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Abstract 
Biclustering analysis is a useful methodology to discover the local coherent patterns hidden in a 
data matrix. Unlike the traditional clustering procedure, which searches for groups of coherent 
patterns using the entire feature set, biclustering performs simultaneous pattern classification in 
both row and column directions in a data matrix. The technique has found useful applications in 
many fields but notably in bioinformatics. In this paper, we give an overview of the biclustering 
problem and review some existing biclustering algorithms in terms of their underlying 
methodology, search strategy, detected bicluster patterns, and validation strategies. Moreover, we 
show that geometry of biclustering patterns can be used to solve biclustering problems effectively. 
Well-known methods in signal and image analysis, such as the Hough transform and relaxation 
labeling, can be employed to detect the geometrical biclustering patterns. We present 
performance evaluation results for several of the well known biclustering algorithms, on both 
artificial and real gene expression datasets. Finally, several interesting applications of biclustering 
are discussed. 
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1. Introduction 
Cluster analysis is a fundamental tool in machine learning, pattern classification and exploratory 
data analysis. It aims at sorting different objects into groups in such a way that the degree of 
association between two objects is maximal if they belong to the same group and minimal 
otherwise. Cluster analysis has been applied to many classification problems [1-3] and a large 
number of clustering algorithms have been proposed [4, 5]. In pattern classification, clustering 
can be applied to find natural groupings in the data [6]. The natural groupings found can then be 
used to generate representative patterns for objects for later classification tasks. Clustering can 
also be used for data reduction [3, 7], where a group of similar objects can be summarized by a 
representative sample, for example, the cluster centroids, in the group. In signal processing, this 



     

      
 

technique is called vector quantization and is widely used for speech and image compression. 
Recently, clustering has been applied extensively in gene expression data analysis [8-18]. In the 
context of gene expression data clustering, the objects along the row dimension correspond to 
genes or some DNA sequence, and the attributes or conditions in the column dimension 
correspond to the cDNA microarray experiments or time point samples. Clustering in the row 
direction, or gene-wise clustering, has been done, for example, on the Yeast gene expression data 
and human cell [18, 19], whereas clustering in the column direction, or condition-wise clustering,  
has been done, for example, on cancer type classification [9, 13, 16]. 
 
In clustering, data are partitioned into clusters in such a way that the within cluster variations are 
minimized and the between cluster variations are maximized. This is usually done by minimizing 
a cost function that penalizes within cluster variations. Given a data matrix D=(aij)M×N  with M 
objects (i.e. samples or points) and N attributes (i.e. features or measurements), clustering can 
either find the optimal partitioning of M objects based on N attributes or find the optimal 
partitioning of N attributes based on M objects. The former corresponds to a partition of matrix D 
in the row direction and the later corresponds to a partition of D in the column direction. However, 
in many real world data, not all attributes of an object are relevant in grouping the objects into 
meaningful classes. In many cases, some attributes are relevant to only some of the clusters and 
different clusters may have different relevant subsets of attributes.  
 
By relaxing the constraint that related objects must behave similarly across the entire set of 
attributes, “localized” groupings can be uncovered readily. Biclustering allows us to consider 
only a subset of attributes when looking for similarity between objects. The goal of biclustering is 
to find submatrices in the dataset, i.e. subsets of attributes and subsets of features, where the 
subset of attributes exhibits significant homogeneity within the subset of features. Figure 1 shows 
graphically the fundamental difference between clustering and biclustering. Unlike clusters in 
row-wise or column-wise clustering, biclusters can overlap. In principle, the subsets of attributes 
for various biclusters can be different. Two biclusters can share some common objects and 
attributes, and some objects may not belong to any bicluster at all. Due to this flexibility, 
biclustering now attracts intense interests in the scientific community as a data exploration tool in 
many fields, ranging from bioinformatics to text mining and marketing [20, 21].  
 

 
Fig.1 Conceptual difference between cluster analysis (left) and bicluster analysis (right), where biclusters 

correspond to arbitrary subsets of rows and columns 

 
 
Biclustering is a very challenging problem computationally. First, biclustering is an NP hard 
problem [20]. This has motivated the search for efficient approximation algorithms such as 



     

     
 

heuristic approaches and evolutionary techniques [22-24]. Second, it is difficult to visualize all 
biclusters simultaneously. Unlike full and exclusive coverage of a data matrix in clustering, it is 
possible to have overlapping patterns between biclusters. This requires innovative visualization 
techniques [25-27]. Third, a bicluster can have a complicated coherent pattern. For example, a 
variety of patterns has been investigated in biclusters such as constant value, coherent value, and 
coherent evolutions [21, 28]. Finally, the criterion to evaluate a biclustering algorithm is always 
related to the types and structures of biclusters to be detected and a number of indexes have been 
proposed for assessment [29, 30].  
 
Although there exist several reviews on biclustering [20, 21, 31], this work is novel in several 
aspects. First, while briefly covering some of the better known biclustering methods for 
completeness, we expand on recent new ideas in biclustering, notably the class of geometric 
based biclustering. Second, we discuss in detail the various techniques that can be used for 
bicluster validation. Third, we provide a comprehensive comparative study of many publicly 
available biclustering algorithms and the classical K-mean algorithm on both artificial and real 
datasets. Finally, we discuss the diverse range of applications biclustering algorithms have been 
applied to. 
 
 
 
2. Bicluster Analysis of Data 

Let a dataset of M samples and N features to be given as a rectangular matrix D = (aij)M×N where 
aij is the value of the ith sample in the jth feature. Denoting the row and column indices of DM×N 
as R = {1, 2, …, M} and C = {1, 2, …, N}, we have D = (R,C)∈ℜ 

M×N. Generally, a bicluster is a 
subset of rows that exhibit similar behaviors across a subset of columns and vice versa. The 
bicluster B=(X, Y), therefore, appears as a sub-matrix of D with some similar patterns, where X = 
{M1, …, Mx} ⊆ R and Y = {N1, …, Ny} ⊆ C are separate subsets of R and C, respectively. 
Biclustering aims to discover a set of biclusters Bk = (Xk, Yk) such that each bicluster satisfies 
some specific characteristics of homogeneity.  
 
