Graphical Abstract
To create your abstract, type over the instructions in the template box below. Fonts or abstract dimensions should not be changed or altered.

Kororamide A, a new tribrominated indole alkaloid from the Australian bryozoan *Amathia tortuosa*
Anthony R. Carroll, Seanan J. Wild, Sandra Duffy and Vicky M. Avery

Leave this area blank for abstract info.

\[
\begin{align*}
\text{Kororamide A, a new tribrominated indole alkaloid from the Australian bryozoan} & \\
\text{*Amathia tortuosa*} & \\
\text{Anthony R. Carroll, Seanan J. Wild, Sandra Duffy and Vicky M. Avery} & \\
\text{Leave this area blank for abstract info.}
\end{align*}
\]
Kororamide A, a new tribrominated indole alkaloid from the Australian bryozoan Amathia tortuosa.

Anthony R. Carrolla,b, Seanan J. Wilda, Sandra Duffyb and Vicky M. Averyb

aEnvironmental Futures Centre, Griffith University, Gold Coast, QLD 4222, Australia
bEskeits Institute, Griffith University, Brisbane, QLD 4111, Australia

\begin{abstract}
A new tribrominated indole alkaloid kororamide A (1) together with the known alkaloid convolutamine F (2), were isolated, through application of mass directed purification from the northern NSW bryozoan Amathia tortuosa. The structure of 1 was deduced from analysis of 1D/2D NMR and MS data. Kororamide A exists in solution as a mixture of inter-converting cis-trans amide regio-isomers in a ratio of 4:5. Bioactivity testing demonstrated that 1 was marginally active against chloroquine sensitive and resistant strains of the malaria parasite Plasmodium falciparum and inactive against normal human cell lines.
\end{abstract}

The natural products chemistry of southern Australian bryozoans was extensively studied between the mid 1980’s and late 1990’s by Blackman’s group at the University of Tasmania.3 A parallel ongoing study of the chemistry of New Zealand bryozoans has been pursued by Princep’s group at Waikato University in New Zealand since the mid 1990’s.3 Both groups have shown that south western pacific foliose bryozoans produce a range of alkaloids possessing novel structures and interesting biological activities.3 We have recently started a program to investigate the chemistry and biological activity of temperate and subtropical eastern Australian bryozoans. This has so far resulted in the structures and anti-plasmodial activity of two novel alkaloids, wilsoniamine A and B, together with an additional amathamide alkaloid, amathamide H from a Tasmanian collection of Amathia wilsoni being reported.3 Although our initial study reported on the chemistry of a Tasmanian bryozoan, our collection has mainly focused on bryozoans inhabiting sub-tidal reefs off the northern New South Wales (NSW) coast. Mass spectrometric, NMR spectroscopic and HPLC analysis have been used as tools to identify specimens containing unique chemistry and this highlighted Amathia tortuosa. (ACENV00007) collected from storm debris on Korora beach near Coffs Harbour, NSW in 2009 for further analysis.5 Here-in we report on the isolation, structure determination and biological activity of a new alkaloid, kororamide A and the known alkaloid convolutamine F that we have isolated from this species.

The freeze dried bryozoan (2.39 g) was extracted by repeated sonication in MeOH (4 x 200 mL). The MeOH extracts were combined, evaporated and the residue (668 mg) adsorbed onto C\textsubscript{18} silica gel. The extract impregnated gel was placed in a HPLC pre-column cartridge (10 mm x 20 mm), connected in series to a C\textsubscript{18}-bonded silica HPLC column (21 mm x 150 mm) and eluted with a gradient from 1% aqueous TFA to MeOH containing 1% TFA. Seventy fractions were collected and aliquots from these fractions were further analysed by (+)-LRESIMS. Only two groups of fractions (fraction 33 and fractions 43 to 45) showed prominent ion clusters by MS. Fraction 33 had a pseudomolecular ion cluster at m/z 400/402/404/406 and fractions 43-45 each had a pseudomolecular ion cluster at m/z 532/534/536/538. These ion clusters are characteristic for compounds each containing three bromine atoms and an odd number of nitrogen atoms. These fractions were evaporated and analysed by 1H NMR spectroscopy. Fractions 43 to 45, possessing identical NMR spectra, were combined for detailed NMR analysis and shown to be a new compound that we have named kororamide A (1, 5.1 mg, 0.21% dry weight) was pure and shown to be the known compound, convolutamine F (2), from interpretation of 2D NMR data and comparison with literature data.6

