
Indexing RFID data using the VG-curve

Justin Terry Bela Stantic Abdul Sattar

Institute for Integrated and Intelligent Systems (IIIS)
Griffith University, Gold Coast, Queensland, Australia,

Email: J.Terry, B.Stantic, A.Sattar@griffith.edu.au

Abstract

Existing methods for the management of multidimen-
sional data typically do not scale well with an in-
creased number of dimensions or require the unsup-
ported augmentation of the kernel. However, the use
of multidimensional data continues to grow in modern
database applications, specifically in spatio-temporal
databases. These systems produce vast volumes of
multidimensional data, and as such, data is stored
in commercial RDBMS. Therefore, the efficient man-
agement of such multidimensional data is crucial. De-
spite it being applicable to any multidimensional vec-
tor data, we consider Radio Frequency Identifications
(RFID) systems in this work. Due to RFID’s accep-
tance and rapid growth into new and complex appli-
cations, together with the fact that, as with commer-
cial applications, its data is stored within commercial
RDBMS, we have chosen RFID as a pertinent test-
bed. We show that its data can be represented as vec-
tors in multidimensional space and that the VG-curve
combined with Multidimensional Dynamic Clustering
Primary Index, which can be integrated into commer-
cial RDBMS, can be used to efficiently access such
data. In an empirical study conducted on three, five
and nine dimensional RFID data we show that the
presented concept outperforms available off-the-shelf
options with a fraction of the required space.

Keywords: Access Method, Multidimensional Data,
Radio Frequency Identification - RFID

1 Introduction

There are many multidimensional indexes proposed
in the literature, but very few have been adopted by
the major database vendors due to their complexity
and costs of integration. Many require unsupported
access to the block manager so they cannot be read-
ily constructed. Others are only possible as external
indexes that do not inherit the industrial strength
concurrency and recovery of the database system.

The vast majority of proposed multidimensional
indexes require the unsupported augmentation of the
kernel and are thus not readily available to support
current RFID applications in commercial database
systems. Currently to support and access multidi-
mensional vector data in a commercial RDBMS it
is possible to use bitmaps indexes, inbuilt R-Tree
methods, approximation methods or one dimensional
transformation methods. Bitmap indexes have been

Copyright c©2012, Australian Computer Society, Inc. This pa-
per appeared at the 23rd Australasian Database Conference
(ADC 2012), Melbourne, Australia, January-February 2012.
Conferences in Research and Practice in Information Technol-
ogy (CRPIT), Vol. 124, Rui Zhang and Yanchun Zhang, Ed.
Reproduction for academic, not-for profit purposes permitted
provided this text is included.

proposed for handling RFID data (Hu et al. 2005).
Space requirements are reduced by using a bitmap
data type that compactly represents a collection of
identifiers. However, they have significant update
costs and it may not work well when the data in the
same cluster are not continuous or in applications that
do not lend themselves well to grouping based on a
common property (Lin et al. 2007).

Some commercial RDBMS has inbuilt R-Tree in-
dexes, e.g., Oracle spatial, which has only recently
supported intersections on three dimensional data. It
is well known that the R-Tree’s performance deteri-
orates significantly above 4 dimensions. They suit a
variety of objects and thus have overheads in com-
plexity, as well as not supporting intersection queries
beyond three dimensions (Murray 2005).

Approximation methods like the VA-file (Weber
et al. 1998) and the IQ-tree (Berchtold et al. 2000)
are based on the belief that above a certain dimen-
sionality a full scan is more efficient than an index,
so it is best to improve the scan. The IQ-tree inte-
grates compression into its index based query process-
ing, using a three-level index structure to combine a
tree with a scan using quantization. The VA-file is
a simple vector approximation method that uses an
array of compact geometric approximations. Queries
are answered by excluding most vectors through an
approximate filtering step on the entire VA-file itself.
The VA-file reduces the number of disk accesses, how-
ever it incurs higher computational cost in decoding
the bit-string and computing bounds. Another prob-
lem with the VA-file is that it works well for uniform
data, but not for skewed data (Jagadish et al. 2005),
due to the pruning effect of the approximation vectors
deteriorating.

One dimensional transformation methods utilize
the available single dimensional index structures, e.g.,
B-Trees, to index the data based on a scalar key. They
employ a two stage query filter, similar to spatial
querying, to extract approximate results that then
have any false hits removed to produce a final re-
sult set. Examples include The Pyramid-Tree tech-
nique (Berchtold et al. 1998), iMinMax (Ooi et al.
2000), The P+-tree (Zhang et al. 2004) and i-distance
method (Jagadish et al. 2005).

Single dimension transformation methods are typ-
ically not bijective functions and are lossy in nature,
thus they rely more heavily on the exact filter than
bounded regions in the feature space. Their perfor-
mance is affected by false hits occurring due to ob-
jects being far apart in the original space but close in
the transformed space. For distance transformations
such as i-Distance there may be many objects simi-
larly close to a reference point, but it is unlikely they
are all close together and many will need to be put
through the exact filter.

Proceedings of the Twenty-Third Australasian Database Conference (ADC 2012), Melbourne, Australia

117



Space Filling Curves (SFC) are bijective transfor-
mation functions that can produce a scalar key. The
most well known SFC method is the UB-Tree (Berch-
told et al. 1999), which integrates a SFC and a B-
Tree creating a primary index for multidimensional
data. It is an efficient paginated index where each
leaf node represents a page of data on a segment of
the curve. However, like other SFCs, the segments
are typically not hyper-cubic and may even represent
disjoint space, this typically increases the number of
pages read that do not contribute to the answer and
more importantly the UB-Tree requires changes to
the kernel for integration so cannot be readily used
as an internal index (only integrated in Transbase
database).

