
A New Genetic Algorithm for

Simplified Protein Structure Prediction

Mahmood A Rashid1,2, Md Tamjidul Hoque3,
M.A.Hakim Newton1,2, Duc Nghia Pham1,2, Abdul Sattar1,2

1 Queensland Research Lab, National ICT Australia
2 Institute for Integrated & Intelligent Systems, Griffith University

3 Computer Science, University of New Orleans, USA

Abstract. In this paper, we present a new genetic algorithm for pro-
tein structure prediction problem using face-centred cubic lattice and
hydrophobic-polar energy model. Our algorithm uses i) an exhaustive
generation approach to diversify the search; ii) a novel hydrophobic core-
directed macro move to intensify the search; and iii) a random-walk
strategy to recover from stagnation. On a set of standard benchmark
proteins, our algorithm significantly outperforms the state-of-the-art al-
gorithms for the same models.

Keywords: Protein Structure Prediction, Genetic Algorithms, Local
Search, Lattice Models, Energy Models, Random-walk

1 Introduction

Protein Structure Prediction (PSP) is computationally a very hard problem [24].
Given a protein’s amino acid sequence, the problem is to find a three dimensional
structure of the protein such that the total interaction energy amongst the amino
acids in the sequence is minimised. The protein folding process that leads to such
structures involves very complex molecular dynamics [4] and unknown energy
factors. In the pursuit of addressing this difficulties in a hierarchical way, re-
searchers have considered simplified models [21,17,26] for PSP. However, the
complexity of the simplified problem still remains challenging.

There are a large number of existing search algorithms that attempt to solve
the PSP problem by exploring feasible lattice-based structures called confor-

mations. The state-of-the-art results on face-centred cubic (FCC) lattice based
hydrophobic-polar (HP) energy model have been achieved by local search (LS)
methods [5,9]. On the other hand, genetic algorithms (GA) [14], and tabu search
[3] found promising results on 2D and 3D hexagonal lattice based HP models. In
general, the success of GA and LS methods crucially depends on the balance of
diversification and intensification of the search. Moreover, these algorithms often
get stuck in local minima. As a result, they perform poorly on large proteins.
Any further progress to these algorithms require addressing the above issues
appropriately.

In this paper, we introduce a population based algorithm (GA+) under the
GA framework for simplified PSP. We use HP based energy model on 3D FCC
lattice to simplify the problem. In GA+, we use i) an exhaustive generation
approach to diversify the search; ii) a novel hydrophobic core-directed macro



move to intensify the search; and iii) a random-walk based approach to recover
from stagnation. On a set of benchmark proteins, GA+ significantly outperforms
the state-of-the-art PSP algorithms in the same models.

The rest of the paper is organised as follows: Sect. 2 reviews background
knowledge, Sect. 3 discusses related work on PSP; Sect. 4 describes our new GA
for simplified PSP; Sect. 5 presents the experimental results and analyses; and
finally, Sect. 6 draws the conclusion and outlines our future research.

2 Preliminaries

Proteins are essentially sequences of amino acids. They adopt specific folded
three-dimensional structures to perform specific tasks. The function of a given
protein is determined by its native structure, which has the lowest possible free
energy level. Nevertheless, misfolded proteins cause many critical diseases such
as Alzheimer’s disease, Parkinson’s disease, and Cancer [8]. Protein structures
are important in drug design and biotechnology.

Homology modeling, protein threading, and ab initio are three computational
approaches used in PSP. Prediction quality of homology modeling and protein

threading depend on previously known structures of sequentially similar proteins.
Our work is based on the ab initio approach that depends only on the amino acid
sequence of the target protein. In our simplified PSP model, we use FCC lattice
for mapping conformations that satisfy a self-avoiding walk. We also use HP
energy model for conformation evaluation, and an enhanced genetic algorithm for
conformation search. The self-avoiding walk constraint, FCC lattice, HP energy
model, and genetic algorithms are described below.

2.1 Self-Avoiding Walk

In lattice based protein representation, the amino acids of a given sequence
are mapped on lattice points satisfying a self-avoiding-walk constraint. A self-
avoiding walk constraint ensures no revisitation of any lattice point during the
sequence mapping.