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{structures.png}
\caption{Structures of Kororamide A (1a and 1b) and convolutamine F (2)}
\end{figure}

\begin{table}[h]
\centering
\begin{tabular}{ |c|c| }
\hline
Keyword & Description \\
\hline
Bryozoan & Marine natural product \\
\hline
Alkaloid & Bryozoa \\
\hline
Indole & Alkaloids \\
\hline
Malaria & Wilsoniamine A and B \\
\hline
Marine natural product & Amathamide H \\
\hline
\end{tabular}
\caption{Keywords used in this study}
\end{table}
Kororamide A (1) was isolated as a yellow optically active gum [c]D20 − 3.07 (0.24, MeOH).2 Positive HRESIMS measurement of the pseudomolecular ion cluster peak at m/z 531.8237 (Δ 1.5 ppm) established a molecular formula of C19H26Br3N2O for 1. The IR spectrum of 1 had absorption bands at 2959, 1683, 1672 and 1652 cm⁻¹ suggesting that it contained an amide group as well as aromatic or double bond systems. The UV spectrum had an absorption maximum at 282 nm indicating that 1 contained an aromatic moiety.

A prominent feature of the 1H NMR spectrum of 1 (Table 1) was the presence of multiple pairs of signals each possessing the same splitting pattern. This suggested that the sample was a mixture of two compounds. Chemical exchange correlations observed between these paired signals in a ROESY spectrum however indicated that the molecule was a single compound inter-convertng between two isomers on the NMR time scale. Comparison of the integrals for each of the signals within a pair signified that the two isomers were present in a 4:5 ratio. It could be deduced from detailed analysis of the 1H NMR spectrum that each isomer of 1 contained two ortho coupled aromatic methines, three quaternary methyl groups, three methylene groups, an aliphatic methine, two cis double bond protons (J = 9.0 Hz) and one broad exchangeable proton.

Table 1. NMR data for both isomers of kororamide A (1a and 1b)

<table>
<thead>
<tr>
<th>Position</th>
<th>13C</th>
<th>H mult, (J in Hz)</th>
<th>13C</th>
<th>H mult, (J in Hz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-NCH3</td>
<td>35.2</td>
<td>4.15 s</td>
<td>35.2</td>
<td>4.15 s</td>
</tr>
<tr>
<td>2</td>
<td>119.5</td>
<td>-</td>
<td>119.5</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>111.1</td>
<td>-</td>
<td>110.6</td>
<td>-</td>
</tr>
<tr>
<td>3a</td>
<td>127.8</td>
<td>-</td>
<td>127.8</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>118.8</td>
<td>7.24 d, (8.4)</td>
<td>118.7</td>
<td>7.09 d, (8.4)</td>
</tr>
<tr>
<td>5</td>
<td>125.3</td>
<td>7.47 d, (8.4)</td>
<td>125.3</td>
<td>7.49 d, (8.4)</td>
</tr>
<tr>
<td>6</td>
<td>120.4</td>
<td>-</td>
<td>120.4</td>
<td>-</td>
</tr>
<tr>
<td>7</td>
<td>106.3</td>
<td>-</td>
<td>106.3</td>
<td>-</td>
</tr>
<tr>
<td>7a</td>
<td>134.9</td>
<td>-</td>
<td>134.9</td>
<td>-</td>
</tr>
<tr>
<td>8</td>
<td>109.8</td>
<td>6.10 d, (9.0)</td>
<td>109.2</td>
<td>6.09 d, (9.0)</td>
</tr>
<tr>
<td>9</td>
<td>128.8</td>
<td>6.80 d, (9.0)</td>
<td>130.1</td>
<td>6.87 d, (9.0)</td>
</tr>
<tr>
<td>10-NCH3</td>
<td>33.6</td>
<td>2.65 s</td>
<td>34.7</td>
<td>2.69 s</td>
</tr>
<tr>
<td>11</td>
<td>167.6</td>
<td>-</td>
<td>168.2</td>
<td>-</td>
</tr>
<tr>
<td>12</td>
<td>67.1</td>
<td>4.70 q, (6.9)</td>
<td>66.4</td>
<td>4.57 q, (7.1)</td>
</tr>
<tr>
<td>13α</td>
<td>27.3</td>
<td>2.64 s</td>
<td>27.4</td>
<td>2.47 s</td>
</tr>
<tr>
<td>13β</td>
<td>2.02 m</td>
<td>1.85 m</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14α</td>
<td>21.8</td>
<td>1.95 m</td>
<td>21.9</td>
<td>1.89 m</td>
</tr>
<tr>
<td>14β</td>
<td>2.12 m</td>
<td>2.08 m</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15α</td>
<td>55.4</td>
<td>3.60 m</td>
<td>55.5</td>
<td>3.58 m</td>
</tr>
<tr>
<td>15β</td>
<td>3.15 m</td>
<td>3.08 m</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16-NCH3</td>
<td>39.8</td>
<td>2.81 s</td>
<td>39.8</td>
<td>2.79 s</td>
</tr>
<tr>
<td>NH</td>
<td>9.76 bs</td>
<td>-</td>
<td>9.67 bs</td>
<td></td>
</tr>
</tbody>
</table>