One of the most prominent d dimensional point
data structures is the K-D-Tree (Bentley 1975) and
its variants: the hB-Tree (Lomet & Salzberg 1989),
the BD-Tree (Ohsawa & Sakauchi 1983), the hybrid
tree (Chakrabarti & Mehrotra 1999) and the quad-
Tree. The K-D-Tree is a binary search tree that uses a
recursive subdivision of the data space into partitions
by means of (d - l)-dimensional hyperplanes. A disad-
vantage common to all K-D-Tree methods is that for
certain distributions, no hyperplane can be found that
divides the data objects evenly. Like the K-D-Tree,
the quad-tree (Samet 1984) decomposes the universe
by means of iso-oriented hyperplanes. An important
difference however, is the fact that quad-trees are not
binary trees anymore. The subspaces are decomposed
until the number of objects in each partition is below
a given threshold. Quad-trees are therefore not bal-
anced and the subtrees of densely populated regions
need to be deeper than sparsely populated regions,
giving a bad worst case behavior. Disadvantages of
space partitioning methods in general are that they
can suffer from poor minimum node utilization, or
have a high space complexity. Tree based space parti-
tioning methods are typically unbalanced, increasing
the worst case performance.

Some methods for efficient management of tem-
poral data which can be incorporated within com-
mercial database management systems have been pre-
sented in literature (Stantic, Topor, Terry & Sattar
2010), (Stantic, Terry, Topor & Sattar 2010). How-
ever, these methods cannot efficiently support high
dimensional queries.

RFID data is naturally spatial and temporal in
nature having time and location as two of its basic
elements and additional attributes can be seen as ad-
ditional dimensions. Therefore, it is well suited to be-
ing represented as vectors in multidimensional space
where multidimensional queries as well as spatial and
temporal predicates can be applied in a straight for-
ward manner. Data warehouse applications will also
need an efficient multidimensional access structure
to support the growing demand for ad-hoc query-
ing (M.Stonebraker & U.Cetintemel 2005, Stockinger
et al. 2002). Typical multidimensional sample ad-hoc
query could be: ”Find containers that were picked up
by fleet F for district D in the last 7 days and delivered
by today”. In order to efficiently answer these kinds
of queries an efficient access methods that scales well
in volume and dimensions and is available within com-
mercial RDBMS is crucial where these data records
will be stored.

To be able to suit a variety of applications and
data models we must consider medium to high di-
mensional data. The most commonly used access
methods for medium to high dimensional vector data
are access methods available off-the-shelf in commer-
cial RDBMS (Rudolf Bayer and Volker Markl 1998).

RFID deployments are most commonly within a com-
mercial relational database where the best database
services such as industrial strength concurrency and
recovery are available. Using off-the-shelf indexes to
manage RFID data guarantees these services to the
application. Thus we do not consider index methods
that require kernel modification such as the UB-Tree
method or access method that are known not to scale
well with increasing dimensions like the R-Tree in Or-
acle’s Spatial Index.

In this work, we have built on top of the con-
cept proposed in VG-Curve (Terry et al. 2011) and
have shown that the VG-Curve combined with Mul-
tidimensional Dynamic Clustering Primary Index can
efficiently manage and access RFID data. The pro-
posed concept is not sensitive to the number or or-
der of dimensions restricted in the query and is eas-
ily constructed within existing commercial database
management systems and can efficiently manage the
large volume of multidimensional RFID data. Storing
the data in its multidimensional feature space allows
processing of a wide variety of queries. The most
important of these for spatial and temporal predi-
cates is the multidimensional interval query that al-
lows many spatial and temporal queries to be applied
in a straight forward manner. In empirical evaluation,
we demonstrate the performance of presented concept
and show its superiority to the currently available off-
the-shelf index methods for multidimensional RFID
data.

The remainder of the paper is organized as follows;
Firstly we review some key background information
on RFID technology focusing on the tags and require-
ments of managing the data. In section 4 we describe
our experimental study and in section 5 we analyze
the results, finishing with a conclusion and further
work in section 6.

2 Multidimensional Nature of RFID

Tagged objects moving through a RFID-based per-
vasive environment are automatically sensed and ob-
served with their identifications, locations and move-
ment paths. These observations are filtered and
recorded in a database producing spatial, temporal
and many additional dimensions (attributes) of data.

RFID, having time and location as two of its most
basic elements, is naturally spatial and temporal in
nature. Therefore, it is well suited to being repre-
sented in multidimensional space where spatial and
temporal predicates can naturally be applied. Us-
ing a multidimensional access method that preserves
the original feature distances allows many spatial and
temporal predicates to be applied in a straight for-
ward manner to the data without further data trans-
formation.

Interval queries are an integral requirement for
both spatial and temporal predicates in multidimen-
sional data space. The efficiency of spatial and tem-
poral queries relies on an efficient interval access
method for multidimensional space. Thus any effi-
cient multidimensional access method must be effi-
cient at answering interval queries.

Fixed scanning devices have a known location and
mobile scanners can be combined with global posi-
tioning to give accurate physical positioning of the lo-
cation an object scan occurs. The spatial co-ordinates
can then be stored and spatial predicates such as
inside can then be run against the RFID data. This
can be combined with the scanning time to answer
spatio-temporal predicates such as inside x during
T where T is the time interval.

CRPIT Volume 124 - Database Technologies 2012

118



Besides spatial and temporal attributes, RFID
data can have many other attributes of interest. Cur-
rent RFID systems with three to seven dimensions
have been identified in the literature (Lin et al. 2007,
Wang & Liu 2005) and the use of more complex
application-specific tags requires even higher dimen-
sionality. RFID applications will need an access
method that can efficiently cope with data from a
variety of dimensions to handle both simple and com-
plex tag data as well as a higher level of data mod-
elling such as those produced from data compression
(Darcy et al. 2007).