Based on the work of Madeira and Oliveira [21], the following four types of biclusters are 
generally assumed: (a) Bicluster with constant values, (b) Bicluster with constant values in rows 
or columns, (c) Bicluster with coherent values including additive or multiplicative models, (d) 
Bicluster with coherent evolutions. The first three types of biclusters deal with numerical values 
in the data matrix and try to find subsets of rows and columns with similar behaviors. Figure 2 
shows the first three types of numerical biclusters that are hidden in a 6×6 data matrix. The 
bicluster with coherent evolutions aims to find coherent patterns regardless of the exact numeric 
values in the data matrix.  
 



        

 
 

 
Fig. 2. (a) A 6×6 data matrix with hidden biclusters, (b) bicluster with constant values, (c) 
bicluster of constant rows, (d) bicluster of constant columns, (e) bicluster of additive model, 
where O3=O4−5=O5−10=O6−15 and F3=F4+3=F5-5=F6−20, (f) bicluster of multiplicative model, 
where O1=0.2×O6 and F5=0.7×F6. 
 
 

3. Biclustering Algorithms 
Many biclustering algorithms have been proposed. In this work, we classify biclustering 
algorithms into several categories depending on the bicluster model and the search strategy. We 
discuss the biclustering algorithms in each category briefly but put special emphasis on the 
geometric based biclustering recently proposed by our group.  
 
Distance-based biclustering 
Distance-based biclustering typically uses some distance-based variance metric to measure the 
quality of the biclusters, and performs an iterative search for the biclusters by minimizing the 
residual sum of squares cost. This class of biclustering algorithms is among the earliest 
biclustering methods proposed in the literature and is widely used in many applications [32-39].  
In the “direct clustering” algorithm of Hartigan [32], the following sum of squares measure is 
used to evaluate the quality of each bicluster Bk = (Xk, Yk)  
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k kX Ya  is the average value in the bicluster Bk. Biclusters with lower SSQ are considered to 

be better than biclusters with higher SSQ. In direct clustering, the number of biclusters is fixed 



        

 
 

and the solution is reached by minimizing the sum of SSQk. Obviously, the direct clustering 
algorithm only search for constant biclusters.  
 
In Cheng and Church’s δ-bicluster algorithm [33], biclustering is based on the minimization of a 
mean squared residue score  
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where iYa , Xja , XYa , are the row mean, column mean, and the mean in the submatrix B=(X, Y), 

respectively. A bicluster is called a δ-bicluster if H(X, Y) ≤ δ for some δ > 0. To find the δ-
bicluster, the score H is computed for each possible row/column addition or deletion, and the 
action that decreases H the most is applied. A bicluster is returned when H cannot be decreased or 
when H ≤ δ. After one δ-bicluster is identified, the elements in the corresponding submatrix are 
replaced by random numbers before finding the next δ-bicluster. The δ-biclusters are successively 
extracted from the raw data matrix one at a time until a pre-specified number of biclusters have 
been identified.  
 
Following the work of Cheng and Church, different search strategies were proposed to better 
detect the δ-bicluster. In [40], Bryan et al. proposed a simulated annealing search technique and 
reported better performance on a variety of datasets. In [34, 35], Yang et al. proposed a 
probabilistic move-based algorithm called FLOC (FLexible Overlapped biClustering) that is able 
to discover multiple biclusters simultaneously. As a submatrix of a δ-bicluster is not necessarily a 
δ-bicluster because of outliers, Wang et al. [36] proposed the δ-pCluster model to deal with the 
outlier problem by further requiring that any 2×2 submatrix in a δ-bicluster has a pScore ≤ δ for 
some δ > 0, where the pScore measures the difference between elements in the 2×2 submatrix.  

 
 
Factorization-based biclustering 
In contrast to biclustering algorithms that apply a greedy iterative search to find significant 
submatrices, factorization-based biclustering algorithm uses spectral decomposition technique to 
uncover “natural” substructures that are related to the main patterns of the data matrix [4, 41-43]. 
The spectral biclustering in [41] uses Singular value decomposition (SVD) and assumes that the 
data matrix has a checkerboard structure that can be identified in eigenvectors corresponding to 
characteristic patterns across samples or features. Using SVD, the data matrix DN×M can be 
decomposed as D = UΛVT, where Λ is a diagonal matrix with decreasing non-negative entries, 
and U and V are N×min(N, M) and M×min(N, M) orthonormal column matrices. If the data matrix 
has a block diagonal structure (with all elements outside the blocks equal to zero), then each 
block can be associated with a bicluster. Specifically, if the data matrix is of the form  
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where Di (i=1,…,r) are arbitrary matrices, then for each Di there will be a singular vector pair 
(ui,vi) such that a nonzero component of ui corresponds to rows occupied by Di and a nonzero 
component of vi corresponds to columns occupied by Di. In a less idealized case, when the 
elements outside the diagonal blocks are not necessarily zeros but the diagonal blocks still contain 



           

 
 

dominating values, the SVD is able to reveal the biclusters as dominating components in the 
singular vector pairs. 
 
Nonnegative Matrix Factorization (NMF) has been recently introduced as a matrix factorization 
technique that produces a useful decomposition in the analysis of data [44]. NMF decomposes the 
data as a product of two matrices that are constrained by having nonnegative elements. The NMF 
is given by WHD ≈ , where D∈ℜp×n is a positive data matrix with p variables and n samples, 
W∈ℜp×q are the reduced q basis vectors or factors and H∈ℜq×n contains the coefficients of the 
linear combinations of the basis vectors needed to reconstruct the original data (also known as 
encoding vectors). As both the basis W and encoding vectors H are constrained to be non-
negative, only additive combinations are possible. In [42, 43], Non-smooth Non-Negative Matrix 
Factorization algorithm (nsNMF), a variant of the NMF model, has been introduced to identify 
localized patterns in large datasets. In contrast to NMF, nsNMF produces sparse representation of 
the factors and encoding vectors by making use of non-smoothness constraints. The sparseness 
introduced by the algorithm produce more compact and localized feature representation of the 
data than the standard NMF.  
 
