This kind of ambiguity can be usually resolved during the process while natural

language described requirements are translated into RBTs. The second type of ambiguity

happens when two different terms are used to refer to the same thing [300]. For example,

in a software system, people may use a vehicle and a car to refer to the same component.

Contrary to the second type of ambiguity, the third type of ambiguity happens when the

same term refers to two or more different objects. In this research, we only consider the

last two types of ambiguities, as the first type of ambiguity can be identified and resolved

during the requirements translation stage.

In BT notation, behaviour types are predefined in BT taxonomy and independent of the

problem description. However, component names and behaviour names are defined based

on the problem description, so the last two types of ambiguity can arise in both component

names and behaviour names. The ambiguity is defined as follows:

Definition: The requirements are ambiguous if two different terms refer to the same

component name or behaviour name or the same term refers to two different component

names or behaviour names.

For example, a node in a new RBT with a component name of CONTROL-BUTTON and

another node in an IBT has its component name as BUTTON; both component names

refer to the same component. An important consideration is that it is impossible to decide

about ambiguity separately with a component name or a behaviour name, so it is better

to analyse the component name and behaviour name together in the same node.
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7.4.4.2 Example

We will demonstrate requirements ambiguity with the simple system, Security Alarm

System (SAS). In this example, we will use BERDD in the context of the requirements

analysis phase. For example, we have four functional requirements shown in Table 7.3,

and the corresponding IBT is shown in Figure 7.6.

Table 7.3: The SAS requirements

# Requirement

R1 Whenever the SAS is deactivated, it will be activated by pressing the set button.

R2 If a trip signal occurs while the SAS is set, a high-pitched tone (alarm) is
emitted.

R3 A three-digit code must be entered to turn off the alarm.

R4 Whenever the SAS is activated, correct entry of the code deactivates the SAS.

A potential ambiguity defect arises with the component name “3-DIGIT-CODE” and

“CODE”, whether both refer to the same thing or different things. Although both terms

are closely related and to some extent requirements analysts can understand that, both

terms point to the same component. However, an in-depth analysis can be performed

when we check the component name together with the behaviour name. We can analyse

that one node with the same behaviour name ‘Entered’ and behaviour type ‘Event’ exists

in IBT, which means that CODE and 3-DIGIT-CODE point to the same component but

with two different terms. After identifying potential ambiguity, the requirements analyst

will analyse the scenario and decide how to handle the potential ambiguity.

7.4.5 5.4 Redundancy Defect and its Detection

7.4.5.1 Definition

Software redundancy is also called functional redundancy, and is one of the important

mechanisms used throughout the software development life cycle. Redundancy has been

broadly used in many software engineering practices to improve fault tolerance, reliability,

and self-healing, in a self-adaptive system [303–306]. Software Redundancy itself is not an

error; however, ineffective identification and utilisation of redundant elements in software

systems limits their applicability [307].
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Figure 7.6: SAS IBT for ambiguity defects

In this research, we only focus on requirements redundancy defect, as we have discussed in

subsection 7.4.1, which is different from software redundancy. A requirement redundancy

defect means that the same requirement has been stated more than once; therefore, it

could be mistakenly considered as two different requirements. Requirements redundancy

usually appears during the requirements elicitation phase and should be detected during

the requirements analysis phase. In this research, based on the normal formed RBT

structure, the formal definition of redundancy is:

Definition: Two requirements are redundant if they have the same precondition, event,

and postcondition.

Although most of the time, individual requirements express one event, individual require-

ments might express more than one event on occasion. Hence, one requirement may have

the same precondition, event, and postcondition, which are part of another requirement.

7.4.5.2 Example

We will demonstrate the redundancy defects by using the simple system, microwave oven.

We have three functional requirements shown in Table 7.4, and the corresponding IBT
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is shown in Figure 7.7. Here we use requirements number in the sequence, and it might

differ from numbering in the original paper.

A thorough analysis of the IBT reveals one potential redundancy defect. The nodes

R1.2, R1.3, R1.4, and R1.5 are like nodes R3.5, R3.6, R3.7, and R3.8. The important

point is that both trees have all the required elements of a normal formed RBT such as

precondition, event, and postcondition.

Table 7.4: Oven requirements for redundancy defects

# Requirement

R1 Originally, the oven is in Idle state and the Door is closed and when the button
is pushed, the Power-tube will be energised the oven will start cooking.

R2 If the button is pushed while the oven is cooking, it will cause the oven to cook
for an extra minute.

R3 While the oven is cooking, if the user opens the door, the cooking will be paused,
and it resumes if the door is closed and the user pushes the button.

7.4.6 Inconsistency Defect and its Detection

7.4.6.1 Definition

Detecting requirements inconsistencies is a key component of any requirements engineering

approach and has been topic of interest for several decades. Inconsistency in software

requirements can be defined in many ways as we have discussed in subsection 7.4.1. In

this research, we will cover the inconsistency type (3c), which states that a potential

inconsistency arises when two or more stakeholders have different, conflicting requirements

[301]. The formal definition of inconsistency in the context of normalised BT would be:

Definition: Two requirements are inconsistent if they have the same precondition, event,

but different postcondition or same event and postcondition but a different precondition.

7.4.6.2 Example

We will demonstrate requirements inconsistency detection by using a simple system mi-

crowave oven. We have three functional requirements shown in Table 7.5, and the corre-

sponding IBT is shown in Figure 7.8. Here we use requirements number in the sequence,
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Figure 7.7: Oven IBT for redundancy defects

and it might differ from numbering in the original paper.

A thorough analysis of the IBT reveals one potential inconsistency defect. The nodes

R1.5, R2.1, R2.2, are like nodes R1.5 R3.1, R3.2; however, the following nodes (R2.3) and

(R3.3) of both sequences are different. It means that the same precondition and event

produces a different postcondition, which shows a potential inconsistency defect. After

successfully detecting potential inconsistency defects, the requirements analyst will decide

how to resolve them.
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Table 7.5: Oven requirements for inconsistency defects

# Requirement

R1 Originally, the oven is in Idle state and the Door is closed and when the button
is pushed, the Power-tube will be energised the oven will start cooking.

R2 While the oven is cooking, if the user opens the door, the oven pauses the
cooking and resumes if the door is closed and the user pushes the button.

R3 Whenever the oven is cooking, opening the door will stop the cooking.
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Figure 7.8: Oven IBT for inconsistency defects

7.5 Tool (RDI) Environment

This section introduces the newly developed tool (RDI) environment, which helps to

execute step 3 of the BERDD workflow (See Figure 7.2. Firstly, we discuss the workflow

of RDI, and then we discuss step 3 (translation from IBT-XML to OWL) RDI workflow.
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7.5.1 RDI Workflow

This subsection introduces the key elements of RDI (see Figure 7.9) and its workflow.

The RDI workflow is composed of five steps.

� In step 1, either original software requirements are gathered, or a requirement change

request is captured from different stakeholders. In the case of requirements change,

further analysis to understand the type of change request is also performed in this

step. The requirement change request can be categorised into two different groups,

either addition of new requirements or modification of existing requirements.

� In step 2 (a, b), either a new RBT is designed, or an existing RBT is modified using

some BT drawing tools such as iRE [104]. The integration of the new/modified

RBT with the IBT and saving it to an XML file is also performed in this step.

The RDI tool collaborates with the BE tool iRE to provide end-to-end support for

requirements analysts to identify requirements defects during requirements analysis

or the requirements change phase.

� Step 3 translates the XML file into OWL based on the translation rules, which will

be discussed in the next subsection.

� In step 4, SPARQL queries are constructed based on defect types and other related

input parameters. An important consideration is that the users don’t have to master

SPARQL; they only need to choose a defect type and enter requirements defect-

related parameters by using the RDI interface. Then a SPARQL query will be

built automatically based on the input. The SPARQL queries will be executed by

a SPARQL query engine (dotNetRDF), and the query results will be displayed to

the users.