The difficulties associated with multidimensional
data grow with the number of dimensions. Once data
has more than three or four dimensions, additional
problems begin to arise which is loosely termed the
’curse of dimensionality’ that can severely deterio-
rate an access method’s performance. Higher dimen-
sionality characteristics include: exponential volume
growth with additional dimensions, high probability
of objects being near an edge, data sparsity, pages re-
maining unsplit in some dimensions and not cubic in
shape and queries having very large extensions in each
dimension (Berchtold et al. 1998, Bohm 2000, Weber
et al. 1998). Due to these characteristics, the perfor-
mance of traditional multidimensional access meth-
ods deteriorates rapidly as the dimensions increase
(Orlandic & Yu 2002). Thus the majority of proposed
access methods do not scale well to higher dimensions.

Same as for any spatio-temporal data the efficient
management of RFID data is challenged by its large
volume and multidimensional nature. The current
and future needs of RFID applications will require
an access method that is not only efficient, both in
space complexity and in query performance, but is
able to scale well with an increasing amount of volume
and dimensionality. A reluctance to go above low
dimensionality due to efficiency concerns may limit
the design of RFID applications to low dimensional
models, even when a higher dimensional data set has
proven to be more effective and efficient (Lin et al.
2007).

3 Efficient Management of RFID Data

RFID data is generated quickly and automatically,
and can be used for real-time monitoring or accumu-
lated for object tracking. To filter and clean the high
volume of real-time RFID data efficient methods are
essential, especially for real-time applications.

RFID applications require a dynamic scalable ac-
cess method that enables the spatial, temporal and
additional dimensions of data to be queried in any
combination and independently of each other. The
use of multiple single dimensional or compound in-
dexes to achieve this is not an efficient solution in
terms of space complexity and update costs, though
it is the most common solution to the problem.

3.1 The Primary Multidimensional Index

We build on top of VG-curve concept where vari-
able regions that are formed are influenced by the
distribution of data and blocking factor. It is im-
portant to mention that the concept does not enforce
one-to-one relationship between regions and database
blocks. However, it relies on the Primary index data
being clustered on the cluster key, which in our case
is unique region identification number - RegionID. To
achieve the benefits that storing data in order gives to
query efficiency, we have combined one dimensional
transformations into clusters based on a SFC, with
multi-stage query process. Producing two structures,
a primary index managed by the DBMS, that stores

the data in order and a summary structure that man-
ages the keys given to the data in form of directory.

We use a linear ordering of dynamic (locally de-
fined) data clusters that are stored contiguously so
that nearby clusters have a high probability of being
in nearby blocks, i.e., a Multidimensional Dynamic
Clustering Primary Index (MDCPI).

A Cluster is the group of similar (nearby) objects
sharing the same cluster key (in our case RegionID)
that will be stored contiguously in the base relation.
We denote population pop as the number of objects
located in the cluster. The cluster factor is the max-
imum number of objects allowed in a cluster before it
is typically split into two clusters.

A Base Relation is an indexed relation altered
and ordered by a cluster key (RegionID) plus a unique
object key. It also contains one column for each di-
mension of the object and may contain other none-
indexed attributes. This relation, typically a B+-
Tree, is maintained and kept in order by the DBMS
thus is sometimes known as an Index Organized Ta-
ble. The base relation can be thought of as the access
structure and leaf pages of the access method.

A Directory is a compressed representation of the
base relation containing its RegionIDs and their pop-
ulation.

Control Processes are coded algorithms that
manage and query the clusters including defining the
order of clusters and hence data.

A MDCPI can retain the advantages of a primary
access method while being able to exploit the partic-
ular characteristics of a variety of clustering schemes
compared to a traditional clustering index.

The concept of MDCPI differs from existing trans-
formation methods as it determines partitions at the
local level which are managed by the directory us-
ing flexible user defined control processes as well as
multistage query processing.

Three major benefits of using a MDCPI are:

• Efficient Interval queries: Interval queries
benefit from the primary index organization as it
is likely that several groups of sequentially stored
clusters will be accessed to answer any interval
query. These sequential clusters will be stored
contiguously and can thus be efficiently retrieved
by performing a range scan on the base relation
for each sequence of clusters.

• Low Space complexity: the size of directory
records is small, two fields, and the directory
only stores the populated clusters. If the average
population is 500, the directory will be less than
0.2% of the base relations size. We address the
space complexity problems associated with block
oriented (paginated) space partitioning methods
as a cluster consumes only the physical space
needed to store its objects, plus free space re-
served for updating of the ordered base relation.
This contrasts with block oriented methods that
store each region’s data in a block regardless of
block utilization.

• Simple Integration: The MDCPI is suitable
for any relational or object-relational database
system that offers an ordered relation and pro-
cedures. The access method is constructed with
standard objects from off-the-shelf DBMS with-
out the need for kernel modification, and as
such, inherits database services such as industrial
strength concurrency and recovery.

Proceedings of the Twenty-Third Australasian Database Conference (ADC 2012), Melbourne, Australia

119



3.2 The Concept of Proposed Method

We present a space partitioning method that has com-
mon characteristics with Space Filling Curves (SFC).
It suits a MDCPI as it forms a linearly ordered set
of multidimensional clusters (regions). Previously
proposed SFC methods employ a curve that passes
through all points in multidimensional space, how-
ever, a Variable Granularity Curve (VG-curve) (Terry
et al. 2011) connects regions of various granularity.
An additional benefit is that the space filling curve
only connects regions populated with objects.