In [45], a fuzzy biclustering technique is proposed. The technique is based on formulating the 
one-way clustering along the row and column dimension as a normalized graph cut problem. The 
graph cut problem is then solved by a spectral decomposition, followed by K-mean clustering of 
the eigenvectors. The biclustering of the row and column dimensions is achieved by a three-stage 
process. First, the original data matrix undergoes one-way clustering in the row dimension to 
obtain k clusters. Then, a new pattern matrix where each row is given by the average of the rows 
that belong to the same cluster in the original data matrix is computed. The new data matrix then 
undergoes the same one-way clustering in the column dimension to obtain k’ clusters. Finally, a 
table of fuzzy relation coefficients that relates each of the k row clusters to each of the k’ column 
clusters are computed. By computing the new data matrix using the result of the first stage 
clustering, the fuzzy biclustering algorithm achieves a biclustering of the original data matrix. 
 
Probabilistic based biclustering 
The biclustering method in this category typically assumes a probabilistic model of biclusters and 
applies statistical parameter estimation techniques to search for the biclusters [46-49]. In the plaid 
model of Lazzeoni and Owen [48], the data matrix is viewed as consists of a series of additive 
layers, i.e. consists of biclusters or subsets of rows and columns. The model first includes a 
background layer which account for the global effects in the data matrix. Then, any subsequent 
layer represents additional effects corresponding to biclusters of objects and features that exhibit 
strong pattern not explained by the background layer. The generalized plaid model is given by 
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where μ0 corresponds to the effect in the global background layer and θijk models the effect of 
layer k. The effect θijk can be expressed as a combination of μk, αik, and βjk, where μk is the 
background color in bicluster k, α and β are row and column specific additive constants in 
bicluster k.  The parameter ρik (or κjk) equals 1 when object i (or attribute j) belongs to layer k, 
and equals 0 otherwise. Any residual not modeled by the K layers is accounted for in the noise 
term εij. The biclustering process searches the layers in the data set one after another, using the 
EM algorithm to estimate the model parameters until the variance of expression levels within the 
current layer is smaller than a threshold. The plaid model provides a flexible framework for 
biclustering large, structured microarray dataset, as shown in [50].  



        

 
 

 
In [47], Sheng et al. proposed a Bayesian technique for biclustering based on a simple frequency 
model for the expression pattern of a bicluster and on Gibbs sampling for parameter estimation. 
The data are discretized and every condition in a bicluster is modeled by a multinomial 
distribution, where the multinomial distributions for different conditions of a bicluster are 
assumed to be mutually independent. The Gibbs sampling sets the model in the Bayesian 
framework, and the Bernoulli posterior distribution is used during Gibbs sampling to find the 
biclusters.  In [46], Gu and Liu proposed a fully generative models called Bayesian biclustering 
algorithm (BBC) for gene expression data. The data model in BBC is assumed to be 
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where K is the total number of clusters (unknown), μk is the main effect of cluster k, and αik and 
βjk are the effects of sample i and feature j, respectively, in cluster k, ijkε is the noise term for 

cluster k, and eij models the data points that do not belong to any cluster. Here, δik=1 indicates that 
sample i belongs to cluster k, and δik= 0 otherwise. Similarly, κjk=1 indicates that feature j is in 
cluster k, κjk= 0 otherwise. Gibbs sampling method is used for statistical inference in BBC. 
 
Biclustering for coherent evolution 
In bicluster analysis, the elements of a data matrix are usually of numeric values but they can also 
be transformed into symbols that reflect trends in the data. The symbols can be purely nominal, of 
a given order, or encode positive and negative changes relative to a normal value. Figure 3 shows 
examples of biclusters with coherent evolution. Several biclustering algorithms have been 
developed to find patterns with coherent evolutions.  
 

 
Fig. 3. Types of biclusters with coherent evolution. Considering the entries of a data matrix as 
symbols, (a) an overall coherent evolution, (b) a coherent evolution on the rows, (c) a coherent 
evolution on the columns, (d) a coherent sign change across rows.  
 
 
In [51], Ben-Dor et al. defined a bicluster as an order-preserving submatrix (OPSM).  Specifically, 
a submatrix is order-preserving if there is a permutation of its columns under which the sequence 
of values in every row is strictly increasing. They define a complete bicluster model as the pair (Y, 
π) where π=(y1, …, ys) is a linear ordering of the columns in Y. A row supports (Y, π) if the s 
corresponding values, ordered according to the permutation π, are monotonically increasing. 
Since an exhaustive algorithm that tries all possible models is not feasible, the algorithm grows 
partial models iteratively until they become complete models. Similarly, Liu and Wang define a 
bicluster as an OP-Cluster (Order Preserving Cluster) [52] which generalizes OPSM to discover 
biclusters with coherent evolutions on the columns.  
 



         

 
 

In [53], Murali and Kasif introduced an algorithm that aims to find the largest xMOTIFs. An 
xMOTIF is defined as a bicluster with coherent evolutions on its rows. The data is first 
discretized into a set of symbols by using a list of statistically significant intervals for each row. 
The motifs are computed starting with a set of randomly chosen columns that act as seeds. For 
each column, an additional randomly chosen set A of columns is selected, called a discriminating 
set. The selected bicluster contains all the rows that have states equal to the seed column and in 
the columns contained in the discriminating set A. The motif is discarded if less than an α-
fraction of the columns matches it. After all the seeds have been used to produce xMOTIFs, the 
largest xMOTIF (one with the largest number of rows) is returned.  
 
Tanay et al. [54] introduced SAMBA (Statistical-Algorithmic Method for Bicluster Analysis) to 
detect the biclusters of coherent evolution. The data matrix is modeled as a bipartite graph. 
Discovering the most significant biclusters under the weighting schemes is equivalent to the 
selection of the heaviest subgraphs in the bipartite graph. SAMBA assumes that each aij can be 
represented by two symbols S0 or S1, where S1 means change and S0 means no-change. As such, 
the model graph has an edge between a row and a column when the object is significantly 
changed with the feature. A large bicluster is one with a maximum number of rows whose symbol 
for aij is expected to be S1. In [29], Prelic et al. present a fast divide-and-conquer algorithm called 
Bimax to detect the inclusion-maximal biclusters in the binary matrix E after a pre-discretization 
procedure. The Bimax algorithm is similar to SAMBA. The idea behind the Bimax algorithm is 
to partition E into three submatrices, one of which contains only 0-cells and therefore can be 
disregarded in the results. The algorithm is then recursively applied to the remaining two 
submatrices U and V. The recursion ends if the current matrix represents a bicluster, i.e. contains 
only 1s. If U and V do not share any rows and columns of E, the two matrices can be processed 
independently from each other. However, if U and V have a set X of rows in common, special 
care is necessary to only generate those biclusters in V that share at least one common column 
with X. In [55], Uitert et al. propose BicBin (Biclustering Binary data) to find a contiguous block 
for a large, binary, and sparse genomic data matrix, such as transcription factor binding site, 
insertional mutagenesis and gene expression. Assuming that each element in D is the outcome of 
a Bernoulli trial, a probability based score function is derived in BicBin to evaluate a submatrix.  
 