� In step 5, the requirements analyst will analyse the query results and decide how to

handle the detected defects based on domain knowledge.

Step 2 will be executed by using the iRE tool, and the output of this step will be used

as an input of step 3, which will be discussed in detail in the following subsection. Steps

4 and 5 will be discussed in the next section with the help of an example. We built

RDI by using visual studio 2019 Windows form application in C#. We included the
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we associate IBT node properties such as behaviour name, behaviour type, component

name through OWL object properties defined in the first step. Following this, in step 4,

we establish links between IBT nodes using OWL object property ”nextNode”. In the

following part of this section, this process will be explained by using an example.

1  Define OWL 

classes and 

object properties

2  Define BT 

node as OWL 

individual

3  Associate BT 

node attributes 

through OWL 

object properties

4  Establish BT 

node links
Start Start

Figure 7.10: Steps to convert IBT-XML to OWL

To define some predefined fields of an OWL file related to IBT representation, we ex-

tract BT taxonomy based on a previously published metamodel [98], and through this

taxonomy, four (4) meta-classes are identified as below:

� Component Name

� Behaviour Name

� Behaviour Type

� BT Nodes

An IBT is composed of many nodes, and each node has a few attributes such as behaviour

name, component name, behaviour type, and traceability link, which must belong to

one of the above listed four meta-classes. In OWL representation, class instances are

described as individuals. An object property is used to establish a relationship between

two individuals. Based on the BT taxonomy, we define four (4) different types of object

properties: hasComponentName, hasBehaviourName, hasBehaviourType, and nextNode

to establish a relation between different OWL individuals. The translation proposed in

this paper follows similar guidelines as performed for UML to OWL translation [270, 290],

and we developed translation rules based on these guidelines.

1. Input: XML file of IBT

2. Output: OWL file of IBT
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//Declare four meta-classes

3. For each of the meta classes, insert “Declaration (Class (:meta-class name))”

//e.g., Declaration (Class (:ComponentName))

//Declare object properties

4. For each of the object property, insert “Declaration (ObjectProperty (:objectprop-

erty name))”

// e.g., Declaration (ObjectProperty (:hasComponentName))

//initialise empty node attributes list

5. L attributes:= ∅

//read xml file

6. While (!=EOF)

7. {

//read node properties tag from XML file

8. Node = XML Node Tag

//check BT node attributes such as behaviour name, component name, and behaviour

type in corresponding lists, if not exist then declare it, associate it with related meta- class.

9. For each of the node attribute, If ((Node (attribute) Not IN L attributes)

10. {

11. Declaration (Individual (:Node (attribute)))

12. Declaration (:Node (attribute) :meta-class name)

13. Add (L attributes, Node (attribute))

14. }

//declare node ID as an individual and associate it with BTNodes class

15. Declaration (Individual (:Node (NodeID)))

16. Declaration (:Node (NodeID) :BTNodes))

//associate node attributes with the node ID

17. For each of the node attribute, insert “ObjectProperty (:Node (NodeID) :Node (at-

tribute))”

e.g., hasComponentName (R1.1, SAS)
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//use nextNode object property to establish relationship between node

18. nextNode (Node(:SourceID) :Node(DestinationID))

19. }

Program 1: The pseudocode to translate an IBT into OWL

The process of translating an IBT into OWL is described in pseudocode in program 1.

This program will take an IBT expressed in XML format as an input and produce an

OWL representation of the corresponding IBT, mentioned in lines 1 and 2, respectively.

To translate an IBT expressed in XML format to its OWL representation, we first declare

the default elements of OWL syntax such as meta-classes, and individuals. These elements

are the same for any IBTs. In OWL syntax, the Declaration keyword is used to declare or

write classes, individuals as instances of OWL classes, and object properties. The OWL

meta-classes and object properties are declared on line 3 and line 4, respectively, and

the corresponding OWL representation is shown in Figure 7.11. The empty list for node

attributes is initialised on line 5.

Figure 7.11: OWL meta-classes and object properties declaration

After that, we start reading IBT node attributes from the XML file and will continue

until we have read the entire file. We will explain this process with a simple example,

an SAS (Security Alarm System), and we consider only one requirement to explain this

algorithm.

R1: SAS is in the Deactivated state, once a SET-BUTTON is Pressed, the SAS is

activated.

The IBT (it is the same as the RBT as we listed only one requirement) of the SAS is shown

in Figure 7.12, and the corresponding XML file is shown in Figure 7.13. The complete
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OWL file obtained after translating the given XML is shown in Appendix B.1, but here we

show some parts such as Figure 7.11 of the OWL file to explain the translation algorithm.

SET-BUTTON

?? Pressed ??
R1.2

SET-BUTTON

?? Pressed ??
R1.2

SAS

[Activated]
R1.3

SAS

[Activated]
R1.3

SAS

[Deactivated]
R1.1

SAS

[Deactivated]
R1.1

Figure 7.12: SAS IBT

Figure 7.13: XML file for SAS-R1

For translating an individual node attributes to its OWL representation, first, we read a

node tag with all node attributes such as component name, behaviour name, behaviour

type, and traceability link from the XML file on line 8 of program 1. The outgoing

attribute shows the next node id, and IBT node ID such as R1.1 is mentioned as a

traceability link in the XML file. The next node(s) are mentioned in the transitions tag

with source and target values, and it is optional because some nodes may not have any

next node, such as leaf nodes of a tree.

After that, we start processing node (R1.1) attributes read from the node tag. Suppose

a given IBT node attribute does not already exist in the list of individuals in the OWL

file. In that case, we declare that attribute, associate it with a corresponding meta-class

as an individual and add it to the corresponding list (lines 9 to 14). For example, the

behaviour name “deactivated” is declared in the first two lines of the OWL file in Figure

7.14. If a given attribute already exists in the corresponding list during the translation

process, that means the attribute has already been declared, and it will be ignored. The
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reason for performing this check is to avoid duplication of the same attribute in the OWL

file of the given IBT. The same process will be executed for all IBT node attributes, such

as component name.

After that, we declare node ID on line 15 and associate it with a BT Nodes meta-class

on line 16 of program 1. The node ID is unique, and it contains a requirement tag

such as R1, R2, and its node index in a requirement. For example, node ID R1.1 is

declared on lines 7 and 8 of the OWL file. After that, we associate node attributes such

as component name, behaviour name, and behaviour type with the corresponding node

ID (line 17). For example, the component name “SAS”, behaviour name “Deactivated”,

and behaviour type “state realisation” are associated with node ID R1.1 on lines 9 to 11

of the OWL file.

Finally, we use nextNode object property to develop a relationship between nodes using

source node ID and destination node ID. If there is more than one next node of a node,

then line 18 will be executed more than once. Coming back to the given example, the

translation of node R1.1 is shown in Figure 7.14.

Figure 7.14: OWL representation for node R1.1

7.6 An Example

In this section, we discuss step 3 of the BERDD workflow to detect and analyse RE

defects. We implement this step with the RDI tool and SPARQL queries (steps 4 and 5

of the workflow). The user will enter requirements defects parameters through the RDI

interface, and RDI will automatically build a query, execute it, and return a result. In this

section, we listed only SPARQL query related to incompleteness defect, and the remaining

queries are given in Appendix B.2.
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To illustrate the effectiveness of the BERDD framework and RDI, we used a system

named Ambulatory Infusion Pump (AIP). AIP is a medical device used in drug therapy

for patients who are away from the direct care of health care professionals [309], and AIP

requirements are shown in Table 7.6. There are 9 requirements related to the main func-

tionality, and we took seven of them as the initial set of requirements and two of them (R8

and R9) as new requirements, as a result of the proposed RC. We took two requirements

as new requirements received because of requirements change to show the applicability of

BERDD during the RCM process. We opted to conduct this type of evaluation instead

of an end-user survey on our proposed approach because we are interested in analysing

our approach’s applicability and utility.

Table 7.6: AIP Functional requirements

# Requirement

R1 The system is turned on when the batteries are put in and is turned off
when the batteries are out.