Though the partitioning is similar to quad-tree
partitioning the VG-curve is not a paginated index
and only one dimension at the time it is split, which is
a considerable advantage as the number of dimensions
grow. Splitting on additional dimensions to enhance
the discriminatory power of the index is a character-
istic we share with the TV-tree (Lin et al. 1994). Our
method has three main differences to the TV-tree; we
use a space partitioning strategy that creates a un-
balanced virtual tree (the directory) representing the
occupied data space, our method uses a multi stage
filter process on separate data and directory struc-
tures and as it is not paginated it can be constructed
without kernel modification.

Though the base relation stores the data in a bal-
anced structure, the VG-Curve regions (in the direc-
tory) can be considered as an unbalanced binary tree
where empty leaf and internal regions are not required
to be stored. Not requiring internal nodes to be stored
is a property that we share with the linear quad-tree
(Gargantini 1982) but presented concept with VG-
curve is not paginated but built using the MDCPI
components.

Three major benefits of using variable size regions
are:

• Regions can efficiently partition the data:
The volume rv of a region decreases exponen-
tially with its address length, L:

rv = v ∗ (2−L)

allowing a fine partition with a relatively short
address length.

• Intersection calculations are simpler: In-
tersecting regions will be fewer than intersecting
points, particularly as it is only populated re-
gions, and thus it is faster to calculate the inter-
secting regions compared to calculating the in-
tersecting points of other SFC based methods.

• The regions are hypercube like in shape:
Unlike all other SFC’s segments the VG-curve
regions will have side lengths that differ at most
by a factor of two making them hypercube or
hyper-rectangular in shape. Having hypercube
like shaped regions is widely recognized to re-
duce the number of regions that overlap with a
query interval improving efficiency for query pro-
cessing.

Regions can hold up to the blocking factor (BF)
number of objects. If the number of objects exceeds
the BF the region is split along the next dimension as
splitting is done in circular order of dimensions. The
Algorithm assumes a fixed ordering for dimensions,
but any ordering can be used, since the approach is
almost non-sensitive to it (only the number of not-
empty regions can slightly vary depending on such
an ordering). An overfull region may require a child
region to be further split if the first split does not pro-
duce two under full regions (Terry et al. 2011). This
occurs when the data objects are contained wholly

within one child of the region. In this case, split-
ting of the overfull child will continue until two un-
der full child regions are produced or until the pixel
size region is reached. When a pixel becomes overfull
it is not split and it’s population is allowed to grow
beyond the clustering factor, similar to the concept
of super-nodes for X-tree high-dimensional indexing
(Berchtold et al. 1996). This is possible as the physi-
cal storage of a region is not limited to a page.

Multiple splits to partition a cluster do not in-
crease the number of directory regions, as only pop-
ulated regions are stored in the directory. When a
split creates an empty child region, the density of the
index increases as the sibling child has the same popu-
lation as its parent in half the volume, thus the empty
regions make a denser index.

The different SFC partitions derived from UB-
Tree and VG-Curve methods are shown in Figures
1. They shows the top half of a data space contain-
ing identical sets of data where each block contains
8 objects. The three UB-Tree areas in Figure 1 are
(0,2,1,0),(1,1,2,1),(2,0,0,0). The VG-Curve regions in
Figure 1 are derived using the above mentioned parti-
tioning scheme which is in detail explained in (Terry
et al. 2011).

Unlike the UB-Tree partitioning, our SFC parti-
tioning scheme allows the identification and exploita-
tion of empty areas to improve query processing. This
can be seen in Figures 1 where the query interval
(shown as a dotted rectangle) intersects three UB-
Tree pages but only one VG-Curve page.

Figure 1: Three (shades) pages using (a) UB-Tree
partitioning and (b) VG-Curve partitioning, two of
the nine VG-Curve regions contain two shades repre-
senting regions stored in two pages. The query inter-
valis shown as a dashed line.

The percentage of data space that a region rep-
resents is not dependent on the dimensionality, but
on the length of its address. Thus the space can be
efficiently divided regardless of the dimensionality.

3.3 Query Processing Method

There are several query types of interest for point
objects stored in multidimensional space. Relevant
examples are Interval Queries (IQ) and Exact Match
Queries (EMQ). If p is a point in a d dimensional
space and iq is a d-dimensional query interval then
the above queries can be represented as:

• Interval Query (IQ)

– p ∈ iq, find all objects that are contained
within the query interval

• Exact Match Query (EMQ)

– p = iq, find all objects that have the same
value as the target point for each d dimen-
sion.

In this paper, we focus on the efficient processing
of interval queries on medium dimensional point data
(d = 2-9) as well as the exact match query, as it is
a specific type of interval query. Multidimensional

CRPIT Volume 124 - Database Technologies 2012

120



range searching, such as interval queries, plays an im-
portant role in the way modern applications query
their data. It covers many different query predicates
in different data models (e.g, temporal, spatial etc).

Queries are performed by identifying the regions
intersecting the query interval and then adding a re-
striction to the original query that region must be
in the intersecting set. The query is then efficiently
answered with a range scan of the base relation.

Queries are processed in three stages, the directory
is preprocessed to remove some regions that cannot
contain answers then a primary (spatial) filter is used
to select intersecting regions from the remaining re-
gions and a secondary filter to remove false hits in
regions overlapping the query interval (see Figure 2).
Intersecting regions can be either Contained regions
C or Overlapping regions O. Contained regions only
have answer objects whereas overlapping regions will
need to have their objects checked for false hits.

Figure 2: The query filtering stages; Preprocessing
reduces the regions considered. Primary filter is a
spatial query on the regions while secondary filtering
is to remove false hits from the contributing regions
data.