Spectra were recorded at 600 MHz for 1H and 150 MHz for 13C in DMSO-d6 at 30 °C.

From analysis of the HSQC spectrum it was deduced that each isomer of 1 possessed 11 protonated carbons. The major isomer had methylene carbons at δc 55.4, 27.3 and 21.8 and the minor isomer at δc 55.5, 27.4 and 21.9. The pair of methylene carbons at δc 55.4 and 55.5 correlated to protons signals between δh 3.05 and 3.60 and this suggested that these carbons were substituted by nitrogen atoms. A pair of carbons at δc 67.1/66.4 that correlated to protons at δh 4.70/4.57 were assigned to either nitrogen or oxygen substituted methines. The six methyl proton signals correlated to carbons between 33 and 40 ppm and this indicated that each was attached to nitrogen atoms as well. Analysis of COSY correlations indicated that the three methylene groups in each isomer formed a chain, and one methylene (H-16) was vicinal to the methine H-12. The presence of COSY correlations from the methylene protons, H-14, the methine proton, H-12, and the methyl protons 13-NCH3 to the exchangeable proton H-13 suggested that a N-methyl pyrrolidine was present in 1. COSY correlations between the two pairs of double bond protons (δh 6.10 to 6.80 in the major isomer and 6.09 to 6.87 in the minor isomer) in combination with a coupling constant of 9.0 Hz between these pairs indicated that these protons were part of a cis 1,2-disubstituted double bond. HSQC correlations showed that the protonated double bond carbons resonated at δc 109.8 and 128.8 in the major isomer and at δc 109.2 and 130.1 in the minor isomer and this suggested that the double bond was directly attached to a nitrogen atom. The remaining two pairs of aromatic protons also showed mutual COSY correlations (δh 7.24 to 7.47 in the major isomer and 7.09 to 7.49 in the minor isomer) and shared a coupling constant of 8.4 Hz and this indicated that 1 contained a 1,2,3,4-tetrasubstituted phenyl group. The methyl protons 10-NCH3 (δh 6.65 major isomer and δh 3.69 minor isomer) showed 3JCH correlations to the protonated double bond carbons at δc 128.8 (major isomer) and δc 130.1 (minor isomer) and downfield quaternary carbonyl carbons at δc 167.6 (major isomer) and 168.2 (minor isomer) in the HMBC spectrum implying that 1 contained an N-methyl-enamide. A 4JCH correlation from H-16a to the carbonyl carbon C-11 established that a bond connected C-12 of the pyrrolidine to the amide carbonyl carbon C-11, C-9 of the enamide was directly attached to a quaternary sp² hybridized carbon since H-10 showed a 3JCH correlation to a carbon at δc 111.1 (major isomer) and δc 110.6 (minor isomer). H-9 showed 3JCH correlations to two quaternary sp² hybridized carbons at δc 119.5 and 127.8 (co-incident in both isomers). An HMBC correlation also signified that the carbon at δc 119.5 was three bonds away from the N-methyl protons that resonated at δh 4.15. These methyl protons showed an additional correlation to a quaternary carbon at δc 134.9. The aromatic protons H-4 (δh 7.24 (major isomer) and δh 7.09 (minor isomer)) also showed 3JCH correlations to both δc 111.1 (major isomer) and 110.6 (minor isomer) and 134.9, while H-5 (δh 7.47 and 7.49) also correlated to the carbon at δc 127.8. In addition H-4 correlated to an unassigned quaternary sp³ hybridized carbon at δc 120.5 and H-5 correlated to an unassigned quaternary sp³ hybridized carbon at δc 106.4. In total these correlations were consistent with 1 containing a 2,3,6,7-tetrasubstituted-N-methyl indole with the enamide being attached at C-3 (figure 2). All but the three bromine atoms from the molecular formula deduced from HRESIMS analysis were accounted for from the NMR analysis and since the enamide substituted the C-3 position of the indole, the three bromine atoms must be attached to the three remaining substituted carbons, C-2, C-6 and C-7. The chemical shift of these carbons was consistent with those calculated for bromine substitution since bromine induces a ~ 6 ppm upfield shift of the aromatic carbon directly bonded to bromine and a ~3 ppm downfield shift of aromatic carbons ortho to bromine substituted aromatic carbons. The planar structure of kororamide A (1) was therefore established.
It is well recognized that tertiary amides commonly exist in solution as interconverting cis-trans isomers about the amide bond. This isomerism is slow on the NMR time scale but quick enough to prevent purification of individual isomers. The doubled sets of signals present in the NMR spectra for 1 could therefore be assigned to interconverting amide bond tautomers. Comparison of 1H shifts of N-methyl groups syn and anti to the amide carbonyl have shown that syn methyls always resonate upfield of the anti methyl. Therefore the major isomer present in DMSO solutions of 1 is the syn isomer (1a). Correlations observed in a ROESY experiment confirmed this assignment since H-9 showed a cross peak with H-12 in the major isomer (1a) and 10-NCH₃ showed cross peaks to H-12 and 13-NCH₃ in the minor isomer (1b).