Geometric-based biclustering 
Based on a spatial interpretation of biclusters, we have recently proposed a geometric-based 
biclustering framework [28, 56, 57]. The geometric viewpoint makes this class of algorithms 
radically different from most existing algorithms which are typically based on optimizing certain 
heuristically defined merit functions. The geometric viewpoint provides a unified mathematical 
formulation for the simultaneous detection of different types of linear biclusters (i.e. constant, 
additive, multiplicative, and mixed additive and multiplicative biclusters) and allows biclustering 
to be done with a generic plane detection algorithm. 
 
The theoretical basis of geometric-based biclustering is as below. If we consider that the set of 
columns Y in B = (X, Y) spans a ||Y||-dimensional space, then the data vector in every row of B 
corresponds to a point in this space. Thus, from a geometric viewpoint the different biclusters can 
be considered as different linear geometric patterns in the high dimensional data space. For 
example, given a matrix DN×3, a bicluster is represented by a plane in a 3D space as shown in Fig. 
4, where the N 3D samples are represented by N points. Obviously, a plane can be detected within 
the 3D data space which provides clues about the hidden bicluster in D. In geometric based 
biclustering, the problem of identification of coherent sub-matrices within a data matrix is 
formulated as the detection of linear geometric patterns (lines, planes, or hyperplanes) in a 
multidimensional data space [28].  
 



         

 
 

 
 

 
Fig. 4 A plane formed by points in a bicluster in the three-dimensional data space. The grey dots 
are data located on the plane. 
 
 
Figure 5 shows the six bicluster patterns that form linear geometric patterns in the data space: (a) 
constant values, (b) constant rows, (c) constant columns, (d) additive coherent values, where each 
row or column is obtained by adding a constant to another row or column, (e) multiplicative 
coherent values, where each row or column is obtained by multiplying another row or column by 
a constant value, and (f) linear coherent values, where each column is obtained by multiplying 
another column by a constant value and then adding a constant. Of these six patterns, the linear 
coherent model of (f) subsumes all previous five patterns. These bicluster patterns correspond to 
the commonly used bicluster patterns discussed earlier. Although the six patterns in Fig. 5 appear 
to be substantially different from each other, if we treat each column as a variable in the 4D space 
[x, y, z, w] and each row as a point in the 4D space, the six patterns in Fig. 5 (a) to (f) would 
correspond to the following six geometric structures: (a) a bicluster at a single point with 
coordinate [x, y, z, w] = [1.2, 1.2, 1.2, 1.2], (b) a bicluster defined by the lines x = y = z = w, (c) a 
bicluster at a single point with coordinate [x, y, z, w] = [1.2, 2.0, 1.5, 3.0], (d) a bicluster defined 
by the lines x = y – 1 = z + 1 = w – 2, (e) a bicluster defined by the lines x = 0.5y = 2z = 2w/3, 
and (f) a bicluster defined by the lines x = 0.5(y – 0.1) = 2(z – 0.1) = 2(w – 0.2)/3. Each row in a 
bicluster is a point lying on one of these points or lines. 
 

 



         

 
 

Fig. 5 Examples of different bicluster patterns: (a) constant values, (b) constant rows, (c) constant 
columns, (d) additive coherent values, (e) multiplicative coherent values, and (f) linear coherent 
values. 
 
When a pattern is embedded in a larger data matrix with extra measurements, i.e., a bicluster that 
covers only part of the measurements in the data, the points or lines defined by the bicluster 
would sweep out a hyperplane in a high dimensional data space. To illustrate this in a 3D space, if 
we denote the three measurements as x, y and z respectively, and assume a bicluster covers x and 
z only, we can generate 3D geometric views for different patterns as shown in Fig. 6. When the 
dimensions of the data space are more than three, visualizing them becomes difficult, but the 
geometric structures are still similar.  

 

 
 
Fig. 6 Different geometries (lines or planes) in the 3D data space for corresponding bicluster 
patterns. (a) A bicluster with constant values: represented by one of the lines that are parallel to 
the y-axis and lie in the plane x = z (the T-plane), (b) a bicluster with constant rows: represented 
by the T-plane, (c) a bicluster with constant columns: represented by one of the lines parallel to 
the y-axis, (d) a bicluster with additive coherent values: represented by one of the planes parallel 
to the T-plane, (e) a bicluster with multiplicative coherent values: represented by one of the 
planes that include the y-axis , and (f) a bicluster with linear coherent values: represented by one 
of the planes that are parallel to the y-axis. 
 
 
The geometric interpretation of bicluster patterns has the important implication in that it unifies 
the commonly used bicluster patterns into a single linear class and allows a unified treatment in 
detecting these linear biclusters simultaneously. This is in contrast to most existing biclustering 
algorithms where the cost function implicitly imposes a constraint on the type of bicluster 
patterns that could be discovered. In theory, any algorithm for detecting linear geometric patterns 



       

 
 

can be employed in the geometric biclustering framework. We have employed well-known image 
processing methods for geometric biclustering, such as the Hough transform (HT) and relaxation 
labeling.  The HT is a well-known technique to detect lines and planes in multidimensional data 
space. Statistical properties of the HT, such as robustness, consistency and convergence, as well 
as their ability to identify geometric patterns in noisy data, make them highly attractive for 
bicluster analysis of noisy microarray data [58, 59].  
 