In the preprocessing of the directory, we identify
the first and last directory region that can contribute
to the result set. We then consider only these regions
and the regions between them.

Similarly to spatial filtering, the intersecting query
evaluation algorithm will return all intersecting data
objects. As can be seen in Algorithm 1. In the pri-
mary filter all regions intersecting the query interval
are returned. At first, all preprocessed regions from
the directory are loaded into a cursor in a depth first
order. Each region is then tested for intersection with
the query interval. Contained regions are added to
the result list A1. Overlapping regions are added to
the result list A2. The secondary filter tests all ob-
jects in A2 and adds the positive hits to all objects in
A1 for the final output A′.

In the secondary filter, we check each overlapping
object for containment in the query window. All false
hit objects are removed to create the final result set.
It is important to note that the secondary filter uses
CPU only and does not cause any further disk I/O’s.

We also have the option of performing the pri-
mary filter and calculating the intersecting regions
without reading the directory. We have investigated
and proposed algorithm which can calculate the set
of all possible regions of interest that intersect with
the query interval without any I/O’s on the directory
index. These regions exist between the minimum re-
gion depth and the maximum tree depth (meta data
parameters). The existing regions will be a subset
of these regions of interest. Joining the regions of
interest to the data will produce the same result as
the primary filter. However, this concept is only ef-
ficient for exact match queries and when the tree is
roughly balanced or the query interval is small. If the

Algorithm 1 Query primary filter algorithm

begin
Input: preprocessed regions from Directory Dir ,
Query Interval Q
Output: Containing Regions A1, Overlapping Re-
gions A2
Add all regions in Dir to LIST in order
Let length L be 1
while LIST is not empty do

Let F be the first region in LIST
Let R be the ancestor of F
whose identifier consists
of the first L digits of F ’s address
if R is contained within Q then

Move
from LIST to A1
Set L to 1

else if R is disjoint from Q then
Remove all regions a with a(L) ⊂ F
from LIST
Set L to 1

else if R equals F then
Add R to A2
Remove R from LIST

else
Increment L

end if
end while
end

tree is highly unbalanced or a query interval is large
it may cause the CPU time to blowout, in a similar
but less dramatic fashion then standard SFC meth-
ods. Therefore, in cases with a highly unbalanced tree
or a large query interval, consulting the directory is
more efficient.

4 Experiment

In order to empirically prove the efficiency of the
method presented in this paper on medium dimen-
sional data (3-9 dimensions), we have conducted an
extensive empirical evaluation against the most com-
mon indexes used to support medium to high dimen-
sional vector data (Rudolf Bayer and Volker Markl
1998). Our aim is to follow commercial RFID applica-
tions and efficiently manage RFID data within a com-
mercial relational database where the best database
services are available.

In line with the study performed to evaluate the
efficiency of the UB-Tree (Rudolf Bayer and Volker
Markl 1998) and VG-Curve (Terry et al. 2011), we
compare with the best available methods in off-the-
shelf commercial RDBMS for medium to high dimen-
sional data, i.e., multiple secondary indexes, com-
pound indexes and table scans. As it has been shown
that even for six dimensions a compound index out-
performs secondary indexes when the result set is
greater than 0.000015 % of the relations population
(Rudolf Bayer and Volker Markl 1998).

Unfortunately, we could not compare with the UB-
Tree method, as it requires kernel modification. Also,
we did not compare with access methods that are
known not to scale well with increasing number of
dimensions like the R-Tree in Oracle’s Spatial In-
dex. The performance of other SFC methods (e.g.,
Z-curve) deteriorate rapidly above a few dimensions
and as the query interval grows due to a blow out in
CPU operations, which we confirmed in initial test-
ing, thus they were found to be unsuitable for this
experiment.

Currently, the most widely used technique to han-
dle multidimensional interval queries is the use of a

Proceedings of the Twenty-Third Australasian Database Conference (ADC 2012), Melbourne, Australia

121



secondary index for each dimension (Rudolf Bayer
and Volker Markl 1998). The performance of mul-
tiple secondary indexes however deteriorates rapidly
as the dimensions grow and is only useful for very
small result sets, e.g., in (Rudolf Bayer and Volker
Markl 1998) for six dimensions a compound index
outperforms secondary indexes when the result set is
greater than 0.000015 % of the relation’s population.
Multiple secondary indexes have an additive behavior
whereas the VG-curve has a multiplicative behavior.

Assume N objects in the universe and that pi% of
objects lay in the query intervals restriction of the ith

dimension. Then additive behavior means we need to
fetch N ∗ pi objects (or object identifiers) for the ith

dimension. Requiring in total Σd
i=1 N ∗ pi% objects

to be fetched.
For the VG-curve the amount of data to be fetched

is approximately proportional to the interval query

result set i.e., N ∗

∏d

i=1
pi%. As we are focussing

on interval queries at medium to high dimensionality
and as we do not wish to restrict the result sets to
very small we have focussed on comparisons with the
compound index and table scan.

To efficiently index multidimensional RFID data
with compound indexes requires the full set of com-
binations of compound indexes covering from 2 di-
mensions up to the dimensionality of the data. This
set of compound indexes can then efficiently answer a
query restricting any combination of dimensions. The
number of compound indexes required for a data set
is given by:

d∑

r=2

(
d!

(d− r)!r!
) (1)

where d = the number of dimensions of data.
For three dimensions, this means four indexes i.e.,
((D1,D2), (D2,D3), (D1,D3) and (D1,D2,D3)). For
five dimensions twenty-six compound indexes are
needed and for nine dimensions five hundred and
two compound indexes are required. This explosion
of combinations of required indexes is in line with
the curse of dimensionality hypothesis that renders
most indexes inefficient due to the exponential space
and complexity that each additional dimension con-
tributes (Bohm 2000).

