Interactions among chronic and acute impacts on coral recruits: the importance of size-escape thresholds

Author
Doropoulos, Christopher, Ward, Selina, Marshell, Alyssa, Diaz-Pulido, Guillermo, Mumby, Peter J.

Published
2012

Journal Title
Ecology

DOI
https://doi.org/10.1890/12-0495.1

Copyright Statement
Copyright 2012 Ecological Society of America. The attached file is reproduced here in accordance with the copyright policy of the publisher. Please refer to the journal's website for access to the definitive, published version.

Downloaded from
http://hdl.handle.net/10072/50802
Interactions among chronic and acute impacts on coral recruits: the importance of size-escape thresholds

CHRISTOPHER DOROPOULOS,1,2,4 SELINA WARD,1 ALYSSA MARSHELL,1,2 GUILLERMO DIAZ-PULIDO,2,3 AND PETER J MUMBY1,2

1School of Biological Sciences, University of Queensland, St Lucia, Queensland 4072 Australia
2Australian Research Council Centre of Excellence for Coral Reef Studies, Queensland 4072 Australia
3School of Environment and Australian Rivers Institute, Griffith University, Nathan, Queensland 4111 Australia

Abstract. Newly settled recruits typically suffer high mortality from disturbances, but rapid growth reduces their mortality once size-escape thresholds are attained. Ocean acidification (OA) reduces the growth of recruiting benthic invertebrates, yet no direct effects on survivorship have been demonstrated. We tested whether the reduced growth of coral recruits caused by OA would increase their mortality by prolonging their vulnerability to an acute disturbance: fish herbivory on surrounding algal turf. After two months’ growth in ambient or elevated CO2 levels, the linear extension and calcification of coral (Acropora millepora) recruits decreased as CO2 partial pressure (pCO2) increased. When recruits were subjected to incidental fish grazing, their mortality was inversely size dependent. However, we also found an additive effect of pCO2 such that recruit mortality was higher under elevated pCO2 irrespective of size. Compared to ambient conditions, coral recruits needed to double their size at the highest pCO2 to escape incidental grazing mortality. This general trend was observed with three groups of predators (blenny, surgeonfish, and parrotfish), although the magnitude of the fish treatment varied among species. Our study demonstrates the importance of size-escape thresholds in early recruit survival and how OA can shift these thresholds, potentially intensifying population bottlenecks in benthic invertebrate recruitment.

Key words: climate change; coral; herbivory; ocean acidification; recruitment; size-escape threshold.

INTRODUCTION

The supply of new recruits is critical to the maintenance and recovery of invertebrate populations (Connell and Keough 1985). Yet, following settlement from the plankton to the benthos, 50–90% of benthic invertebrate recruits do not survive beyond three months (Gosselin and Qian 1997). Owing to their small size, recruits generally have much higher mortality relative to their adult counterparts, as small individuals are either completely unharmed or killed outright by disturbances, whereas larger individuals may experience partial mortality (Hughes and Jackson 1985, Babcock 1991). A prominent cause of mortality for recruiting benthic organisms is direct or incidental predation by grazers. However, size-escape thresholds have been reported beyond which recruit vulnerability to predation is reduced across many taxa, including barnacles (Connell 1985, Navarrete 1996), mussels (Paine 1976, Wootton 1993), corals (Raymundo and Maypa 2004, Box and Mumby 2007), and fish (Rice et al. 1993). Even within very small size classes, size-escape can be an important mechanism of predator avoidance for newly settled recruits (Brock 1979, Christiansen et al. 2009), making rapid early growth vital to survivorship.

Any process that reduces the growth rate of invertebrate recruits will likely prolong the exposure to sources of mortality (pre-size-escape) and therefore elevate mortality rates. One of the most insidious disturbances to influence the growth rate of aquatic invertebrates is ocean acidification (OA). OA is a chronic disturbance that is caused by the uptake of atmospheric carbon dioxide (CO2), which decreases seawater pH and carbonate saturation. OA can alter community structure in both tropical (Fabricius et al. 2011) and temperate ecosystems (Hall-Spencer et al. 2008), and most calcifying organisms exhibit reduced growth from elevated CO2 partial pressure (pCO2; Kroeker et al.
 Due to the importance of recruitment, many recent investigations have evaluated the effects of OA on the early life-history of organisms, and have demonstrated that it can decrease the fertilization, settlement, and growth of recruits from a broad range of benthic invertebrates (Kurihara 2008, Byrne 2011). This includes the post-settlement growth of abalone (Byrne et al. 2011), oyster (Parker et al. 2009) and mussel shells (Gaylord et al. 2011), urchin spines (Byrne et al. 2011), and the linear growth (Cohen et al. 2009, Albright et al. 2010) and calcification (Cohen et al. 2009, de Putron et al. 2011) of coral recruits. However, no direct effects of OA on post-settlement survivorship of invertebrate recruits have been recorded to date.