The HT is a methodology that detects lines and curves in images through a voting process in two 
dimensional parameter spaces. Given a set of points {xi = (x1i, x2i) ∈R2: i=1,…, n}, the objective 
is to infer the parameters (a1, a2) of the line x2i= a1x1i+a2 which fit the data {xi} optimally. The 
key to the HT algorithm is to view each point as generating a line comprising all pairs (a1 and a2) 
that are consistent with this point. Thus the collinearity in the original set of points will manifest 
itself in a common intersection of lines in the Hough domain. To obtain the intersecting point of 
lines, the Hough domain is first quantized into cells, and each cell maintains a count of the 
number of intersecting lines. The cell with the largest number of counts is the obvious estimator 
of the parameters of the original line. In practice, polar coordinates are used to describe the line in 
the Hessian normal form instead of the direct parameter space. This allows for the detection of 
vertical lines (θ=π/2) in the data set, and moreover guarantees an isotropic error in contrast to 
direct parameterization.  
 
In [28], we used the Fast Hough Transform (FHT) [60] as our plane detection algorithm since it 
gives considerable speedup and requires less storage requirement than the conventional HT. The 
FHT has very simple and efficient high-dimensional extension and it uses a coarse-to-fine 
mechanism which provides very good noise resistibility. In [28], we applied the FHT to the entire 
data matrix using an efficient K-tree data structure.  In the algorithm, we represent the parameter 
space as a nested hierarchical hypercube where the FHT recursively divides the parameter space 
into hypercubes from low to high resolutions, and the subsequent vote counting in parameter 
space is done only in hypercubes with votes exceeding a selected threshold. A hypercube with 
acceptable resolution and with votes exceeding a selected threshold indicate a detected 
hyperplane in the observed data. 
 
With the emergence of microarray data compendiums such as ArrayExpress and GEO, microarray 
data sets comprising thousands of genes and hundreds of conditions are common sources for 
module discoveries and pathway discoveries in systems biology. Biclustering algorithms are 
obliged to be able to deal with the huge and ever-growing microarray datasets. To handle very 
large gene expression data matrix, a divide and stitch strategy was proposed in [61]. The basic 
idea is to divide the data matrix into several non-overlapping blocks where each block includes 
all genes but different conditions. The geometric biclustering algorithm is then applied to each 
block. Finally, for a detected bicluster in a block, a check is performed to see whether conditions 
from other blocks can be incorporated into it as well as deleting any duplicated biclusters. 
 
In [56], a sub-dimension based geometrical biclustering algorithm (GBC) was proposed which 
only performs the HT in every 2-D feature space, called the column-pair space. The strategy is 
based on finding the simultaneous equations of the geometric structure in column-pair space. For 
example, instead of finding a pattern satisfying x1 = x2 = x3 = x4 in a 4-D space, GBC detects 
patterns satisfying x1 = x2, x2 = x3, x3 = x4 in three 2-D spaces and then combines them. Therefore, 
the GBC algorithm starts from all n(n−1)/2 unique column-pairs of the data matrix. Then the sub-
biclusters in column-pair spaces are combined to form a complete bicluster according to the 
criterion that any two sub-biclusters with at least one common feature (sample) can be combined 
into a new one where the common samples (features) are retained. The strategy reduces the 
computational complexity considerably and makes it possible to analyze large-scale microarray 
data.  
 
In [57], the original GBC algorithm is further improved by performing the HT in 3D spaces and 



      

 
 

using the relaxation labeling framework for the sub-bicluster merging based on their geometric 
distance. In the relaxation procedure, the contextual information is employed to classify a set of 
interdependent samples by allowing interactions among the possible classifications of related 
samples. The relaxation framework makes the GBC less sensitive to noise and allows the 
discovery of larger biclusters.   
 

4. Bicluster Validation 

Validating the detected biclusters is an important but challenging problem due to the different 
criteria used and the different goals in biclustering. In this section, we discuss several common 
validation strategies for biclustering results including index based validation, validation using 
domain knowledge, and statistical testing. 
 
Index based validation 
Traditional clustering is based on some measure of distance and many indexes, such as the 
Silhouette method, Dunn index, Davies–Bouldin index, and the C-index, are employed to assess 
the clusters’ quality of compactness, connectedness, variance and robustness [61]. However, the 
variety of coherent patterns in biclustering makes bicluster validation difficult. If ground truth is 
available, the biclustering results can be assessed by measuring how well the discovered 
biclusters match the true biclusters. To compare two biclusters A =(X1, Y1) and B=(X2, Y2), the 
Jaccard index can be used,  
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where |•| denotes the number of elements [62].  
 
In [29, 63, 64], the original Jaccard index is improved by using match score. Let B1 and B2 be the 
set of true biclusters in the data matrix and the set of detected biclusters, respectively. The match 
score of B1 with respect to B2 is given by  
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When all the true biclusters are detected, SXY(B1,B2) = 1. However, such validation method does 
not consider the false biclusters Bf which could account for a large number of the detected 
biclusters B2. An algorithm that returns only the true biclusters would give the same matching 
score as another algorithm that returns the true biclusters as well as some false biclusters. In our 
comparative study, we take the false biclusters into account by dividing B2 into two parts: Bf = 
(Xf,Yf) that shares no common elements with the true biclusters and Br = (Xr,Yr) that shares some 
common elements with the true biclusters. Our modified match score is then given by 
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In simulation studies, the matching scores provide an intuitive measure to assess the quality of the 
resulting biclusters in comparison to the true biclusters. If Bopt denotes the set of true biclusters 
and B denotes the set of biclusters produced by a biclustering method, then SXY(Bopt, B) reflects to 
what extent the detected biclusters represent the true biclusters.  
 



       

 
 

When no ground truth is available, the quality of a bicluster can be assessed by how compact the 
bicluster is. One such measure is the mean squared residual error (MSR) which measures the 
deviation of values in a bicluster from the mean value of the bicluster [33, 34, 65]. However, 
MSR is only appropriate for constant value biclusters. Instead of measuring the residual error, the 
coherent of a bicluster can be measured by the correlation values between rows or columns. Teng 
and Chan [66] proposed to use the average correlation value (ACV) to assess the quality of a 
bicluster. The ACV of a bicluster is defined by 
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where rij is the weighted correlation between the rows of B and rkl is the weighted correlation 
between the columns of B. The weighted correlation coefficient between samples a and b is given 
by 
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where m is the feature weight vector.  
 