4.1 Data Set

We have tested the performance of VG-Curve on
RFID data with three different dimensions:

For three dimensional Raw RFID data we have
considered the following schema: (EPC, ScanTime,
LocationID). Data represents a chain of 50 stores
where every store has 20 scanners monitoring 20 prod-
uct lines with 500 items in each line.

For 5 dimensional data, we used the container-
location table from (Lin et al. 2007), with data on
five fleets of 20 trucks servicing 10 districts containing
100 stores over a 3 month period. Five dimensional
data has the following schema: (EPC, LocationID,
TimeStart, TimeEnd, TransportMeansID)

The application specific 9 dimensional scenario
proposed is for a Shipping Consortium running
an international container shipping application
monitoring the movements of containers in the
past 100 days across 25 nations with 40 ports and
each serviced by 4 fleets of 25 ships using 1000
container terminals with 20 readers in each. Con-
tainers are ordered by 20,000 importers from 10,000
exporters. The following schema has been con-
sidered: (EPC, Scantime, LocationID, ShipID,
DepartPortID, ArrivePortID, ExporterID,
ImporterID, ShipDate)

All VG-curve relations used a blocking factor of
1,000 and a max depth of 85.

4.2 Query Set

One dimensional queries like the tracking query:
”Given the EPC find the history of object” can be
efficiently answered with a standard one dimensional
index so are not considered. However, two dimen-
sional queries such as: ”Find all objects at a certain
location at a certain time” can not be efficiently an-
swered with a one dimensional index.

We have tested queries where between two and all
dimensions are restricted to demonstrate the perfor-
mance of our multidimensional access method as a re-
placement for all combinations of compound indexes
for the given relation.

For ease of comparison, all queries aim to return
approximately 5000 rows. We compare against the
ideal compound indexes for each query i.e., compound
indexes who’s indexed dimensions match the query
restrictions. All query subgroup ranges start from a
randomly selected identity number. To be able to
achieve the a consistent result set size from queries
above six dimensions we simply used the a query of
the same percentage restriction in each dimension.
Due to space constraints we can describe only a few
example queries from each of the five and nine dimen-
sional sets.

For the 3 Dimensional relation, we used the fol-
lowing queries:
Q1. Find all items in Product Line P scanned at Store
S.
Q2. Find all items in Product Line P scanned at Store
S for the month M.

Example queries for 5 dimensional relation:
Q1. Find containers that were picked up by a
contaminated truck T in the last 9 days.
Q2. Find containers that were picked up by fleet F
for district D in the last 7 days and delivered by today.

Example queries for 9 dimensional relation:
Q1. Find containers ordered by an exporter E shipped
during the past 50 days.
Q2. Find containers moved from nations N by fleet
F shipped more than a month ago arriving at a con-
tainer terminal before the past fortnight.

Each query has its restrictions randomly instan-
tiated 20 times and average performance figures are
reported.

4.3 Environment

All experimental results presented in this Section
are computed on a Sun Fire V880 server with 8
x UltraSPARC-III 900MHZ CPU using 8GB RAM,
running Oracle 10g RDBMS. Database block size was
8K and SGA size was 1GB. At the time of testing
database server had no other significant load. We
used built-in methods for statistics collection, ana-
lytic SQL functions, and the PL/SQL procedural run-
time environment. All queries had the buffers flushed
before running.

5 Result and Analysis

As anticipated, our results show that the VG-curve
combined with MDCPI concept is an effective replace-
ment for multidimensional combinations of compound
indexes for a given data set at a fraction of the space.
Compared to the best compound index for each query
our method is clearly superior for 3 and 5 dimensions
with on average reductions in CPU and I/O, as can

CRPIT Volume 124 - Database Technologies 2012

122



V GC V s Ideal Comp 3D 5D 9D
I/O (%) −86.7 −86.0 −39.9
CPU (%) −11.9 −9.8 208.4

Table 1: Average percentage decrease (negative) or
increases on 3, 5 and 9 dimensional data sets of the
VG-curve compared with the ideal compound index
for each query.

be seen in Table 1. In this table best compound in-
dex value is considered 100% and therefore -86.7%
for I/O means our concept required 86.7% less I/O’s
that the best compound index.According to the the-
ory of indexability a physical disk accesses are con-
sidered to be the most important aspect to be taken
into account (Hellerstein et al. 1997). For nine di-
mensions our method requires less disk I/O’s how-
ever due to the query algorithm requires more CPU,
which is due to the increased overlap at the high di-
mensions. However, it is important to mention that
our method can basically efficiently answer any com-
bination of restricted dimensions. In contrast using
compound indexes to be able to answer any combina-
tion of restricted dimensions according to the equa-
tion 1 would require 502 different compound indexes
for nine dimensional data. It is also important to
highlight that the compound indexes in our experi-
ment are constructed to have the same dimensions as
the query of the same dimensionality, i.e., they are the
best compound index for that query. To support this
claim, it is important to highlight that in experiments
for different queries we used best possible compound
index to efficiently answer specific query and in all
cases compound index was different, however, for all
queries same VG-curve structure was used built on
top of MDCPI concept.

Figure 3: Space Complexity for three to nine dimen-
sional data

As seen in Figure 3, the size of the VG-curve direc-
tory is a small fraction of that required for any com-
pound index. The size difference between a directory
entry and a compound index entry combined with the
group of data represented by a single directory entry
means the VG-curve approach is clearly superior in
space complexity. When space is taken into consid-
eration the compound index approach fails dramati-
cally and gets exponentially worse as the number of
dimensions grows.