A potentially important source of sudden mortality in newly settled invertebrates, and corals in particular, is the action of fish that graze the substrate frequently, principally to harvest epilithic algal turfs (Steneck 1988, Rotjan and Lewis 2008). Whether grazing fish actively prey upon small invertebrates or merely cause incidental damage during the process of grazing is unclear for most species, but coral mortality has been documented for various fish groups (Brock 1979, Christiansen et al. 2009). Here, we aimed to determine whether the chronic effect of OA would alter the survivorship of newly settled recruits (<5 mm) following the common, acute disturbance of herbivorous fish grazing on algal turfs.

We hypothesized that OA would decrease coral recruit growth and increase their mortality following grazing by herbivorous fish, with the rate of mortality dependent on the type of fish feeding method (scrapping, tearing, and combing).

Methods

General protocol

All experiments were conducted at Heron Island Research Station (HIRS) from 29 November 2010 to 18 February 2011. Coral larvae were settled on tiles in ambient seawater and grown in a flow-through aquarium system with three CO2 treatments. The treatments represented ambient (pH 8.04, pCO2 389 μatm [1 atmosphere = 101.3 kPA], aragonite saturation state Ωarag 3.6) and two elevated (pH 7.81, pCO2 753 μatm, Ωarag 2.3; pH 7.60, pCO2 1267 μatm, Ωarag 1.6) concentrations of CO2 (Appendix A). After two months, the recruits were mapped and measured to evaluate the effects of OA on post-settlement growth. The tiles were then subjected to individual grazing trials with herbivorous fish. Following the grazing trials, the coral recruits on the tiles were remapped to assess recruit mortality in each treatment.

Experimental CO2 aquarium system

The three seawater treatments were controlled by CO2 dosing to adjust the set pH of the seawater in 200-L sumps, following standard protocols for OA research (Gattuso et al. 2010). The seawater pH was continually measured with temperature compensated electrodes (InPro4501VP; Mettler-Toledo, Melbourne, Victoria, Australia) that were monitored daily for calibration validity, and recalibrated to 0.01 pH units when necessary. Targeted pH levels were maintained with a control unit (Aquatronica; AEB Technologies, Cavriago, Reggio Emilia, Italy), which opened solenoid valves that slowly injected CO2 into the sumps when the pH exceeded the desired threshold. For the control treatment, CO2-scrubbed air was bubbled into the sump when the target pH fell below the desired threshold.

The alkalinity of seawater samples was measured every six hours for a period of 48 hours from each treatment over both a spring (2.8 m) and a neap (1.5 m) tidal cycle. Alkalinity replicates within a sample were measured using Gran titration until a maximum 1% error was met, using a T50 titrator (Mettler-Toledo). The carbonate chemistry of the seawater was calculated with CO2SYS (Lewis and Wallace 2006) using pH, total alkalinity, salinity (35.4 ± 0.2% [mean ± SE]; n = 8), and temperature as the inputs (Appendix A).

The treatment seawater was fed continually from the sumps to seven replicate tanks per treatment at a flow rate of 1 L/min. The pH of the tanks was regularly verified with a portable SG2 SevenGo pH meter (Mettler-Toledo). Tank walls were regularly cleaned to remove any algae and contained small power heads for extra seawater circulation. Replicate tanks were randomized on the table and placed under thin shade cloth and neutral density filter (Lee 298 ND 0.15; LEE Filters Limited, Andover, UK) to accommodate the heterogeneity in light, which averaged 143.5 ± 1.8 [mean ± SE]) μmol-m⁻²-s⁻¹ between 06:00 and 18:00.