If the quality criterion for a bicluster is how well the rows or columns are related by a monotonic 
function, then a quality index based on the Spearman’s rank correlation coefficient can be used. 
In [67], the average Spearman’s rho (ASR) is employed as the evaluation function  
 

 

[ ]1,1,max2)( 22 −∈












−

−

−

−
∗=    ∈ ∈∈ ∈

YY

Y

XX

X
BASR Yk Yl klXi Xj ij ρρ

 

 (11) 

 
where ρij and ρkl is the Spearman’s rank correlation associated with the rows and columns in B 
respectively. 
 
In [30], Lee et al. proposed an index Γ  that measures the extent that similar objects are grouped 
together. Let P=(pij) be the proximity matrix of objects where pij denotes the distance between 
two objects Oi and Oj, and let C=(cij) be the membership matrix with )1(1 ijij kc +=  where kij is 
the number of biclusters that Oi and Oj simultaneously belong to. Then the Hubert statistic of 
objects can be defined as  
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where µp (µc) and σp (σc) are the mean and standard deviation of P (C) respectively. The statistic 
of features FΓ  can be formulated similarly. Then, the Γ  index is defined by combining the two 
statistics as follows 
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Since the numerator increases as similar objects or features are grouped together, a bicluster 
solution with large Γ is preferred. 
 



       

 
 

 
Validation using domain knowledge 
One way for evaluating bicluster algorithms is by using prior knowledge as some form of a gold 
standard to compare to the biclusters. With a known classification of samples or features, the p-
values can be computed for the validation [25]. For example, suppose we know that the M 
samples are partitioned into k classes, C1, …. , Ck. Let B be a bicluster with b objects. Assuming 
its most abundant class is Ci, and r objects in B belong to Ci. Then B is enriched in Ci if it has a 
small p-value, which is calculated as  
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The p-value measures the probability of including objects of a given category, i.e. Ci, in a 
bicluster B by pure chance. Thus, the overrepresented bicluster is a bicluster of objects which is 
very unlikely to be obtained randomly. One should note that high quality biclusters can also 
identify phenomena that are not covered by the given classification. Nevertheless, a large fraction 
of the biclusters is expected to conform to the known classification. If the true biclusters are 
known in simulation, some traditional statistic, such as sensitivity and specificity, can also be 
used for the comparison of biclustering results [46].   
 
In the biclustering of gene expression data, we sometime have prior knowledge about the 
biological conditions. Due to known biological conditions, the p-values can be used to assess the 
statistical significance of biclusters. To date, Gene Ontology (GO), metabolic pathway maps 
(MPM), and protein-protein interaction networks (PPI) have been used to determine the 
biological functional relevance of genes and gene products in a bicluster. Using the known gene 
annotation structure in GO, MPM and PPI, the p-values of genes associated with the biclusters 
can be computed for biological validation [25, 28, 29, 50, 63].  
 
Validation through statistical test   
The statistical significance of a biclustering result can be evaluated by comparing the result to a 
random partitioning of the data matrix.  The details of randomization may be critical to the 
integrity of such a test and needs to be taken into consideration. For example, in [47], the data are 
first randomized according to a uniformly random graph model.  
 
 
5. Bicluster Visualization  

Visualization of biclustering results is difficult due to the noncontiguous and overlapping 
indexing in both the row and column. The most popular visualization technique to represent a 
single bicluster is the heatmap technique [20, 28]. A heatmap is a rectangular grid composed of 
pixels each of which corresponds to a data value. The different gray/color scales correspond to 
the different data values. Usually, the brighter the color is, the larger the value. This way, if the 
rows and/or columns of the dataset are re-ordered appropriately, the bicluster pattern becomes 
obvious visually. Heatmaps usually suffice for the purpose of inspecting a single bicluster. Figure 
7(a) is a heatmap of a matrix and Fig. 7(b) is the visualization of a bicluster of constant rows by 
reordering the indexes of rows and columns appropriately.  

 
Parallel coordinates (PC) have also been used to represent biclusters, but they are less widely 
used than heatmaps [25, 68]. The PC technique is a powerful method for visualizing and 
analyzing high-dimensional data under a two-dimensional setting. In the PC technique, each 
feature is represented as a vertical axis, and the N-dimensional axis is arranged in parallel to each 
other. By giving up the orthogonal representation, the number of dimensions that can be 



       

 
 

visualized is not restricted to only two. Studies have found that geometric structure can still be 
preserved by the PC plot despite the fact that the orthogonal property is destroyed [25]. In the 
visualization of biclusters, the data sample i is an N-dimensional point pi =(ai1, ai2, ...aiN) where aij 
is the value of the feature j in sample i and the N features are visualized as vertical axes. The work 
in [25] shows that the PC technique can not only be used to visualize the biclustering results but 
can also be used to discover biclusters.  

 
The dendrogram is a commonly used tool to present hierarchical clustering results where the 
detected structures can be further divided in substructures recursively [19]. Usually, clustering is 
only applied to either rows or columns. Due to two dimensional clustering, biclustering results are 
displayed with two dendrograms by rearranging the indexes along two dimensions (see Fig. 7(c)). 
 

 
 

 



      

 
 

Fig. 7. Visualization techniques of biclustering patterns: (a) The heatmap of a data matrix; (b) a 
heatmap showing one hidden bicluster pattern embedded in the data matrix by permuting the 
rows and columns appropriately; (c) two-way traditional dendrogram. 
 
6. Comparative Study of Different Biclustering Algorithms  

In order to compare the performance of biclustering algorithms, we tested ten biclustering 
algorithms on both artificial and biological datasets. The well known conventional K-means 
clustering is also compared. The GBC algorithm is implemented by us. The BBC software can be 
downloaded from http://www.people.fas.harvard.edu/~junliu/BBC/. FLOC is implemented in the 
R package called ‘biare’ while spectral biclustering and plaid model biclustering are included in 
the R package called ‘biclust’. The CTWC and NMF biclustering algorithms are from 
http://ctwc.weizmann.ac.il/process.aspx and  http://bionmf.cnb.csic.es/, respectively. SAMBA is 
from Expander, whereas Bimax, and K-means are from BicAT, and they can be downloaded from 
http://acgt.cs.tau.ac.il/expander/ and http://www.tik.ee.ethz.ch/sop/bicat/, respectively. The 
BiHEA biclustering algorithm is from BAT and can be found on 
http://lidecc.cs.uns.edu.ar/index.php?option=com_content&view=article&id=44&Itemid=32.  
 