R2 To start the pump, when in the stopped state, the start-stop button is
held down until it beeps three times and dots are displayed on the screen.

R3 Every time the system pumps 1 ml drug, and when the battery is low, it
sends a single beep alarm.

R4 After a set time pump activates to pump 1ml of a drug through the line.

R5 When the volume reaches 5ml, the system does three beeps and displays
a low volume message every 1ml as it counts down to empty.

R6 When there is no drug left, the pump enters stopped mode, and the system
sounds a continuous beeping alarm.

R7 When the line is blocked, or air is detected, the pump is stopped and the
beeper emits a continuous beep.

R8 When the battery is low, the system sends three beeps and displays a low
battery message on the screen.

R9 To stop the pump, when in running state, the start-stop button is held
down until it beeps three times and dots are displayed on the screen.

By following step 2a of the RDI workflow, we draw the first seven requirements and

integrate them into an IBT by using the iRE tool, shown in Appendix B.3. The IBT with

the initial 7 requirements has 50 nodes. The RBTs of the two new requirements (R8,

R9) has a total of 18 nodes and are shown in Figure 7.15 and Figure 7.16, respectively.

After that, in step 2b, we will export IBT as an XML file. In step 3, we will translate the

IBT-XML file into OWL, discussed in the previous section.
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Figure 7.15: RBT for R8 of AIP

Figure 7.16: RBT for R9 of AIP

In steps 4 and 5, the user will enter/choose defects-related parameters and analyse the

returned results. In this process, first, we check the incompleteness defects. Requirements

incompleteness is one of the most common types of requirements defects that can be de-

tected during RBT integration with an IBT. We check the completeness of R8 and R9 in

the context of precondition axiom. According to the precondition axiom, the root node

must match at least one node in the existing IBT to perform the integration. The result

of RDI to check incompleteness of R8 and R9 is shown in Figure 7.17 and Figure 7.18,

respectively. To start the checking, the user must select appropriate parameters and enter

the required input values, then SPARQL queries will be generated and executed automat-

ically. RDI shows that R9 is fulfils the precondition axiom; however, R8 is incomplete,

and a precondition is missing, and it should be fixed. The SPARQL query to check the

completeness of R8 is given in Program 2.

Looking at Program 2, the first four lines are default prefixes of any SPARQL query, and
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Figure 7.17: Incompleteness defect
detection of R8 of AIP

Figure 7.18: Incompleteness defect
detection of R9 of AI

line 5 is the prefix related to our ontology defined in OWL syntax. The real query starts

from line 6. The SELECT clause contains three variables (?cname, ?bname, ?btype), and

the variables written in the select clause show the title of columns in the result list. The

triple patterns and other conditions are enclosed in the WHERE clause that starts from

line 7. The triple patterns are between lines 8 and 11. The condition on variables is in

the FILTER clause between lines 12 and 14. In the FILTER clause, the @parm1, @parm2

and @parm3 are the values the user will enter through the RDI interface. This query will

return an empty result for R8 because no node with these parameters exists in the AIP

IBT.

1. PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

2. PREFIX owl: <http://www.w3.org/2002/07/owl#>

3. PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

4. PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

5. PREFIX my: <http://www.semanticweb.org/s5105389/ontologies/2018/8/untitled-

ontology-9#>

6. SELECT ?cname ?bname ?btype

7. WHERE {

8. ?node rdf:type my:BTNodes.

9. ?node my:hasComponentName ?cname.

10. ?node my:hasComponentName ?bname.

11. ?node my:hasBehaviorType ?btype.

12. FILTER (str (strafter(str(?cname), @prefix)) = @parm1)

13. FILTER (str (strafter(str(?bname), @prefix)) = @parm1)
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14. FILTER (str (strafter(str(?btype), @prefix)) = @parm1)}

Program 2: SPARQL query to check incompleteness defect

We then look at ambiguity defects detection. We have implemented two different tech-

niques in RDI, either based on component name or based on behaviour name. After inte-

grating new requirements with the existing IBT, we will check ambiguity defects based on

either technique. Using the component name-detection technique, we selected the BEP-

PER component to check whether the behaviour names associated with this component

have clear and precise semantics or potential ambiguity. A thorough analysis reveals that

there are two potential ambiguities, one is with R9.6 and R9.8 shown in Figure 7.20, where

the behaviour names are Beep3Times and ThreeBeeps respectively, and both behaviour

names refer to the same thing but with the use of two different terms. The other ambigu-

ity is two different behaviour names (BeepContinuously, ContinuousBeep) used with the

same component BEEPR, as shown in Figure 7.19. It seems that both behaviour names

refer to the same thing. In both cases, requirement analysts can fix the defects based on

their domain knowledge.

Figure 7.19: AIP - ambiguity detec-
tion

Figure 7.20: AIP - ambiguity detec-
tion

Following this, we check the redundancy defects. The two new RBTs created potential

redundancies in the AIP system, as shown in Figure 7.21. The RDI found two potential

redundancies in the AIP system, and both involve the new requirements (R8 and R9).

R9 has the same precondition, event, and postcondition as in R2 and creates potential

redundancy. Similarly, R8 has the same precondition, event and postcondition as R2, R5,

and R9.
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Figure 7.21: AIP - redundancy detec-
tion Figure 7.22: AIP - inconsistency de-

tection

Finally, we check the inconsistency defects. RDI has found one potential inconsistency

(shown in Figure 7.22. The detected inconsistency involves the newly introduced require-

ment R9 along with R2. The detailed investigation of both requirements reveals that both

requirements have the same precondition and event but different postconditions.

Regarding performance evaluation of RDI, the experiment was carried out on a Dell

latitude 5580 core i5 running Windows 10 with a 2.7GHz Intel Core i5 processor and

8GB DDR4 memory. It takes 7 Seconds to translate 68 nodes XML file to OWL file, 0.8

Seconds to check completeness, and 0.9 Seconds to check ambiguity. It takes 1.4 Seconds

to check inconsistencies and 1.8 Seconds to check redundancies.

7.7 Discussion and Limitations

This section discusses some implications of this research, including scalability, advantages

over other modelling notations, and a comparison with some existing studies. We have

also discussed some limitations associated with this research.

7.7.1 Comparison with Existing Studies

Most of the research in requirements defects detection can be categorised into two groups:

formal and semi-formal. In formal approaches, firstly, software requirements are trans-

lated into formal languages such as first-order logic, propositional logic, object constraint
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languages etc., and then requirements defects detection is performed. In semi-formal ap-

proaches, software requirements are translated into semi-formal languages such as UML,

BT before requirements defects are detected. In addition to these, NLP approaches are

also used to detect requirements defects. Although we have discussed all the three groups

in detail in the related work section, here, we will only compare some of the most impor-

tant and relevant studies with our approach and then discuss the shortcomings of those

approaches.

We are aware of a few works in ontology-based requirements defects detection that are

close to our approach. For example, Nguyen et al. [170] proposed a DL based approach,

and Nentwich et al. [82] proposed a first-order logic to check inconsistency and redundancy

defects during the requirements analysis phase.

In semi-formal approaches, most of the existing studies have used UML to represent

software requirements and performed requirement defects detection. El-Attar and Miller

[310] proposed a use case based approach by using Simple Structure Use Case Description

(SSUCD) to detect and eliminate the possible defects caused by inconsistencies. Kaneiwa

and Satoh [78] introduced an approach for conducting restricted consistency checking of

UML class diagrams by translating the identified inconsistencies to first-order logic.

After analysing the above approaches to detecting requirements defects and comparing

them with our approach carefully, we have made the following conclusions:

� UML diagrams represent different views of the system through as many as 13 differ-

ent types of diagrams, so most of the existing research focuses on detecting incon-

sistencies between different UML models rather than detecting requirement defects

[311]. In contrast, behaviour engineering was developed with the goal to use a

minimum set of coherent modelling notations throughout the modelling process.