This is clearly visible in Figure 3 where the VG-
curve directory size is constant across the dimensions,
due to the mostly even data distribution, and is be-
tween 219 and 566 times smaller than any one of the
compound indexes and between 1,000 and 180,000
times smaller than the combination set of compound
indexes for one RFID relation. In our method, adding
the region field increased the size of the relation by
7% but this pales in comparison to the alternative
and size of all combinations of compound indexes.

Even for just 3 dimensions adding the compound in-
dexes needed increased the space used by 370%, by
9 dimensions they increase the space needed by 315
times. As can be seen in Figure 3 our method’s base
relation achieved the storage utilization guarantee of
the underlying B+-Tree.

Figure 4: CPU usage for three dimensions

We show the performance comparison in both
CPU and I/O’s for three dimensions in Figures 4 and
5, in five dimensions in Figures 6 and 7 and in nine
dimensions in Figures 8 and 9. The number of dimen-
sions restricted in each query is shown on the legend
in brackets next to the query number. Queries are
displayed in the charts in the same order as they ap-
pear in the legend.

Figure 5: Physical Disk I/O’s for three dimensional
data

Figures 5 and 7 show our method to be superior for
all multidimensional queries on three and five dimen-
sions compared to the best of the compound indexes
for each query.

Figure 6: CPU usage for five dimensional data

Figure 7: Physical Disk I/O’s for five dimensional
data

Despite the fact that we build the best possible
compound indexes for each query, out of 502 possi-
ble for 9 dimensional relations, the physical disk I/O
of our method (Figure 9) is superior for 5 of the 6
multidimensional queries. The exception is the 2 di-
mensional index on the 2 dimensional query on the
9 dimensional data set. The I/O performance of our
method demonstrates its suitability for medium to
high dimensional data by showing its scalability over
several dimensions without the usual severe perfor-
mance deterioration.

Limiting the combinations of compound indexes
to a subset due to space considerations runs the risk

Proceedings of the Twenty-Third Australasian Database Conference (ADC 2012), Melbourne, Australia

123



of poor performance as can be seen in the results for
all relations and especially Figure 8 for the 2 and 4
dimensional compound index, where queries restrict-
ing dimensions not matching the indexes can perform
very poorly.

Figure 8: CPU usage for nine dimensional data

Figure 9: Physical Disk I/O’s for nine dimensional
data

The CPU performance of our method can be seen
in Figures 4, 6 and 8 to be better in 6 of the 12 multi-
dimensional queries compared to the best of the com-
pound indexes for each query. It is worth noting that
the max depth (address length) parameter used was
85, though it could have been set to 20 without any
region being at pixel depth, improving the reported
CPU use for our method.

In other testing on highly clustered data of up to
18 dimensions not shown here, the performance of our
method was up to 50% better. This is due to data ex-
hibiting large areas of empty space, as in our method
empty regions are not represented. The populated
regions indexed cover a smaller volume and the data
is more dense compared to more evenly distributed
data. Also, the performance benefit grew with larger
result sets as the average number of result rows re-
turned per region increased taking better advantage
of physical clustering. Changing the cluster factor
varies the CPU I/O trade off caused by changing the
number of regions used, smaller regions cause higher
CPU usage but use fewer I/O’s due to less overlap.
We varied the cluster factor in earlier experiments
widely from 100 to 10,000 and found it to not be a
sensitive parameter typically causing less than a 10%
variation in performance measures.

In summary, the presented concept differs from
the K-D-Tree since in the VG-Curve approach par-
titions are at predetermined positions and it is a sec-
ondary (disk - oriented) not primary memory storage
method. It differs from Quad trees since the VG-
Curve dimensions are split one at a time. It differs
from the grid file since the partitions are applied lo-
cally to the node not across the whole dataspace. It
differs from the UB tree since regions are hyper cubic,
or hyper rectangular with two side lengths of x and
2x. It differs from other SFCs since it uses a directory
and a two stage query processing. We differ from the

VA file since we use a clustering index entry, and not
approximations. We differ from i-distance since we
use hyper cubic like regions, not selected points and
offsets.

6 Conclusion and Future Work

This study makes the following contributions to the
field:

• We have shown that multidimensional data can
be organized in a way suitable for employing a
primary index structure which guarantees better
performance.

• Through an empirical study, we have demon-
strated that the VG-curve method combined
with the Multidimensional Dynamic Clustering
Primary Index is superior to the off-the-shelf
compound index, which is tailored for the spe-
cific query, for processing range queries on RFID
data of medium dimensionality.

• In our experiments, we have efficiently answered
many different queries with a single structure ob-
tained following the presented concept.

• Therefore, the presented concept can replace
many combinations of compound indexes for a
given multidimensional data set with one small
directory for RFID data of medium dimensional-
ity.

In future work we intend to investigate the appli-
cability and performance of the VG-curve method on
a wider variety of query types and data sets while
identifying how to best exploit the parameter block-
ing factor to suit different data characteristics and
local conditions.

References

Bentley, J. (1975), ‘Multidimensional binary search
trees used for associative searching’, Communica-
tions of the ACM 18, 509–517.

Berchtold, S., Bohm, C. & Kriegel, H.-P. (1998), ‘The
Pyramid-Tree: Breaking the Curse of Dimension-
ality’, Proceedings ACM SIGMOD pp. 142–153.

Berchtold, S., Bohm, C., Kriegel, H.-P., Sander,
J. & Jagadish, H. (2000), ‘Independent quantiza-
tion: An index compression technique for high-
dimensional data spaces’, icde 00, 577.

Berchtold, S., C.Bohm, Kriegel, H. P. & Michel, U.
(1999), Implementation of Multidimensional Index
Structures for Knowledge Discovery in Relational
Databases, in ‘Int. Conf. on Data Warehousing and
Knowledge Discovery DaWaK’, pp. 261–270.