Coral recruit culturing

To culture the coral recruits, five gravid colonies of Acropora millepora were collected from Heron reef flat, placed in 60-L flow-through aquaria with ambient seawater, and their gametes collected upon spawning (29 November 2010). The gametes were fertilized and reared for five days at 25°C with ambient seawater using techniques described in Doropoulos et al. (2012). Mature planulae were settled during three days in ambient seawater onto 5 × 5 cm unglazed terracotta tiles. The tiles were pre-conditioned on the reef flat for ≥6 months to develop a microbial and encrusting algal community important to planulae attachment and metamorphosis. This short settlement period minimized any recruit calcification before the tiles were scored and randomly assigned among the replicate tanks in the experimental system. Settled recruits were grown for 60 days in the three CO2 treatments and, during this time, the tiles were cleaned every three days by gently brushing them with a soft toothbrush to remove algal turfs. At the end of this culturing period, the number of recruits per tile, polyps per recruit, and size of each recruit were mapped on the underside of each tile with a dissecting microscope (Appendix B).
Grazing experiments and fish collection and handling

At the end of the coral growth period, an algal turf community was allowed to develop on the tiles with the recruits for five days in the three CO2 treatments. Twelve-hour grazing trials (06:00 to 18:00) were then conducted on those tiles, with blennies (Salarias fasciatus), surgeonfish (Acanthurus nigrofuscus), and initial-phase (IP) parrotfish (Scarus spp.). The parrotfish appeared to be S. rivulatus but we could not be certain of their identification at this early initial phase. Each trial consisted of a single tile placed with a single fish in an aquarium with flowing ambient seawater and PVC fish shelter. Aquaria without a fish acted as the no-fish control. There were seven tile replicates for each CO2 treatment × fish type combination and five tile replicates for each CO2 treatment × no-fish control.

The blennies were caught on the reef flat (~0.3–2.5 m) with a hand net and solution of clove oil, ethanol, and seawater (1:1:9; Christiansen et al. 2009). They ranged between 75 and 120 mm in total length (TL; 93.6 ± 8.3 mm [mean ± SD]). Surgeonfish and parrotfish were caught on a shallow reef slope (~1–4 m) with a barrier net, and ranged between 135 and 180 mm (163.4 ± 13.0 mm) and 130 and 175 mm (150.9 ± 14.2 mm) TL, respectively. All fish were brought back to HIRS and placed in large aquaria with flowing seawater for ≥1 week prior to the experimental trials. Fouled tiles, live rock, and PVC structures were placed with the fish during the acclimation period. On the evening prior to each grazing trial, fish were placed in individual aquaria with shelter and flowing seawater. A tile with the coral recruits was then placed in the aquarium the following morning, minimizing handling stress to the animal. All fish were returned to the wild following the trials.

Response variables and statistical analyses

To determine the effect of OA on linear growth, the diameter of all recruits from each CO2 treatment was measured after two months using an optical micrometer (100 μm). A total of 1392 recruits were measured and their size ranged between 0.3 and 4.7 mm in diameter (Appendix B). Each CO2 treatment had 26 tile replicates, which were distributed among the seven replicate tanks per treatment. The effect of pCO2 on recruit diameter was analyzed with a mixed effects ANOVA, using permutations as the data did not conform to normality and were fourth root transformed to meet the requirements of homogeneity. CO2 treatment was a fixed factor with three levels (389, 753, 1267 μatm), with tanks random and nested in CO2 treatment, and tiles were random and nested in tanks. Pairwise comparisons were conducted to investigate differences among CO2 treatments.

To examine the effect of OA on recruit calcification, individual recruits were sampled after the grazing trials from the no-fish control tiles. Recruits could only be taken from the control tiles to avoid a bias associated with sampling from tiles that were subjected to grazing. After the trials, the tiles were thoroughly rinsed in distilled water to remove any salts and oven dried at 60°C for three days. Following Cohen et al. (2009), the skeletons of four or five recruits from each tile (five tiles per CO2 treatment) were photographed with a dissecting microscope camera, scraped from the tile using a scalpel and paintbrush, and individual recruits were weighed on a micro-balance (Mettler Toledo X5105) to 0.01 mg until a 1% error was met. The maximum diameter of each recruit was quantified using ImageJ (Abramoff et al. 2004) to standardize the mass of the recruit to mg/mm. The effect of pCO2 on calcification was analyzed with a mixed-effects ANOVA on the raw data that conformed to normality and homogeneity, with pCO2 as the fixed factor and tiles random and nested in pCO2. Tukey’s HSD was used to determine differences among CO2 treatments.