� Most of the existing approaches that use formal languages translate software require-

ments from natural language directly into formal languages; this process requires

an expert-level understanding of these languages [45]. Due to a lack of such un-

derstanding, the customers who provide the requirements may find it difficult to

understand formal languages, while the engineers may not have the domain knowl-

edge to interpret the customers’ requirements correctly. That means the customer

may not be able to verify if the formal representation is an accurate reflection of their
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requirements. However, in this work, we first translate natural language require-

ments into the semi-formal modelling language, i.e. BT, and then convert BT into

formal language, i.e. OWL. Customers and requirements analysts easily understand

the semi-formal language used as a bridge, which overcomes the above-discussed

shortcomings.

� To perform requirements defects detection effectively, good tool support is needed

[278], and this becomes more important when using formal languages. Most of the

existing approaches that use formal languages defined requirements defects through

natural language descriptions, which might have ambiguous interpretations. Due to

this, it is difficult to formalise defects, and as a result, it becomes challenging to

develop an automated tool. However, in this work, we first formalise defects through

semi-formal language, making it easy to design queries to detect them through an

automated tool.

� Lastly, most of the existing research focuses on detecting inconsistency defects and

ignoring other important requirements defects. However in this work, we address

some other equally important requirements defects such as incompleteness, ambigu-

ity, and redundancy.

7.7.2 Limitations

The proposed approach produces some promising results; however, there are a few limi-

tations associated with it.

Firstly, we detect the four most common types of requirements defects that cover almost

three-quarters of the total types of defects faced during the requirement engineering phase

[274, 275]. Although these four defects cover almost three-quarters of the total number of

defects, however, some types of defects are still not covered, which is a potential limitation

of this approach.

Secondly, the proposed approach does not cover all aspects (100%) of these four types

requirements defects. Regarding incompleteness, this research only covers the incomplete-

ness of individual requirements and omits the other aspect of incompleteness, which is

the incompleteness of overall system requirements. Regarding ambiguity, we only cover

ambiguity, which involves using the same word to refer to more than one different term.
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However, there are some other ambiguity definitions in the existing literature that we

have not covered in this research.

Thirdly, we have covered one aspect of inconsistency and redundancy and we might have

missed some other aspects of these two defects discussed in the existing research.

Lastly, it only captures requirements that could be described as ”behaviours” and might

not be able to handle some non-functional requirements such as constraints (a system

should be able to run cross-platform).

7.8 Conclusion

In this chapter, we have investigated a novel approach to automatically detecting software

requirements defects. Compared to existing approaches, this approach has significantly

increased the coverage of requirement defects. This approach contains two elements.

Firstly, we formalise four types of requirements defects through a normal formed behaviour

tree. To define and formalise requirements defects, we use Inertia Axiom, introduced in

6 as a foundation to define a normal formed RBT. Afterwards, the four common types of

requirements defects including inconsistency, redundancy, incompleteness, and ambiguity

are formally defined. Based on the formal defects definition, detection algorithms are

designed.

Secondly, a new framework called BERDD is developed. In BERDD, we use BTs to

model natural language software requirements, and we develop an algorithm to translate

BTs into OWL. The process to translate natural language software requirements into

BTs and then into a formal language has overcome the difficulties of verifying if a formal

representation is faithful to its original natural language representation.

To validate the proposed approach, we have developed a tool called RDI that uses

SPARQL queries to query the OWL formulation of the requirements and to detect re-

quirements defects. The RDI tool plus the iRE tool provide end-to-end support for re-

quirements analysts to identify requirements defects, and it they do not require knowledge

of SPARQL. Finally, we apply this tool to a system, and the results show that all four

types of requirements defects can be successfully detected.
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Conclusion

This chapter concludes the thesis by providing a summary of the contributions that are

presented in the previous chapters and provides a brief insight into future research direc-

tions.

8.1 Summary of Thesis

Requirements Change Management (RCM) is an imperative activity executed during soft-

ware development and software maintenance. In real-world systems, requirements changes

are inevitable. Poorly managed requirements changes negatively impact the software de-

velopment process; they increase the project cost and time and introduce requirements

defects.

By considering the imperative need to study the RCM problem in detail, this thesis first

conducted an evidence-based study, SLR, to identify RCM challenges. SLR is a very

effective technique to perform an in-depth investigation of a problem. Following this, an

RCM process is proposed for providing a formal set of guidelines to implement RCM.

To move one, two approaches are proposed to address two highly cited RCM challenges,

change impact analysis and requirements defects identified through SLR. Although all

these sub-problems are segregated in nature, but all are related to the RCM domain.

Therefore, this thesis explored challenges of RCM problem and proposed approaches to

address a couple of key challenges of the RCM problem.

201
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By considering the above-mentioned problems related to RCM, four research objectives

are defined. In line with these objectives, the contributions of this thesis are summarised

as follows.

Aiming the first objective of this research, Chapter 3 presents an SLR based approach to

identifying RCM challenges both in in-house software development and Global Software

Development (GSD). After that, a questionnaire-based survey is used to get industry

practitioners’ opinions related to our literature findings. We have identified 9 challenges

for RCM in in-house software development and 3 additional challenges that are specific

to RCM process in GSD. Based on both data sets, a chi-square test shows that cost/time

estimation, requirement consistency, change prioritisation, artefacts documents manage-

ment, and user involvement are more challenging in GSD as compared to in-house software

development. Similarly, user involvement and change control board management are more

challenging in centralised project management structures than distributed project man-

agement structures in GSD projects. The t-test of independence used for comparative

analysis of both data sets, reveals that the research results and industry opinions are

consistent regarding RCM challenges.

To achieve the second objective of this research, a novel RCM process is presented in

Chapter 4. The process is defined in the format of an ISO/IEC standard. This work

further expands the breadth of our work related to RCM challenges.

To thoroughly study this process, a seven-stage theoretical model is presented. Moreover,

Composition Trees (CT) are used to compare the proposed process with Configuration

Management Process (CMP), which is the most relevant process defined in ISO/IEC

12207:2017. In addition, a mapping has been developed to verify that the RCM process

outcomes match the RCM challenges identified in Chapter 3. This mapping helps industry

practitioners to understand what challenges they might face in achieving a particular

process outcome. The mapping has been evaluated through a questionnaire-based survey

in the industry. The results show that more than 90% of the industry practitioners agree

with most of the mapping, except for one challenge. In the end, a set of best practices

has also been collected from industry professionals.

Chapter 5 presents an approach to performing Change Impact Analysis (CIA), which is

about the third objective of the thesis. CIA is one of the most cited challenges in RCM,
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identified in this research. CIA helps to estimate the impacts of proposed changes on

other software artefacts in a software system.

In this chapter, we have proposed a novel behaviour engineering-based approach to per-

form change impact analysis. In this work, we used an Integrated Behaviour Tree (IBT) to

model system requirements and proposed algorithms to convert an IBT into an Integrated

Composition Tree (ICT), and then converted the ICT into a Requirements Component

Dependency Network (RCDN). The RCDN helps to identify a set of potentially impacted

components. After that, we used CIDs retrieved from the IBT and the RCDN to investi-

gate which components are impacted and the level of the impact. Lastly, we proposed a

change impact indicator metric to quantify the change impact. The indicator gives more

objective evidence to estimate the development cost of a proposed change.

Chapter 6 enhances the BE approach. It provides a more stable foundation to translate

requirements from natural languages to BTs. This enhancement works as a pre-step

to detecting requirements defects, which are discussed in Chapter 7. The two chapters

address the fourth objective of this thesis and increase the depth of our work related to

RCM because requirements defects such as inconsistency are among the RCM challenges

identified in our research. On the other hand, requirements defects also arise during the

requirements elicitation and analysis stage, therefore, detecting requirement defects is also

a critical activity of Requirements Engineering (RE). Therefore, this work increased the

breadth of our work to the RE phase.