Experiments with Artificial Dataset 
In the first experiment, we test the performance of the algorithms for noisy data. We embed 10 
non-overlapping constant and additive patterns of 20 columns and 20 rows with Gaussian noise of 
variance ranging from 0.1 to 0.5 into a 500 by 200 matrix. In the second experiment, we test the 
effectiveness of the algorithms for resolving overlapped patterns. We embed 10 overlapped 
additive patterns of 20 columns and 20 rows with Gaussian noise of variance ranging from 0.1 to 
0.5 randomly into a 500 by 200 matrix with overlapping degrees from 2 to 10, representing the 
number of rows or columns that overlap. The background data of both datasets are sampled from 
a uniform distribution U(−20,20). The modified match score of (8) is used for validation. 
 
Figure 8 illustrates the performance of the biclustering algorithms. Figures 8(a) and 8(b) show 
that spectral biclustering, CTWC, and plaid model biclustering perform as bad as the 
conventional clustering methods such as K-means in detecting constant and additive patterns in 
the data matrix. The matching scores for these methods are lower than 20% even for low noise 
level. The NMF, GBC and SAMBA algorithms show a far better performance (>80%) than other 
biclustering algorithms in constant pattern detection while the GBC and Bimax algorithms show a 
better performance (>80%) in detecting additive patterns than the other algorithms for all noise 
level. Figure 8(c) shows the performance of biclustering algorithms for varying overlapping 
degree of bicluster pattern. From the matching score curves, we can see that GBC, Bimax and 
SAMBA show good performance (>80%) when the overlapping degree is low, but the 
performance of Bimax and SAMBA deteriorates with increasing degree of overlap. 
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Fig. 8 Matching score curve: (a) The performance of different algorithms for constant bicluster 
patterns with noise variance from 0 to 0.5. (b) The performance of different algorithms for 
additive bicluster patterns with noise variance from 0 to 0.5. (c) The performance of different 
algorithms for additive patterns with overlapping degree from 2 to 10.   
 

Experiments with Biological dataset 
We make use of microarray data called ‘BicatYeast’ composed of 70 columns and 420 rows, 
which can be obtained from R package ’biclust’.  After biclustering the microarray gene 
expression data, we study whether the set of genes in the detected bicluster show significant 
enrichment with respect to GO annotation using a web tool called DAVID 
(http://david.abcc.ncifcrf.gov/). The p-value of genes are calculated and adjusted for validation. 
Figure 9 illustrates the enrichment of the gene set in the first five biggest biclusters discovered by 
the algorithms. The x-axis shows the biclustering algorithms with different p-values while the y-
axis is the percentage of genes in the biclusters annotated by GO. The result shows that the genes 
in the biclusters detected by GBC and spectral biclustering methods are more highly enriched 
with GO biological process categories than that detected by other biclustering/clustering 
algorithms. It is interesting to note that even though spectral biclustering performs badly in the 
artificial datasets, its performance is much better on the biological dataset. The poor result for 
artificial datasets could be due to the checkerboard structure not been present in the artificial 
datasets. Finally, almost all biclustering algorithms other than plaid model biclustering show 
better result than K-means clustering in the biological dataset. The result demonstrated that 
traditional clustering techniques have difficulty extracting highly localized expression patterns.  
 

 
 



      

 
 

 
Fig.9 GO biological process enrichment analysis results for the biclustering algorithms. 

 

7. Biclustering Applications 
As an unsupervised technique, biclustering can be applied to any data matrix to identify the 
subsets of rows and columns with certain coherent patterns. The output of a biclustering 
algorithm is a collection of significant local coherent patterns in the data. Such patterns may be 
useful in diverse applications. Apart from the main application in gene expression data analysis, 
biclustering is also employed in other biological applications, such as sequence alignment, 
transcription factor binding, and insertion mutagenesis. In addition, many other application 
domains such as text mining and financial market analysis have also being investigated. 
 
Biological applications 
The majority of the recent applications of biclustering are in biological data analysis, especially 
gene expression data [21-25, 27-29, 31, 33, 35, 37, 40-43, 46-48, 50-57, 63-70]. As a 
revolutionary new tool, DNA microarray technology is a high-throughput platform that can 
provide expression profiling of thousands of genes in different biological conditions, thereby 
enabling the rapid and quantitative analysis of gene expression patterns on a global scale [19].  
Many DNA microarray studies are related to the study of cancer [8-10, 12, 13, 15-17]. In DNA 
gene expression data analysis, a typical objective is to discover groups of genes that share similar 
transcriptional characteristics in gene function, tissue classification, and motif identification. 
Biclustering is able to capture co-regulation expression patterns that involve subsets of genes and 
subsets of conditions and has been used for the inference of global regulatory networks [69]. 
Biclustering is particularly useful in gene expression data analysis, where an interesting cellular 
process is active only in a subset of conditions or a single gene may participate in multiple 
pathways that may not be co-active under all conditions. For gene expression data, it is expected 
that only a small subset (a few tens) of genes in a dataset is involved in a particular process of 
interest (such as cancer), while the vast majority (thousands) of the genes play no role in the 
process. Similarly, the genes that belong to the relevant subset may have highly correlated 
expression only over those columns (i.e. the samples in gene expression data matrix) in which the 
process of interest actually takes place. Including irrelevant genes or samples into the clustering 
will mask out these correlations. 
 
Apart from DNA microarray data, biclustering is used in a number of other molecular biology 
applications. In [71], Wang et al. applied biclustering to multiple sequence alignment (MSA) of 



      

 
 

RNA data. A challenge in MSA is that the alignment of sequences is often intended to reveal 
groups of conserved functional subsequences. Simultaneously, the grouping of the sequences can 
impact on the alignment; precisely the kind of dual situation biclustering is intended to address. In 
[72], Lottaz et al. applied biclustering to discover clinically relevant patient subgroups by 
combining expression data with functional annotation data. In [55], Uitert et al. developed the 
BicBin algorithm for binary genomic data and applied the algorithm to transcription factor 
binding and insertion mutagenesis. In [52], Liu and Wang applied biclustering to a drug activity 
dataset to associate common properties of chemical compounds with common groups of their 
descriptors.  
 