The number of recruits killed by the herbivorous fish was quantified by measuring coral survivorship as dead or alive, as initial exploration of the data indicated that 97% of the recruits were either unharmed or entirely killed (i.e., there were few that suffered partial mortality). To analyze survivorship in the original model, we used fish type and pCO2 as fixed factors, recruit diameter, number of recruits per tile, grazer length, and percent algae lost per tile as continuous predictors. The final model was determined with step-wise model simplification that identified the model with the lowest Akaike information criterion (AIC) from these possible explanatory variables and their interactions. The final model used a generalized mixed-effects model (GLMM) to analyze the binomial response of the number of recruits killed with fish type (no fish, blenny, surgeon, parrot) and pCO2 (389, 753, 1267 μatm) as fixed factors, individual recruit diameter and number of recruits per tile as continuous predictors, and tile as a random factor.

To determine the size at which net recruit survivorship was positive (>0.5), negative (<0.5), or random (~0.5) following grazing by the different fish, we pooled pCO2 and analyzed the mean survival of each recruit size class (in 0.1 mm units). The total number of Acropora millepora recruits in each size class (mm) used for the grazing trials are presented in Appendix C. Regression analyses were fitted with a logarithmic function on the mean survival for every recruit size among fish types. The GLMM was then utilized to model the survivorship of recruits up to 5.0 mm diameter following grazing by the different herbivorous fish at the three CO2 levels.

To quantify algal turf cover on the tiles and the efficiency of turf removal by the herbivorous fish, photographs of the tiles were taken immediately before and after the grazing trials. The abundance of filamentous algal turfs was quantified by classifying whether turf was present under 100 points per tile (25 cm²) using CPCe (Kohler and Gill 2006). Turf cover was analyzed with a three-way ANOVA, using fish type (no fish, blenny, surgeonfish, parrotfish), pCO2 (389, 753, 1267 μatm) as fixed factors, recruit diameter and number of recruits per tile as continuous predictors, and tile as a random factor.
analyses with Sigmaplot (version 10; Systat Software, San Jose, California, USA).

RESULTS

OA effects on coral recruit growth

Coral recruits grown for 60 days in the elevated CO2 treatments had significantly reduced growth and calcification compared to those grown in ambient conditions (Appendix D). The mean diameter of recruits was 8% (753 μatm pCO2) and 12% (1267 μatm pCO2) less than control recruits (Fig. 1a), and calcification was reduced by 11% and 30% at 753 and 1267 μatm pCO2, respectively (Fig. 1b).

OA and grazing effects on coral recruit mortality

Recruits grown in elevated CO2 levels suffered significantly higher levels of mortality than recruits grown in ambient conditions (P = 0.002), and survival was affected by the type of herbivorous fish grazing (P < 0.001; Fig. 2). Recruit mortality was highest in those grown at 1267 (P < 0.001), followed by 753 μatm pCO2 (P = 0.011), compared to those grown in ambient seawater. There was no significant difference in mortality between recruits grown in 753 and 1267 μatm pCO2. Parrotfish grazing caused the highest recruit mortality compared to any other fish type (P < 0.001), ranging from 25% in the ambient treatment, to 51% and 64% mortality of the recruits grown at 753 and 1267 μatm pCO2 (Fig. 2). Surgeonfish grazing caused higher recruit mortality than controls (P = 0.004) but was equal to blenny grazing (P = 0.378), ranging from 6% mortality
in the ambient CO₂ treatment to 27% mortality in the highest CO₂ treatment. Blenny grazing also caused significantly higher mortality than the control \((P = 0.020)\), ranging from 8% mortality of the recruits grown in ambient seawater and 20% mortality of recruits grown at 1267 \(\mu\text{atm} \text{pCO₂}\).

There was a highly significant effect of recruit diameter \((P < 0.001)\) on coral mortality, while the number of recruits per tile did not affect survival \((P = 0.086)\). The proportion of recruits killed was inversely related to size, such that the smallest recruits suffered the highest mortality (Fig. 3a). This was consistent for each CO₂ treatment and fish type (except the no-fish control). Yet, the actual diameter necessary for net survival doubled from \(~0.5\) mm following blenny and surgeonfish grazing, to \(1.0\) mm following parrotfish grazing (Fig. 3a). The survivorship curves were best described by a logarithmic function that fitted significantly \((P < 0.001)\) to the observed values for each fish type \((R^2\) for blenny = 0.72, surgeonfish = 0.81, parrotfish = 0.84), but there was no relationship between recruit size and mortality in the control \((P = 0.232; R^2 = 0.12)\).