In Chapter 6, we propose a two-step formal model to generate valid Behaviour Trees

(BTs). Firstly, we defined normal formed RBTs based on the newly introduced Inertia

Axiom, and then defined valid BTs as a normal formed Requirements Behaviour Tree

(RBT) or an IBT integrated from a finite set of normal formed RBTs. Secondly, we

developed a Context-Free Grammar (CFG) to generate valid BTs. This chapter uses a

commonly used case study to demonstrate the applicability of this research. Moreover, a

tool was developed to support and validate the proposed formal model. The tool results

show that the proposed grammar successfully identified all syntactic errors in the original

requirements of the case study and those requirements defects that had not been reported

in previous studies.
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In Chapter 7, we propose a two-step approach to formalise and detect requirements de-

fects. Firstly, we formalised the four most common types of requirements defects, in-

cluding inconsistency, redundancy, incompleteness, and ambiguity through normalised

behaviour trees. And then, based on the formalisation, relevant algorithms was designed

to detect those defects. Secondly, a behaviour engineering-based approach was introduced.

In this approach, we used BTs to model natural language software requirements, and then

developed an algorithm to translate these BTs into Web Ontology Language (OWL). The

process of translating natural language software requirements into BTs and then into a

formal language overcame the difficulty of verifying whether a formal representation is

equivalent to its original natural language form. To verify this approach, we developed a

tool and applied it to a real-world case study. The tool results show that all four types

of requirements defects can be successfully detected by the tool.

To sum up, this thesis first conducted an SLR to identify RCM challenges. The anal-

ysis performed in Chapter 3 based on SLR and questionnaire survey findings identifies

potential future research directions. We believe that these SLR findings form a solid foun-

dation for proposing approaches to address different aspects of the RCM problem in both

in-house and GSD domains. Moreover, by considering finding from SLR and question-

naire survey, this thesis proposed approaches to address a couple of key RCM challenges,

change impact analysis and requirements defects detection. We believe these proposed

approaches can become a foundation for solving the discussed problems at an extended

scale in real-world systems.

8.2 Future Work

This thesis starts from conducting an SLR to identify RCM challenges and then explores

four different approaches to tackle some of those challenges. Even though all those at-

tempts have received positive results, they need to be continuously studied in the future.

Regarding identifying RCM challenges, we suggest:

� There is a need to include Gray Literature (GL) along with SLR to further enhance

the scope of this approach. Over recent years, GL stands out as an essential source of

knowledge to be used alone or to complement research findings within the traditional

literature.
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� There is a need to conduct a further empirical study to establish the inter-dependencies

between the key challenges and their impacts on the success or failure of a project.

For the proposed RCM process, we suggest:

� It is worthwhile to closely work with the ISO/IEC committee to further refine the

proposed RCM process, so it could be officially included in a later version of the

standards.

� The mapping between RCM process outcomes and RCM challenges can be further

validated by applying the proposed process in real-world industry projects.

Regarding the CIA, we suggest the following future works:

� There is a need to develop a prototyping tool to further enhance the proposed

approach. It will also help to automate the proposed approach. After the tool

building, it also be worthwhile to conduct a questionnaire with industry practitioners

to empirically validate the developed tool.

� The applicability of the proposed approach in the GSD paradigm is also worthy

of future investigation, especially in the context of different project management

structures followed in the GSD projects.

Lastly, regarding requirements defects detection, we suggest:

� For BT formalisation, it worthwhile to extend BT modelling notation to further

expand the scope of this approach. Furthermore, to validate the proposed approach,

it will also be useful to perform empirical validation through industrial case studies.

� Regarding requirements defects detection, it will be valuable to conduct a question-

naire with industry professionals to empirically validate the proposed framework

and developed tool.

� It is also worthwhile to increase the coverage of this approach by adding the defini-

tion and detection algorithms for other types of requirements defects.

� It will be useful to explore these requirements defects through composition trees

that are used to model the static aspect of software-intensive systems.
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Appendices for Chapter 3

A.1 Search Strings for Different Databases

A.1.1 IEEE Xplore

RQ1

(((“Challenges” OR “problems” OR “difficulties” OR “complications” OR “obstacles”

OR “barriers” OR “hurdles” OR “risks”) AND “requirements change” OR “requirements

volatility” OR “requirements creep” OR “requirements change management” OR “Re-

quirements change difficulties” OR” requirements change analysis” OR “requirements

change identification/type” OR “requirements change models/processes””) AND “in-

house software development” OR onshore software development” OR “onsite software

development”)

RQ3

(((“Challenges” OR “problems” OR “difficulties” OR “complications” OR “obstacles”

OR “barriers” OR “hurdles” OR “risks”) AND “requirements change” OR “requirements

volatility” OR “requirements creep” OR “requirements change management” OR “Re-

quirements change difficulties” OR” requirements change analysis” OR “requirements

change identification/type” OR “requirements change models/processes””) AND “Global

software development projects” OR “global project management” OR “GSD” OR “Global

Software Development” OR “Offshore software development” OR “Offshore Outsourcing”

OR “distributed software development”)

206
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A.1.2 Science Direct

RQ1

(“Challenges” OR “problems” OR “difficulties” OR “complications” OR “obstacles” OR

“barriers” OR “hurdles” OR “risks”) AND (“requirements change” OR “requirements

volatility” OR “requirements creep” OR “requirements change management” OR “Re-

quirements change difficulties” OR” requirements change analysis” OR “requirements

change identification/type” OR “requirements change models/processes””) AND (“in-

house software development” OR onshore software development” OR “onsite software

development”)[All Sources(Computer Science)]

RQ3

(“Challenges” OR “problems” OR “difficulties” OR “complications” OR “obstacles” OR

“barriers” OR “hurdles” OR “risks”) AND (“requirements change” OR “requirements

volatility” OR “requirements creep” OR “requirements change management” OR “Re-

quirements change difficulties” OR” requirements change analysis” OR “requirements

change identification/type” OR “requirements change models/processes””) AND (“Global

software development projects” OR “global project management” OR “GSD” OR “Global

Software Development” OR “Offshore software development” OR “Offshore Outsourcing”

OR “distributed software development”)[All Sources(Computer Science)]

A.1.3 SpringerLink

RQ1

‘(“Challenges” OR “problems” OR “difficulties” OR “complications” OR “obstacles” OR

“barriers” OR “hurdles” OR “risks”) AND (“requirements change” OR “requirements

volatility” OR “requirements creep” OR “requirements change management” OR “Re-

quirements change difficulties” OR” requirements change analysis” OR “requirements

change identification/type” OR “requirements change models/processes””) AND (“in-

house software development” OR onshore software development” OR “onsite software

development”)’[Within Computer Science]

RQ3

‘(“Challenges” OR “problems” OR “difficulties” OR “complications” OR “obstacles” OR

“barriers” OR “hurdles” OR “risks”) AND (“requirements change” OR “requirements
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volatility” OR “requirements creep” OR “requirements change management” OR “Re-

quirements change difficulties” OR” requirements change analysis” OR “requirements

change identification/type” OR “requirements change models/processes””) AND (“Global

software development projects” OR “global project management” OR “GSD” OR “Global

Software Development” OR “Offshore software development” OR “Offshore Outsourcing”

OR “distributed software development”)’[Within Computer Science]

A.1.4 ACM

RQ1

((“Challenges” OR “problems” OR “difficulties” OR “complications” OR “obstacles” OR

“barriers” OR “hurdles” OR “risks”) AND (“requirements change” OR “requirements

volatility” OR “requirements creep” OR “requirements change management” OR “Re-

quirements change difficulties” OR” requirements change analysis” OR “requirements

change identification/type” OR “requirements change models/processes””) AND (“in-

house software development” OR onshore software development” OR “onsite software

development”))

RQ3

((“Challenges” OR “problems” OR “difficulties” OR “complications” OR “obstacles” OR

“barriers” OR “hurdles” OR “risks”) AND (“requirements change” OR “requirements

volatility” OR “requirements creep” OR “requirements change management” OR “Re-

quirements change difficulties” OR” requirements change analysis” OR “requirements

change identification/type” OR “requirements change models/processes””) AND (“Global

software development projects” OR “global project management” OR “GSD” OR “Global

Software Development” OR “Offshore software development” OR “Offshore Outsourcing”

OR “distributed software development”))

A.2 List of Primary Studies in SLR

A01: S. Ahn and K. Chong, “Requirements change management on feature-oriented re-

quirements tracing,” in International Conference on Computational Science and Its Ap-

plications, 2007, pp. 296-307.

A02: S. Jayatilleke, R. Lai, and K. Reed, “A method of requirements change analysis,”
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Requirements Engineering, vol. 23, no. 4, pp. 493-508, 2018.

A03: A. AlSanad and A. Chikh, “The Impact of Software Requirement Change–A Re-

view,” in New Contributions in Information Systems and Technologies, 2015, pp. 803-812.

A04: M. Kausar and A. Al-Yasiri, “Using Distributed Agile Patterns for Supporting the

Requirements Engineering Process,” in Requirements Engineering for Service and Cloud

Computing, 2017, pp. 291-316.

A05: I. Navarro, N. Leveson, and K. Lunqvist, “Semantic decoupling: reducing the im-

pact of requirement changes,” Requirements engineering, vol. 15, no. 4, pp. 419-437,

2010.

A06: L. Lin and J. H. Poore, “Pushing requirements changes through to changes in spec-

ifications,” Frontiers of Computer Science in China, vol. 2, no. 4, pp. 331-343, 2008.

A07: J. J. Lin and Y.-S. Lin, “Research and Development of a CMMI-Compliant Re-

quirement Management System for Software Engineering,” in International Conference

on Computer Supported Cooperative Work in Design, 2007, pp. 76-86.

A08: K.-D. Mu, W. Liu, Z. Jin, J. Hong, and D. Bell, “Managing software requirements

changes based on negotiation-style revision,” Journal of Computer Science and Technol-

ogy, vol. 26, no. 5, p. 890, 2011.

A09: M. A. Chauhan and C. W. Probst, “Architecturally Significant Requirements Identi-

fication, Classification and Change Management for Multi-tenant Cloud-Based Systems,”

in Requirements Engineering for Service and Cloud Computing: Springer, 2017, pp. 181-

205.

A10: D. Damian, J. Chisan, L. Vaidyanathasamy, and Y. Pal, “Requirements engineering

and downstream software development: Findings from a case study,” Empirical Software

Engineering, vol. 10, no. 3, pp. 255-283, 2005.

A11: J. Lockerbie, N. A. M. Maiden, J. Engmann, D. Randall, S. Jones, and D. Bush,

“Exploring the impact of software requirements on system-wide goals: a method using

satisfaction arguments and i* goal modelling,” Requirements Engineering, vol. 17, no. 3,

pp. 227-254, 2012.

A12: M. Heindl and S. Biffl, “Modeling of requirements tracing,” in Balancing Agility

and Formalism in Software Engineering: Springer, 2008, pp. 267-278.

A13: T. O. de Jesus and M. S. Soares, “An Event-Based Technique to Trace Require-

ments Modeled with SysML,” in International Conference on Computational Science and

Its Applications, 2017, pp. 145-159.
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A14: B. B. Chua, D. V. Bernardo, and J. Verner, “Criteria for estimating effort for re-

quirements changes,” in European Conference on Software Process Improvement, 2008,

pp. 36-46.

A15: T. Gorschek and M. Svahnberg, “Requirements experience in practice: Studies of

six companies,” in Engineering and Managing Software Requirements, 2005, pp. 405-426.

A16: C. Ting, “The Control and Measure of Requirements Stability in Software Project,”

in International Conference on Information and Management Engineering, 2011, pp. 387-

394.

A17: J. Shah and N. Kama, “Issues of Using Function Point Analysis Method for Re-

quirement Changes During Software Development Phase,” in Asia Pacific Requirements

Engeneering Conference, 2017, pp. 156-163.

A18: N. Ali and R. Lai, “A method of requirements change management for global soft-

ware development,” Information and Software Technology, vol. 70, pp. 49-67, 2016.

A19: A. A. Khan, S. Basri, and P. Dominc, “A proposed framework for communication

risks during RCM in GSD,” Procedia-Social and Behavioral Sciences, vol. 129, pp. 496-

503, 2014.

A20: S. Jayatilleke and R. Lai, “A systematic review of requirements change manage-

ment,” Information and Software Technology, vol. 93, pp. 163-185, 2018.

A21: D. Lloyd, R. Moawad, and M. Kadry, “A supporting tool for requirements change

management in distributed agile development,” Future Computing and Informatics Jour-

nal, vol. 2, no. 1, pp. 1-9, 2017.

A22: R. A. Aziz and B. Wong, “The interplay between requirements relationships knowl-

edge and requirements change towards software project success: an assessment using

partial least square (PLS),” Procedia Computer Science, vol. 46, pp. 732-741, 2015.

A23: A. Goknil, I. Kurtev, K. van den Berg, and W. Spijkerman, “Change impact analysis

for requirements: A metamodeling approach,” Information and Software Technology, vol.

56, no. 8, pp. 950-972, 2014.

A24: C.-Y. Chen and P.-C. Chen, “A holistic approach to managing software change

impact,” Journal of Systems and Software, vol. 82, no. 12, pp. 2051-2067, 2009.

A25: R. Sugden and M. Strens, “Strategies, tactics and methods for handling change,”

in ecbs, 1996.

A26: A. A. Khan, J. Keung, S. Hussain, and K. E. Bennin, “Effects of geographical,

socio-cultural and temporal distances on communication in global software development

during requirements change management a pilot study,” in International Conference on
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Evaluation of Novel Approaches to Software Engineering, 2015, pp. 159-168.

A27: N. Assawamekin, “An ontology-based approach for multiperspective requirements

traceability between analysis models,” in IEEE/ACIS 9th International Conference on

Computer and Information Science, 2010, pp. 673-678.

A28: L. Lin, S. J. Prowell, and J. H. Poore, “The impact of requirements changes on

specifications and state machines,” Software: Practice and Experience, vol. 39, no. 6, pp.

573-610, 2009.

A29: M. Shafiq et al., “Effect of project management in requirements engineering and

requirements change management processes for global software development,” IEEE Ac-

cess, 2018.

A30: A. Teka, N. Condori-Fernandez, I. Kurtev, D. Quartel, and W. Engelsman, “Change

impact analysis of indirect goal relations: Comparison of NFR and TROPOS approaches

based on industrial case study,” in IEEE Model-Driven Requirements Engineering Work-

shop (MoDRE 2012), 2012, pp. 58-67.

A31: M. Weber and J. Weisbrod, “Requirements engineering in automotive development-

experiences and challenges,” in IEEE International Conference on Requirements Engi-

neering, 2002, pp. 331-340.

A32: W. Hussain, D. Zowghi, T. Clear, S. MacDonell, and K. Blincoe, “Managing Re-

quirements Change the Informal Way: When Saying ‘No’is Not an Option,” in IEEE 24th

International Requirements Engineering Conference (RE), 2016, pp. 126-135.

A33: F. Mokammel, E. Coatanéa, M. Bakhouya, F. Christophe, and S. Nonsiri, “Impact

analysis of graph-based requirements models using PageRank algorithm,” in IEEE Inter-

national Systems Conference (SysCon) , 2013, pp. 731-736.

A34: S. Imtiaz, N. Ikram, and S. Imtiaz, “Impact analysis from multiple perspecties:

Evaluation of traceability techniques, in third International Conference on Software En-

gineering Advances, 2008, pp. 457-464.

A35: I. Keshta, M. Niazi, and M. Alshayeb, “Towards Implementation of Requirements

Management Specific Practices (SP1. 3 and SP1. 4) for Saudi Arabian Small and Medium

Sized Software Development Organizations,” IEEE Access, vol. 5, pp. 24162-24183, 2017.

A36: A. A. Khan, S. Basri, and P. Dominic, “Communication risks in GSD during RCM:

Results from SLR,” in International Conference on Computer and Information Sciences,

2014, pp. 1-6.

A37: A. Khatoon, Y. H. Motla, M. Azeem, H. Naz, and S. Nazir, “Requirement change

management for global software development using ontology,” in IEEE 9th International
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Conference on Emerging Technologies (ICET) , 2013, pp. 1-6.

A38: Y. Hafeez et al., “A requirement change management framework for distributed

software environment,” in 7th International Conference on Computing and Convergence

Technology (ICCCT), 2012, pp. 944-948.

A39: Y. Jin, J. Zhang, P. Ma, W. Hao, S. Luo, and Z. Li, “Applying pagerank algorithm

in requirement concern impact analysis,” in 33rd Annual IEEE International Computer

Software and Applications Conference, 2009, vol. 1, pp. 361-366.

A40: W. Lam, V. Shankararaman, S. Jones, J. Hewitt, and C. Britton, “Change analysis

and management: a process model and its application within a commercial setting,” IEEE

Workshop on Application-Specific Software Engineering Technology, 1998, pp. 34-39.

A41: V. Sinha, B. Sengupta, and S. Chandra, “Enabling collaboration in distributed re-

quirements management,” IEEE software, vol. 23, no. 5, pp. 52-61, 2006.

A42: R. Lai and N. Ali, “A requirements management method for global software devel-

opment,” AIS: Advances in Information Sciences, vol. 1, no. 1, pp. 38-58, 2013.

A43: H. Ahmed, A. Hussain, and F. Baharom, “Current challenges of requirement

change management,” Journal of Telecommunication, Electronic and Computer Engi-

neering (JTEC), vol. 8, no. 10, pp. 173-176, 2016.

A.3 RCM Challenges Categories Identified via SLR

List of challenges for RCM process in in-house software development

Final list of RCM Challenges RCM Challenges – sub categories

Impact analysis � Impact analysis
� Change consequences

Cost/Time estimation � Cost estimation
� Time estimation
� Effort estimation
� Change cost

Requirements traceability � Requirements traceability

Artefacts documents management � Artefacts documents management
� Artefacts documents updation
� SDLC products management
� Documents consistency management

Requirement dependency � Requirements dependency
� Requirements inter-dependency
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Requirements consistency � Requirements consistency
� Change conflicts with existing require-
ments

Change prioritisation � Change prioritisation

User involvement � User involvement

System instability � System instability

List of RCM challenges for GSD projects

Communication and coordination � Communication and coordination
� Coordination

Knowledge management and sharing � Knowledge management
� Knowledge sharing
� Use of similar terminology

Change control board management � Change control board management

A.4 Questionnaire Survey
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A.5 Ethical Clearance to Conduct Questionnaire Survey

A.6 Participants Demographic Details

Job Title Experience
(Years)

Company
size

No. of
sites

Types of Systems

Project Man-
ager

9-11 Less than
25

1-5 Safety Critical, Real Time
systems

Development
Manager

7-8 Less than
25

6-10 Business Systems, Android
Applications

Software Engi-
neer

3-5 Greater
than 200

1-5 Safety Critical, Business
Systems, Data processing

Requirements
Engineer

3-5 Greater
than 200

1-5 Safety Critical, Real Time
systems, Data processing
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System Man-
ager

7-8 Greater
than 200

1-5 System Software, Android
Applications

Software Engi-
neer

3-5 Greater
than 200

6-10 Business Systems, Windows
based, IOS Applications

Software Engi-
neer

0-2 26-199 1-5 Business Systems

Business Intelli-
gence Engineer

3-5 Less than
25

Greater
than 10

Business Systems, Real
Time systems, Data pro-
cessing

Sr. Software
Engineer

3-5 26-199 6-10 Real Time systems, Android
Applications, IOS Applica-
tions

BI Developer 3-5 26-199 6-10 Business Systems, Data pro-
cessing

Team Lead 7-8 Greater
than 200

6-10 Business Systems, Telecom-
munications, Real Time sys-
tems

Sr. PeopleSoft
Consultant

7-8 26-199 6-10 Business Systems, System
Software, IOS Applications

Business Intel-
ligence Solution
Developer

3-5 Greater
than 200

6-10 Business Systems, Data pro-
cessing

Sr. Developer 9-11 Greater
than 200

6-10 Business Systems, Data pro-
cessing

Project Man-
ager

9-11 Less than
25

1-5 Safety Critical, Data pro-
cessing, Android Applica-
tions, IOS Applications

Senior Software
Engineer

7-8 Greater
than 200

6-10 Business Systems, Telecom-
munications, Data process-
ing

Sr. Software
Engineer

3-5 26-199 1-5 Business Systems

Development
Lead

7-8 Less than
25

1-5 Safety Critical

Software Engi-
neer

3-5 26-199 6-10 Business Systems

Software Engi-
neer

3-5 Less than
25

1-5 Business Systems, Data pro-
cessing, System Software
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Software Qual-
ity Analyst

3-5 Greater
than 200

6-10 Business Systems, Real
Time systems, Data pro-
cessing

Sr. Require-
ments Engineer

3-5 Greater
than 200

Greater
than 10

Safety Critical, Windows
based, IOS Applications

Team Lead 7-8 26-199 1-5 Business Systems

Software Engi-
neer

3-5 26-199 6-10 Real Time systems, Data
processing, System Software

Software Engi-
neer

0-2 Less than
25

6-10 Business Systems, Telecom-
munications, Real Time sys-
tems

Sr. Software
Engineer

3-5 Greater
than 200

Greater
than 10

Safety Critical, Business
Systems, Embedded Sys-
tems

Software Engi-
neer

3-5 Greater
than 200

1-5 Safety Critical, Business
Systems, System Software,
Embedded Systems

Software Engi-
neer

7-8 Greater
than 200

6-10 Business Systems, Data pro-
cessing

Sr. Software
Engineer

9-11 Greater
than 200

6-10 Real Time systems, Data
processing, System Software

Team Lead 7-8 Greater
than 200

6-10 Business Systems, Real
Time systems

Sr. Software
Engineer

7-8 Greater
than 200

6-10 Safety Critical, Telecommu-
nications, System Software,
Embedded Systems

Software De-
sign Engineer

3-5 Greater
than 200

6-10 Business Systems, Data pro-
cessing, Embedded Systems

Development
Lead

7-8 26-199 Greater
than 10

Business Systems, Real
Time systems, Android
Application

Project Man-
ager

9-11 26-199 6-10 Business Systems, Android
Applications, IOS Applica-
tions

Team Lead 7-8 26-199 6-10 Business Systems, Real
Time systems

Sr. Software
Engineer

7-8 Less than
25

Business Systems, Data pro-
cessing, System Software

Requirement
Engineer

3-5 Less than
25

1-5 Business Systems, Data pro-
cessing, System Software
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Sr. Software
Engineer

3-5 Less than
25

1-5 Business Systems

Sr. ISO Devel-
oper

3-5 26-199 Greater
than 10

Business Systems, Data pro-
cessing, Android Applica-
tions, IOS Applications

Development
Lead

3-5 Less than
25

6-10 Business Systems, Telecom-
munications, Real Time sys-
tems

Software Engi-
neer

0-2 Less than
25

1-5 Business Systems, Telecom-
munications, Real Time sys-
tems, System Software

Project Man-
ager

9-11 Greater
than 200

1-5 Business Systems, Telecom-
munications

Sr. PHP Devel-
oper

3-5 Less than
25

Greater
than 10

Business Systems, Android
Applications, IOS Applica-
tions

Team Lead 7-8 Greater
than 200

1-5 Business Systems, Real
Time systems, Data pro-
cessing, Android Applica-
tions

Server Engineer 0-2 26-199 1-5 Games

Sr. Software
Engineer

3-5 Greater
than 200

No Site
informa-
tion in
in-house

Windows based

Team Lead 7-8 Greater
than 200

Windows based

Sr. Require-
ments Engineer

7-8 Greater
than 200

Business Systems, Real
Time systems, Android
Applications

Software Engi-
neer

3-5 Greater
than 200

Safety Critical, Business
Systems, Real Time systems

Software Engi-
neer

3-5 26-199 Security

Project Man-
ager

9-11 26-199 System Software

Software Engi-
neer

3-5 Less than
25

IOS Applications

Development
Lead

7-8 26-199 Business Systems, Data pro-
cessing, IOS Applications
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Principal Soft-
ware Engineer

9-11 Greater
than 200

Safety Critical, Business
Systems, Real Time systems

Sr. Software
Engineer

7-8 Greater
than 200

Business Systems, Data pro-
cessing, Android Applica-
tions

Team Lead 7-8 Less than
25

Business Systems, Android
Applications

Software Engi-
neer

3-5 Less than
25

Safety Critical, Business
Systems, Real Time sys-
tems, Data processing

Team Lead 7-8 Less than
25

System Software, Windows
based, Android Applica-
tions, IOS Applications

Sr. Software
Engineer

7-8 Less than
25

Business Systems, System
Software, Android Applica-
tions, IOS Applications

Software Engi-
neer

0-2 Less than
25

Block chain

Software Engi-
neer

3-5 26-199 Business Systems, Real
Time systems, Data pro-
cessing, System Software

Principal Soft-
ware Engineer

7-8 26-199 Business Systems, Real
Time systems, Data pro-
cessing, System Software

Project Man-
ager

9-11 Greater
than 200

Data processing, Windows
based, Android Applications

Software Engi-
neer

3-5 Greater
than 200

Safety Critical, Business
Systems, Real Time sys-
tems, System Software

Sr. Software
Engineer

3-5 Greater
than 200

Safety Critical, Business
Systems, Real Time systems

Development
Lead

7-8 Greater
than 200

Business Systems, Real
Time systems, Data pro-
cessing, Android Applica-
tion

Software Engi-
neer

3-5 Greater
than 200

Business Systems, Real
Time systems, System Soft-
ware, Android Applications

Sr. Software
engineer

3-5 26-199 Branch-less banking
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Team Lead 7-8 Greater
than 200

Safety Critical, Business
Systems, Real Time sys-
tems, Data processing

A.7 SLR Primary Studies Quality Assessment Results

# Paper ID Q1 Q2 Q3 Q4 Q5 Total Score Quality (%)

1 A01 1 0.5 0.5 1 0.5 3.5 70

2 A02 1 1 1 1 0.5 4.5 90

3 A03 1 0.5 1 0.5 0 3 60

4 A04 1 1 0.5 1 0.5 4 80

5 A05 1 0.5 1 0.5 0.5 3.5 70

6 A06 1 0.5 1 0.5 0.5 3.5 70

7 A07 1 0.5 0.5 1 0 3 60

8 A08 1 0.5 1 1 1 4.5 90

9 A09 1 0.5 0.5 1 0 3 60

10 A10 1 0.5 1 1 0.5 4 80

12 A12 0.5 0.5 1 1 0.5 3.5 70

13 A13 1 0.5 1 1 0.5 4 80

14 A14 1 0.5 1 1 0.5 4 80

15 A15 0.5 0.5 1 1 0 3 60

16 A16 1 1 0.5 1.0` 0 3.5 70

17 A17 1 0.5 1 1 0.5 4 80

18 A18 1 1 1 1 0.5 4.5 90

19 A19 1 0.5 1 1 0.5 4 80

20 A20 1 1 1 1 1 5 100

21 A21 0.5 1 0.5 1 0 3 60

22 A22 1 1 1 0.5 0.5 4 80

23 A23 1 0.5 1 0.5 0.5 3.5 70

24 A24 1 0.5 1 1 0 3.5 70

25 A25 1 0.5 1 0.5 0.5 3.5 70

26 A26 1 1 1 1 0.5 4.5 90

27 A27 0.5 0.5 1 1 0.5 3.5 70
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28 A28 1 1 1 1 0.5 4.5 90

29 A29 1 1 0.5 1 0.5 4.5 90

30 A30 0.5 0.5 1 1 0 3 60

31 A31 1 0.5 1 1 0.5 4 80

32 A32 1 1 1 1 0.5 4.5 90

33 A33 1 0.5 1 1 0.5 4 80

34 A34 1 0.5 1 1 0.5 4 80

35 A35 1 1 0.5 1 1 4.5 90

36 A36 1 1 1 1 0.5 4.5 90

37 A37 1 0.5 0.5 1 0.5 3.5 70

38 A38 0.5 0.5 1 1 0 3 60

39 A39 0.5 1 0.5 1 0 3 60

40 A40 1 0.5 0.5 1 0 3 60

41 A41 1 0.5 1 1 0.5 4 80

42 A42 1 1 0.5 1 0.5 4 80

43 A43 1 0.5 0.5 1 0 3.5 70

Average 0.91 0.69 0.84 0.93 0.39 3.77
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B.2 SPARQL Queries
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B.3 AIP IBT File
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[120] J. Pérez, M. Arenas, and C. Gutierrez. Semantics and complexity of SPARQL.

ACM Transactions on Database Systems (TODS), 34:1–45, 2009.

[121] A. Seaborne, G. Manjunath, C. Bizer, J. Breslin, S. Das, I. Davis, S. Harris, K. Ide-

hen, O. Corby, and K Kjernsmo. SPARQL/update: A language for updating RDF

graphs. W3c member submission, 15, 2008.

[122] P. Lago, H. Muccini, and M. A. Babar. Developing a course on designing software

in globally distributed teams. In IEEE International Conference on Global Software

Engineering, pages 249–253, 2008.

[123] T. Kern and L. Willcocks. Exploring information technology outsourcing relation-

ships: theory and practice. The Journal of Strategic Information Systems, 9:321–

350, 2000.

[124] K. Mohan, P. Xu, L. Cao, and B. Ramesh. Improving change management in soft-

ware development: Integrating traceability and software configuration management.

Decision Support Systems, 45:922–936, 2008.

[125] W. Hussain, D. Zowghi, T. Clear, S. MacDonell, and K. Blincoe. Managing re-

quirements change the informal way: when saying ‘no’is not an option. In 24th

International Requirements Engineering Conference, pages 126–135, 2016.

[126] M. Niazi, C. Hickman, R. Ahmad, and M. A. Babar. A model for requirements

change management: Implementation of CMMI level 2 specific practice. In In-

ternational Conference on Product Focused Software Process Improvement, pages

143–157, 2008.

[127] M. A. Akbar, J. Sang, A. A. Khan, S. Mahmood, S. F. Qadri, H. Hu, and H. Xi-

ang. Success factors influencing requirements change management process in global

software development. Journal of Computer Languages, 51:112–130, 2019.

[128] J. M. Verner and W. M. Evanco. In-house software development: what project

management practices lead to success? IEEE software, 22:86–93, 2005.

[129] E. Carmel, J. A. Espinosa, and Y. Dubinsky. ” follow the sun” workflow in global

software development. Journal of Management Information Systems, 27:17–38,

2010.



[130] S. Ambler. IT project success rates survey results. Technical report, Ambysoft,

2018.

[131] D. Bradstreet. Dun & bradstreet’s barometer of global outsourcing. Dun & Brad-

street, 20, 2000.

[132] L. McLaughlin. An eye on india: outsourcing debate continues. IEEE Software, 20:

114–117, 2003.

[133] S. Deshpande, S. Beecham, and I. Richardson. Using the PMBOK guide to frame

GSD coordination strategies. In 8th International Conference on Global Software

Engineering, pages 188–196, 2013.

[134] M. Niazi, S. Mahmood, M. Alshayeb, M. R. Riaz, K. Faisal, N. Cerpa, S. U. Khan,

and I. Richardson. Challenges of project management in global software devel-

opment: A client-vendor analysis. Information and Software Technology, 80:1–19,

2016.
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