Medical applications 
In [73], biclustering is utilized to analyze scalp EEG data obtained from epileptic patients 
undergoing treatment with a vagus nerve stimulator (VNS) implant. The device consists of an 
electric stimulator implanted subcutaneously in the chest and connected, via subcutaneous 
electrical wires, to the left cervical vagus nerve. The VNS is programmed to deliver electrical 
stimulation at a set intensity, duration, pulse width, and frequency. The study examines the EEG 
effects of VNS stimulation with the aim to develop a physiologic marker for optimal VNS 
parameters. Each EEG channel is represented as a data feature and samples taken from within and 
outside the stimulation periods are analyzed. The study has shown that it is possible to distinguish 
VNS stimulation from VNS deactivation epochs using scalp-EEG recordings. 
 
In [74], biclustering is applied to the computer-aided diagnosis of digital mammography images. 
With the rows representing the set of images and columns representing the set of features, 
biclustering can find a subset of images participating in a common pathology of interest while 
defining a subset of features that best describe this pathology. The study analyze a data matrix 
consists of 213 images and 224 features using K-means clustering and SAMBA biclustering 
algorithms. 
 
 
Text mining 
Biclustering can be used successfully to identify subgroups of documents with similar properties 
relative to subgroups of attributes. The text is represented by a data matrix D = (aij)M×N,  where 
each row corresponds to a document, each column to a word (or term), and the value of aij is a 
certain weight of word i in the document j. In the simplest case, this weight can be, for example, 
the number of times the word i appears in text j. Text mining techniques are of high importance 
for text indexing, document organization, text filtering, web search, etc. Generally, one-way 
clustering can be used to classify the text data such as word and document data.  Biclustering of 
text data allows not only the clustering of documents and words simultaneously, but also 
discovers important relations between document and word classes. Successful biclustering 
approaches for text mining were developed based on a spectral approach or on an information 
theoretic technique [75-77].  
 
 
Multimedia data processing and retrieval 
In [78], a biclustering based real-time rendering algorithm to render all-frequency radiance 
transfer at both the macro- and meso-scale is proposed. For a given local incident direction dj at 
vertex p, the transfer matrix element (Tp)jk represents the contribution of the global incident 
direction dk. In other words, the element indicates how much of the global incident radiance at dk 
would reach the local incident radiance direction dj . As the large transfer matrix needs to be 
stored and manipulated, biclustering is used to compress the transfer matrix by exploiting the sub-
matrices having constant column entries in the transfer matrix. By decomposing the transfer 



      

 
 

matrix into bicluster submatrices, an efficient bicluster representation can be obtained. The 
algorithm is able to reduce storage and computational complexity down to 5%-30%, enabling 
real-time rendering. 
 
In [79], biclustering was applied to video document retrieval. Video document consists of many 
media modalities such as audio track, textual tags and visual frames, and the video contents and 
associated semantics could have no direct correlation with low-level features. Noise in the feature 
space also result in extra complexity in the measurement of document relevance and degrade 
retrieval performance. Biclustering was used to select the feature subspace that best discriminate 
the different class of content. In [80], biclustering was applied to content-based image retrieval by 
combining information from visual data and text annotation. The biclustering is used to uncover 
the semantic connection between the image features and the text. It was demonstrated that the 
biclustering of image segments and annotation words significantly improved the performance of 
the image retrieval system. 
  
Other applications  
Biclustering can be used in collaborative filtering to find subgroups of customers with similar 
attitudes or behavior towards a subset of products, with applications in target marketing or 
recommendation system.  In such applications, the value aij in the data matrix is whether 
customer i expresses in some way the investigated attitude or behavior j. A number of papers 
consider collaborative filtering of movies, where the data values are either binary (i.e., showing 
whether a certain customer watched a certain movie or not) or express the rate at which a 
customer is assigned to a movie [36, 81, 82]. Biclustering has been applied to the study of social 
annotations to discover associations among a group of users and resources, and identifying user 
communities [83]. Social annotation allows web users with explicit or implicit social interactions 
to annotate web resources or objects such as bookmarks and photographs without a predefined 
formal ontology, in order to retrieve and share information more efficiently. In [45], a fuzzy 
biclustering algorithm is proposed to identify groups of related web users and web pages. The 
results would be useful for applications such as user profiling for web personalization systems 
and recommendation engines, improved web information retrieval, as well as in the design of 
more efficient caching and prefetching policies. In [48], biclustering is applied to nutritional data 
where each sample is associated with a certain food and each feature is an attribute of the food. 
The goal was to form clusters of foods with respect to a similar subset of attributes. Other 
applications of biclustering include dimensionality reduction of databases via automatic subspace 
clustering of high dimensional data [80], analyzing the electoral data to identify sub-groups of 
countries with similar electoral preferences/political attitude toward certain issues [32], and 
grouping a set of foreign exchange rates together based on the fact that they have a certain type of 
defined correlation in a certain set of time points [84]. 
 
 
8. Conclusions 

Biclustering, which aims to detect subsets of objects and subsets of attributes that exhibit certain 
coherent pattern, has found many uses in many real world applications. In this paper, we present a 
survey of the biclustering algorithms, their performance evaluation, and applications. We discuss 
the different bicluster patterns that are commonly used. Although there is a lack of a general 
definition of homogenous patterns in biclustering, we show that the recent geometric view of 
biclustering provides a useful framework that unites all linear biclusters. We categorize 
biclustering algorithms into several categories based on the merit function used, the algorithmic 
framework, and the bicluster patterns to be detected. With the many biclustering algorithms 
available today, validation of the biclustering results is an important issue. We discuss three 



      

 
 

strategies that can be used to validate biclustering results: index based validation, validation using 
domain knowledge, and validation through statistical test. We discuss how the biclustering results 
can be visualized effectively. We present evaluation results on ten well-known biclustering 
algorithms using both artificial and real gene expression datasets. Finally, we describe some of 
the diverse applications where biclustering has been found to be a useful analysis tool. We 
believe that the ability to extract local patterns and behaviors in biclusters should find a wide 
range of applications in many problems where simultaneous clustering of objects and features are 
important.  
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