There were distinct differences between the survivorship of recruits ranging from 0.1 to 5.0 mm among the CO₂ treatments (Fig. 3b–d). At ambient levels (Fig. 3b), blenny and surgeonfish grazing did not affect net survival, and only those smaller than 0.7 mm suffered net mortality following parrotfish grazing. When \(\text{pCO₂}\) increased to 753 \(\mu\text{atm}\) (Fig. 3c), net survival still generally occurred on coral recruits following blenny and surgeonfish grazing, yet the size required for the net survivorship of recruits following parrotfish grazing almost doubled to >1.2 mm. At 1267 \(\mu\text{atm}\) (Fig. 3d), coral recruits needed to be >0.4 mm for net survival following blenny and surgeonfish grazing, and >1.4 mm to survive parrotfish grazing.

OA and grazing effects on algal turfs

Prior to grazing trials, the average turf cover on the settlement tiles was 86% after five days growth (Appendix E). This was consistent for tiles allocated among the different fish types or CO₂ treatments (Appendix F). Elevated \(\text{pCO₂}\) during the algal turf growth did not affect the fish grazing rate (Appendix F), nor the turf C:N ratios (C:N average was 10.68 ± 0.44 [mean ± SE]; \(F_{2,12} = 0.267, P = 0.770\)).

DISCUSSION

This series of experiments has demonstrated the complexities of OA effects on coral demography at multiple scales, from the physiology of individuals (i.e., skeletal growth), to ecological interactions (i.e., recruit–
herbivore dynamics). The chronic effect of OA decreased the post-settlement growth of coral recruits and subsequently increased their rate of mortality because mortality rates were higher in smaller size classes. However, OA had an additional effect on mortality, over and above that related to coral size: coral mortality was greater under elevated CO$_2$ for a given size. While evidence for a size escape in mortality was found, with the threshold varying among fish “predators,” all thresholds increased under elevated CO$_2$ levels, indicating that recruit survival may be compromised on reefs as OA continues to rise.

The first impact of OA on coral survivorship was mediated through its inhibitory affect on coral growth. Previous studies have also reported an inverse relationship between OA and coral recruit growth (Cohen et al. 2009, Albright et al. 2010, de Putron et al. 2011). Here, _Acropora millepora_ recruits exhibited a nonlinear response in calcification to OA, similar to those of _Favia fragum_ and _Porites australis_ (de Putron et al. 2011), which only significantly declined in calcification below 2.33 calcification to OA, similar to those of recruits exhibited a nonlinear response in _A. millepora_ 2009, Albright et al. 2010, de Putron et al. 2011). Here, ship between OA and coral recruit growth (Cohen et al. Previous studies have also reported an inverse relationship between OA and coral recruit growth (Cohen et al. 2009, Albright et al. 2010, de Putron et al. 2011). Here, _A. millepora_ recruits exhibited a nonlinear response in calcification to OA, similar to those of _Favia fragum_ and _Porites australis_ (de Putron et al. 2011), which only significantly declined in calcification below 2.33 calcification to OA, similar to those of recruits exhibited a nonlinear response in A. millepora 2009, Albright et al. 2010, de Putron et al. 2011). Here, A. millepora recruits exhibited a nonlinear response in calcification to OA, similar to those of Favia fragum and Porites australis (de Putron et al. 2011), which only significantly declined in calcification below 2.33 CO$_2$, following principles of size-escape theory (e.g., Paine 1976, Gosselin and Qian 1997). In addition to prolonging the period during which recruits are vulnerable to grazer-induced mortality, OA appeared to have an additional deleterious impact on mortality. The most likely cause of this OA influence is a change in skeletal density brought about by reduced calcification, even in corals of identical size. Conceivably, corals with a weaker skeleton from elevated CO$_2$ may incur greater damage during fish feeding activities than those with denser skeletons. Such density-based phenomena are seen in adult corals where those species with denser skeletons lose less skeletal material when fed upon by parrotfish (Bruggemann et al. 1994). The models illustrated that rising OA incrementally increased the critical size-escape thresholds for net survival of the two month old coral recruits, resulting from their lowered calcification.

In our study, coral recruit survivorship was affected by the type of herbivore that grazed on the surrounding algal turfs. To survive grazing by parrotfish, recruits had to be double the size they needed to be to survive blenny and surgeonfish grazing because of the different feeding methods of the fish. Parrotfish scrape the substrate and remove everything growing on the surface (Bellwood and Choat 1990), whereas blennies “brush” algal turfs with their comb-like dentition (Wilson et al. 2003) and grazing surgeonfish rapidly nip at algal turfs, tearing filaments off with a sideward flick of the head (Purcell and Bellwood 1993). Therefore, the rates of post-settlement mortality of benthic invertebrate recruits are likely to increase under future levels of elevated CO$_2$ because of interactions with herbivorous fish, even at very small size classes following settlement. Future work should investigate the wider impact of herbivores on recruit survivorship throughout coral ontogeny, given that positive associations between recruit density and grazing have been widely reported (Birkeland 1977, Mumby 2009) and cryptic settlement may allow recruits to escape incidental mortality by herbivory (Raimondi and Morse 2000).

There are two limitations of this study that warrant further work. In accordance with other studies in aquatic systems (Ledger and Hildrew 2005, Witt et al. 2011), we did not observe any obvious effects of OA on turf cover, palatability or grazing, after five days algal growth. Yet, the composition of the algal communities in these systems can be altered by reduced pH (Ledger and Hildrew 2005, Hall-Spencer et al. 2008, Witt et al. 2011), as can the algae–herbivore dynamics of specialized, but not generalist grazers (Ledger and Hildrew 2005). Future experiments should exclusively test these relationships over longer periods of time in marine ecosystems. Secondly, although these results and other recent work have demonstrated that elevated pCO$_2$ alters trophic (e.g., Munday et al. 2010, Ferrari et al. 2011) and non-trophic (e.g., Diaz-Pulido et al. 2011, Doropoulos et al. 2012) interactions, caution must be applied to the predictive value of these studies, as adaptation over multiple generations may serve an important role in the evolution of species and their interactions on reefs as they adapt to progressive OA.

Ocean acidification is a chronic press disturbance on calcifying taxa (Anthony et al. 2011) and our results suggest that it has the potential to reduce coral recruitment through at least two mechanisms. The outcome of such processes might generate new recruitment bottlenecks or intensify existing ones (Mumby et al. 2007). Bottlenecks in recruitment may be compounded by pre-settlement reductions to invertebrate fertilization and metamorphosis, caused by elevated CO$_2$ (Kurihara 2008, Byrne 2011). This combination of effects suggests that the recovery of calcifying invertebrates could be constrained by multiple processes as atmospheric CO$_2$ continues to rise.

Acknowledgments

We are grateful to M. Herrero, A. Lloyd, B. McIntosh, M. Priest, and the HIRS staff for field assistance; A. Harborne, A. Lloyd, and G. Roff for insightful discussions; S. Blomberg and I. Chollett for statistical advice; and, C. Lovelock and I. Tibbetts for providing laboratory facilities. Financial assistance was provided to C. Doropoulos from a Danielle Simmons Award, the Winifred Violet Scott Foundation, a QLD Smart Future Scholarship, and the HIRS Internship awarded by the
University of Queensland; to S. Ward and G. Diaz-Pulido from an ARC Discovery Grant; and to P. J. Mumbly from an ARC Laureate Fellowship. All work was conducted under GBRMPA permit number 31597.1, UQ limited impact accreditation numbers UQ001/2010 and UQ004/2010, and Australian ethics approval numbers SBS/183/10 and SBS/188/10.

Literature Cited

SUPPLEMENTAL MATERIAL

Appendix A

Summary of the physical and chemical seawater values for the CO2 treatment levels (*Ecological Archives* E093-202-A1).

Appendix B

Ranges of *Acropora millepora* recruit sizes, number of polyps, number per tile, total numbers, and the tile replication, after two months growth at ambient and elevated pCO2 that were used in each grazing trial (*Ecological Archives* E093-202-A2).

Appendix C

Total number of *Acropora millepora* recruits in each size class used for the grazing trials (*Ecological Archives* E093-202-A3).

Appendix D

ANOVA results comparing differences between the linear extension and calcification of *Acropora millepora* recruits grown at ambient and elevated CO2 partial pressure (pCO2) (*Ecological Archives* E093-202-A4).

Appendix E

Mean turf algae cover on coral settlement tiles before and after 12-h grazing trials with no-fish controls, blennies, surgeonfish, or parrotfish (*Ecological Archives* E093-202-A5).

Appendix F

ANOVA results comparing differences between the percent turf cover before and after the 12-h grazing trials with a no-fish control, blennies, surgeonfish, or parrotfish (*Ecological Archives* E093-202-A6).