Berchtold, S., Keim, D. & Kriegel, H. (1996), ‘The
X-tree: An index structure for high-dimensional
data’, In Proceedings of the 22nd Int. Conf. on Very
Large Data Bases pp. 28–39.

Bohm, C. (2000), ‘A Cost Model for Query Processing
in High Dimensional Data Spaces’, ACM Transac-
tions on Database Systems 25(2), 129–178.

Chakrabarti, K. & Mehrotra, S. (1999), The hybrid
tree: An index structure for high dimensional fea-
ture spaces, in ‘Proceedings of the 15th Interna-
tional Conference on Data Engineering (ICDE’99)’,
pp. 440–447.

CRPIT Volume 124 - Database Technologies 2012

124



Darcy, P., Stantic, B. & Derakhshan, R. (2007), ‘Cor-
recting Stored RFID Data with Non-Monotonic
Reasoning’, Principles and Applications in Infor-
mation Systems and Technology (PAIST) 1(1), 65–
77.

Gargantini, I. (1982), ‘An Effective Way to Represent
Quadtrees’, Commun. ACM 25(12), 905–910.

Hellerstein, J., Koutsupias, E. & Papadimitriou, C.
(1997), ‘On the Analysis of Indexing Schemes’,
16th ACM SIGMOD Symposium on Principles of
Database Systems pp. 249–256.

Hu, Y., Sundara, S., Chorma, T. & Srinivasan,
J. (2005), Supporting RFID-based Item Tracking
Applications in Oracle DBMS Using a Bitmap
Datatype, in ‘Proceedings of Very Large Data
Bases VLDB’, pp. 1140–1151.

Jagadish, H. V., Ooi, B. C., Tan, K.-L., Yu, C. &
Zhang, R. (2005), ‘iDistance: An Adaptive B+-
tree Based Indexing Method for Nearest Neighbor
Search’, ACM Trans. Database Syst. 30(2), 364–
397.

Lin, D., Elmongui, H. G., Bertino, E. & Ooi, B. C.
(2007), Data management in rfid applications, in
‘DEXA’, pp. 434–444.

Lin, K., Jagadish, H. & Faloutsos, C. (1994), ‘The
TVtree an index stucture for high dimensional
data’, In VLDB Journal 3(4), 517–543.

Lomet, D. & Salzberg, B. (1989), ‘The hB-tree: A
robust multiattribute search structure’, In Proc.
IEEE international conference on data enginerring
5, 296–304.

M.Stonebraker & U.Cetintemel (2005), One size fits
all: an idea whose time has come and gone, in ‘Pro-
ceedings of the 21st International Conference on
Data Engineering (ICDE 2005)’, pp. 2–11.

Murray, C. (2005), ‘Oracle Spatial User’s Guide and
Reference, Release 10g’.

Ohsawa, Y. & Sakauchi, M. (1983), ‘Bd-tree: A new
n-dimensional data structure with efficient dynamic
characteristics’, Proceedings of the Ninth World
Computer Congress, IFIP pp. 539–544.

Ooi, B. C., Tan, K.-L., Yu, C. & Bressan, S. (2000),
Indexing the Edges - A Simple and Yet Effi-
cient Approach to High-Dimensional Indexing, in
‘Symposium on Principles of Database Systems’,
pp. 166–174.

Orlandic, R. & Yu, B. (2002), ‘A retrieval technique
for high-dimensional data and partially specified
queries’, Data Knowl. Eng. 42(1), 1–21.

Rudolf Bayer and Volker Markl (1998), The UB-Tree:
Performance of Multidimensional Range Queries,
Technical report, Institute for Informatik, TU
Muenchen.

Samet, H. (1984), ‘The quadtree and related hierar-
chical data structures’, ACM Computing Surveys
16(2), 187–260.

Stantic, B., Terry, J., Topor, R. W. & Sattar,
A. (2010), Indexing Temporal Data with Virtual
Structure, in ‘Advances in Databases and Informa-
tion Systems - ADBIS’, pp. 591–594.

Stantic, B., Topor, R. W., Terry, J. & Sattar, A.
(2010), ‘Advanced indexing technique for temporal
data’, Comput. Sci. Inf. Syst. 7(4), 679–703.

Stockinger, K., Wu, K. & Shoshani, A. (2002), Strate-
gies for processing ad hoc queries on large data
warehouses, in ‘DOLAP ’02: Proceedings of the
5th ACM international workshop on Data Ware-
housing and OLAP’, pp. 72–79.

Terry, J., Stantic, B., Terenziani, P. & Sattar, A.
(2011), Variable Granularity Space filling Curve for
Indexing Multidimensional Data, in ‘Advances in
Databases and Information Systems - ADBIS, (to-
appear)’.

Wang, F. & Liu, P. (2005), Temporal management of
rfid data, in ‘VLDB ’05: Proceedings of the 31st
international conference on Very large data bases’,
VLDB Endowment, pp. 1128–1139.

Weber, R., Schek, H. J. & Blott, S. (1998), A
Quantitative Analysis and Performance Study for
Similarity-Search Methods in High-Dimensional
Spaces, in ‘VLDB’98, Proceedings of 24rd Inter-
national Conference on Very Large Data Bases’,
pp. 194–205.

Zhang, R., Ooi, B. C. & Tan, K.-L. (2004), Mak-
ing the Pyramid Technique Robust to Query Types
and Workloads, in ‘ICDE ’04: Proceedings of the
20th International Conference on Data Engineer-
ing’.

Proceedings of the Twenty-Third Australasian Database Conference (ADC 2012), Melbourne, Australia

125