The 2,6,7 tri-bromo substitution pattern of the indole in 1 is unique. The closest structures to 1 are the tribrominated indole alkaloids isolated previously from bryozoans from the sub-order Vesticularia. Alternatamid A and B, isolated from the Atlantic bryozoan Amathia alternata, possess 2,5,6 tribrominated indoles and have been shown to have mild antibacterial effects against gram-positive bacteria. In addition two species from the genus Zoobotryon produce 2,5,6-tribrominated indole alkaloids that inhibit settlement of barnacles and mussels. Kororamide A is also similar to the 2,4,6 tribrominated indole convolutindole A, isolated from Amathia convoluta from Tasmanian waters. Convolutindole A has anti-nematode and anthelmintic parasitic effect. Kororamide A also possesses structural similarities to amathamide H isolated recently from A. wilsoni since replacement of the 2,6,7-tribromo-1-methylindole in 1 with 2,4,6-tribromo-3-methoxyphenyl would yield amathamide H. Since 1 possessed a similar sign and magnitude for its optical rotation to that recorded for amathamide H the absolute configuration of the stereogenic centre C-12 was assigned S.

Kororamide A (1) and convolutamine F (2) were tested for their ability to inhibit the growth of chloroquine sensitive and resistant strains of the malaria parasite Plasmodium falciparum. Kororamide A (1) was marginally active (72% inhibition at 20 μM) against the chloroquine sensitive strain but less active against the chloroquine resistant strain (50% inhibition at 20 μM). Convolutamine F (2) was only weakly active against both strains only reaching 80% inhibition at the highest dose tested (40 μM). Both compounds were also tested against normal human embryonic cells (HEK) and breast and pancreatic cancerous cells and were shown to be inactive up to a dose of 40 μM.

Acknowledgments

The bryozoan was collected under the NSW DPI Fisheries Scientific collection permit P09/0031-1.1.

References and notes

7. Kororamide A (1): Orange/brown solid (5.1mg, 0.0021%); [α]D +3.07 (c 0.24, MeOH); UV (MeOH) λmax (log ε) 282 nm (3.74), 212 nm (4.85) and 230(sh) nm (4.49); IR (film) νmax 1683, 1672, 1652, 1204, 1181, 1131 cm-1; 1H and 13C NMR (see Table 1); (++)-HRESIMS m/z (35eV) (rel. int.) 532 [C₆H₆Br₂N₂O] + (25), 534 [C₆H₆Br₂N₂O] + (100), 536 [C₆H₆Br₃N₂O] + (10), 538 [C₆H₆Br₃N₂O] + (20); (+)-HRESIMS m/z: 531.9238 (calculated for C₅H₅N₂O³Br, 531.9229).

Supplementary Material

Supplemental data (1H, COSY, HSQC, HMBC and ROESY spectra for kororamide A (1) general experimental details, bryozoan collection details, extraction and isolation procedures for 1 and 2) associated with this article can be found in the online version, at doi: