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Abstract—This paper describes a method for calculating the
three dimensional monochromatic electromagnetic fields scattered
by conducting and dielectric objects using the Cauchy integral
cast in a multi-dimensional form based on Clifford algebra.
Formal relationships to methods based on quaternions and vector
calculus are presented. The characteristics of solutions based
on the Cauchy method are described and its advantages over
comparable methods involving Greens functions are discussed.

I. I NTRODUCTION

For many problems which involve physical phenomena and
their representation in mathematical structures there is no par-
ticularly strong reason for choosing one differential geometric
algebra over another. For problems involving electromagnetism
in the form of Maxwell’s equations that has been but is no
longer the case. Thereis a very definite advantage in one
particular of these geometric algebras over the others. Here
we review that particular geometric algebra in the context of
Maxwell’s equations, relate it to approaches using quaternions
and vector calculus, and describe its advantages and the
characteristics of the solutions it offers.

II. BACKGROUND

At the time Maxwell introduced the displacement current
and formulated the set of equations named after him, he had
three differential geometric algebras from which to choose: (1)
Cartesian coordinates, (2) complex numbers and (3) quater-
nions. Gibb’s vector calculus, Cartan’s differential geometry
and tensors had not yet been invented.

Maxwell himself used quaternions [1] but with his students,
for most of whom quaternions were too much of a challenge,
wrote everything in Cartesian coordinates. Complex numbers
were not sufficiently general because they were at that time
restricted to problems in two dimensions only.

In developing quaternions Hamilton [2] had been intending
to find a generalisation of complex numbers which carried
them into three dimensions. However, the algebra he did create
did not do so. That had to wait (not very long) for Clifford
to take two independent and commutative sets of quaternions
written in terms of Grassmann’s linear algebra, and from them
construct what Clifford called his even 5 way algebra [3] and
what we today call a four dimensional Clifford algebra.

For electromagnetism the key here is (1) the generalisa-
tion from analytic functions of a complex variable in two
dimensions tomonogenic functions of a Clifford variable in
any number of dimensions, and (2) the generalisation from
the Cauchy integral of complex variables in two dimensions
to the Cauchy integral of Clifford variables in any number of
dimensions. These generalisations were properly formulated
and documented only within the last few years [4], [5].

III. F ORMULATION

A. Time Domain

Equation 1 shows a four dimensional Clifford numberX

(which has 16 independent complex components) in terms of
an equivalent matrix of quaternions (centre) and in terms of
an equivalent matrix written in the notation of vector calculus
(right). Table I shows, with Clifford numbersX=D, F, S, P on
the left and quaternionsA,B, C,D on the right, the necessary
substitutions to encode Maxwell’s equations into the Clifford–
quaternion–vector formulation of equation 1.

The differential operatorD is fixed by the need to accom-
modate Einstein’s theory of special relativity. The fieldF is
then fixed under the influence of the differential operator bythe
need to faithfully reproduce all the various parts of Maxwell’s
equations in regions void of sources. Finally the sourceS is
fixed to reproduce Maxwell’s equations in the presence of
sources. It then follows by simple algebraic verification (using
the rulese2

j =−1 and ejek 6=j =−ekej for the Clifford units)
that Maxwell’s equations are written:

DF = S (field to source) (2)

DP = F (potential to field) (3)

D
2
P = S (potential to source) (4)

The square of the gradient:D2 =−(∇2− 1

c2

∂2

∂t2
) is recognised

the negative of the d’Alembertian (wave) operator.

B. Frequency Domain

For monochromatic electromagnetic fieldsF(R, t) =
Fk(R)eiωt with angular frequencyω and wavenumberk=ω/c
Fourier transformation gives equations similar in form to those
in the time domain. In particular the gradient:Dk =∇v+ke0 and
its square:D2

k =−(∇2+k2), the latter of which is recognised
as the negative of the Helmholtz operator. The Cauchy integral
in multiple dimensions is then written [5]:

Fk(R) =

∫

Σ

Ek(R′ − R)N(R′)Fk(R′) dσ(R′) (5)

Here Fk is a Clifford-valued function which is monogenic at
all points R = Rxe1 +Rye2 +Rze3 in a regionΩ of three
dimensional space enclosed by a surfaceΣ, N is a Clifford
number representing the outward normal vector to the surface
Σ, dσ is the scalar elemental measure of surface and:

Ek(R) = −

{

R

|R|2
+ ik

(

R

|R|
− ie0

)}

e−ik|R|

4π|R|
(6)

is the multi-dimensional Cauchy kernel.
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a −A · −d D · −c C · −b B ·
A (aI+A×) −D −(dI+D×) −C −(cI+C×) −B −(bI+B×)
d −D · a −A · b −B · −c C ·
D (dI+D×) A (aI+A×) B (bI+B×) −C −(cI+C×)
c −C · −b B · a −A · d −D ·
C (cI+C×) −B −(bI+B×) A (aI+A×) D (dI+D×)
b −B · c −C · −d D · a −A ·
B (bI+B×) C (cI+C×) −D −(dI+D×) A (aI+A×)

























(1)

Equation 5 plays the role of a direct inverse in the frequency
domain to the Maxwell’s homogeneous (source free) equa-
tions: DkFk = 0 when cast in the Clifford formalism. Static
solutions are recovered by settingk = 0.

IV. D ISCUSSION

The relationship between the Clifford, the quaternion and
the vector representations in equation 1 makes explicit the
additional structure of the Clifford over the quaternion and
of the quaternion over the vector. To match with the Clifford,
structure is imposed on the four quaternions by embedding
them in a matrix and adopting the usual rules of matrix addition
and multiplication. Similarly, to match with the quaternion
additional structure is imposed on the scalars and vectors as
used in vector calculus by embedding them in a matrix:

A =

(

a −A ·
A (aI+A×)

)

=









a −Ax −Ay −Az

Ax a −Az Ay

Ay Az a −Ax

Az −Ay Ax a









(7)

whereAx, Ay, Az are the Cartesian components of vectorA.
The additional structure afforded by the Clifford or the matrix-
quaternion or the matrix-vector approaches properly represents
all aspects of three dimensional geometry,i.e. scalars, vectors,
bivectors (oriented areas) and trivectors (oriented volumes). Of
the various choices in geometric algebras the Clifford choice
has the definite advantage of providing access to the Cauchy
integral in a manageable form. That by itself is sufficient asa
path to a new method for calculating the electromagnetic field
scattered from conducting and non-conducting objects.

For conducting objects (simpler than dielectrics) the new
method reduces (somewhat surprisingly) to the intersection
of two straight lines in a particular functional space (Banach
space). That result holds regardless of the shape of the scat-

TABLE I

ELECTROMAGNETIC PARAMETERS IN THE FORM OF CLIFFORD VARIABLES D, F, S, P AND QUATERNIONSA,B, C,D.

Clifford Quaternion
A B C D

a A b B c C d D

gradient D = ∇v − i
c
e0

∂
∂t

0 0 − i
c

∂
∂t

0 0 i∇v 0 0

field F =
√

µHσ − i
√

ǫEe0 0
√

µH 0 0 0 0 0 −√
ǫE

source S =
√

µJ +
i

√

ǫ
ρe0 0 0 i

√

ǫ
ρ 0 0 i

√
µJ 0 0

potential P = 1
√

µ
A + i

√
ǫφe0 0 0 i

√
ǫφ 0 0 i

√

µ
A 0 0

terer. Examples of applying the technique in solving for the
fields scattered from a conducting cubic scatterer are found
in [6].

The new method follows a different approach and therefore
behaves differently from other methods. In comparison to
existing boundary integral formulations note that the Cauchy
kernel and integral are used instead of the Green’s function
and its integral form. The formulation involves only first order
differential and integral operators, not second order ones. The
singular integrals involved are tamer, and easier to work with.
Potentials and surface currents play no part in the solution. The
latter point means the method is not restricted to conductors
and applies equally well to dielectrics. Furthermore, solutions
are formulated only in terms of fields. That means the solution
is constructed only in a single functional space. There is no
need to have multiple distinct functional spaces for potential,
field and current, unless one particularly wishes to calculate
the potential or current.
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