2.2 FCC Lattice

The FCC lattice has the highest packing density compared to the other existing
lattices [10]. In FCC, each lattice point has 12 neighbours (Fig. 1a) with 12 basis

vectors (1, 1, 0), (−1,−1, 0), (−1, 1, 0), (1,−1, 0), (0, 1, 1), (0, 1,−1), (1, 0, 1), (1, 0,−1),

(0,−1, 1), (−1, 0, 1), (0,−1,−1), and (−1, 0,−1). The hexagonal closed pack (HCP)
lattice, also known as cuboctahedron (Fig. 1b), was used in [14]. In HCP, each

(a) (b) (c)

Fig. 1. a) FCC lattice, b) HCP lattice, c) HP energy model [16]



lattice point has 12 neighours that correspond to 12 basis vertices with real-
numbered coordinates, which causes the loss of structural precision for PSP. In
simplified PSP, conformations are mapped on the lattice by a sequence of basis
vectors, or by the relative vectors that are relative to the previous basis vectors
in the sequence.

2.3 HP Energy Model

The HP energy model is based on the hydrophobicity of the amino acids. In the
HP model [7,16], when two non-consecutive hydrophobic amino acids become
topologically neighbours, they release a certain amount of energy, which for
simplicity is shown as −1 in Fig. 1c. The total free-energy E (Shown in Equation
1) of a conformation, based on the HP model, becomes the sum of the energy
released by all pairs of non-consecutive hydrophobic amino acids.

E =
∑

i<j−1

cij .eij (1)

Here, cij = 1 if ith and jth amino acids are non-consecutive in the sequence but
are neighbours on the lattice, otherwise 0; and eij = −1 if ith and jth amino
acids are both hydrophobic, otherwise 0.

2.4 Genetic Algorithms

GAs are a population-based search for optimisation problems. A genetic algo-
rithm maintains a set of solutions known as population. In each generation, it
generates a new population from the current population using a given set of
genetic operators known as crossover and mutation. It then replaces inferior
solutions by superior newly generated solutions to get a better current popula-
tion. A typical crossover operator randomly splits two solutions at a randomly
selected crossover point and exchanges parts between them (Fig. 2a). A typical
mutation operator alters a solution at a random point (Fig. 2b). In the case of
PSP, conformations are regarded as solutions of a GA. Below we describe genetic
operators used in PSP.

Crossover Operators: The crossover operators are applied on two selected
parent conformations to exchange their parts to generate child conformations.
In a single-point crossover, both parents are splitted at a single point (Fig. 3
a) while in a multi-point crossover they are splitted at more than one point.
Nevertheless, the crossover operations succeed if they produce conformations
that satisfy the self-avoiding walk constraint.

(a) Crossover (b) Mutation

Fig. 2. Typical (a) crossover and (b) mutation operators



Crossover Mutation

A

B C

D A

B
C

A

BC A

B C

D

EF

G

A

BC

D

A B

C

A

BC B C

DE

FG

A

a) single-point crossover b) rotation c) diagonal d) pull e) tilt

Fig. 3. The primitive operators that are used in our GAs on 3D FCC lattice space.
For easy comprehension, the figures are presented in 2D space.

Mutation Operators: The mutation operators are applied on a single
conformation. The operators can perform single-point change or multi-point
changes. The mutation operations succeed if the resultant conformation remains
a self-avoiding walk on the lattice. The primitive mutation operators (as shown
in Fig 3 (b-e)) are described below:

1. Rotation: One part of a given conformation is rotated around a selected
point (Fig 3 b). This move is mostly effective at the begining of the search.

2. Diagonal Move: Given three consecutive amino acids at lattice points A,B,
and C, a diagonal move at position B takes the corresponding amino acid
diagonally to a free position (Fig 3 c). Diagonal moves are very effective on
FCC lattice [5,9] points.

3. Pull Moves: The amino acids at points A and B are pulled to the free
points (Fig 3 d) and the connected amino acids are pulled as well to get a
valid conformation. Pull moves [18] are local, complete and reversible. Pull
moves are very effective especially when the conformation is compact.

4. Tilt Moves: Two or more consecutive amino acids connected in a straight
line are moved by a tilt move to immediately parallel lattice positions [12].
Tilt-moves pull the conformation from both sides until a valid conformation
is found. In Fig. 3 e), the amino acids at points C and D are moved and
subsequently other amino acids from both sides are moved as well.

3 Related Work

Different types of metaheuristic have been used in solving the simplified PSP
problem. These include Monte Carlo Simulation [23], Simulated Annealing [22],
Genetic Algorithms [25,12], Tabu Search with GA [3], Tabu Search with Hill
Climbing [15], Ant Colony Optimisation [2], Immune Algorithms [6], Tabu based
Stochastic Local Search [5], and Constraint Programming [9]. Below we describe
PSP methods that are based on local search and genetic algorithms.

Local Search: Starting from an initial solution, local search algorithms move
from one solution to another to find a better solution. Local search algorithms
are well known for efficiently producing high quality solutions, which are difficult
for systematic search approaches. However, they are incomplete [1], and suffer



from revisitation and stagnation. Restarting the whole or parts of a solution
remains the typical approach to deal with such situations. In PSP problem,
Cebrian et al. [5] used a local search algorithm combined with tabu heuristic.
They implemented their method for the 3D FCC lattice and the HP model,
and tested its effectiveness on Harvard instances [28]. Later, Dotu et al. [9]
extended the work in [5] by using a hybrid method that combines local search
and constraint programming together. Overall, these two methods have produced
the current state-of-the art results for PSP on FCC lattice and HP energy model.

Genetic Algorithms: Unger and Moult [25] first applied GA to PSP and
found their method to be more promising than the Monte Carlo based methods.
They used absolute encodings on the square and cubic lattices, and the HP en-
ergy model. They only applied single point crossovers, and discarded infeasible
solutions. Later, Patton [20] used relative encodings to represent conformations
and a penalty method to enforce the self-avoiding walk constraint. In [14], GAs
have been used by Hoque et al. for cubic, and 3D HCP lattices. They also in-
troduced a twin-removal operator [13] to remove duplicates from the population
and to prevent premature convergence.

4 Our Algorithms

Fig. 4 presents our GA+. The algorithm initialises the current population and
evaluates them. At each generation, it selects a genetic operator based on a
given probability distribution to use through the generation. This operator is
used in an exhaustive way to obtain all conformations in the new population.
We ensure that no duplicate conformation is added to the new population. For
a given number of generations, if the best conformation in the new population
is not better than the best in the current population, our algorithm then resorts
to a random-walk procedure to diversify the new population. Nevertheless, after
each generation, the new population becomes the current population; and the
search continues. Finally, the best conformation found so far is returned.

Note that our GA is different from a typical GA in a number of ways. A
typical GA i) randomly selects an operator every time before generating a new
solution; ii) selects parent solutions randomly; iii) applies the operators on ran-
domly selected points; iv) generates only one (for mutation) or two (for crossover)
solutions; v) does not use any macro-move; vi) does not use a random-walk in
stagnant situation; and vii) does not remove duplicate conformations.

4.1 Exhaustive Generation

For mutation operators, our algorithm adds one resultant conformation to the
new population for each conformation in the current population. In Fig. 4 Pro-

cedure mutConf, notice that the child conformations are generated by applying
the genetic operator at each position of the parent conformation. The resultant
conformation of a mutation operation is either the parent conformation itself or
a child depending on the quality of the conformations.

For crossover operators, two resultant conformations are added to the new
population from each application of the operator on two randomly selected con-
formations in the current population. Crossover operators (Procedure crsConfs)



Procedure gaPlus(opR,rwT)
1 op: Operators, c, c′: Conformations
2 opR: Operator selection probabilities
3 curP,newP: Current and new populations
4 rwT: Number of non-improving
5 generations before random walk.
6 //======================
7 initPopulation(curP)
8 foreach Generation until timeout do
9 selectOperator(op, opR)

10 if mutation(op) then
11 foreach c ∈ curP do
12 newP.add(mutConf(c))

13 else //crossover(op)
14 while ¬full(newP) do
15 c, c′ ← randomConfs(curP)

16 newP.add(crsConfs(c, c′))

17 if ¬improved(newP, rwT) then
18 rndWalk(newP)
19 curP ← newP

20 return bestConformation(curP)

Procedure mutConf(conf)
1 mutants.add(conf)
2 foreach 1 ≤ pos ≤ conf.length() do
3 c← applyOperator(conf, pos)
4 mutants.add(c)

5 return bestConformation(mutants)

Procedure crsConfs(conf,conf′)
1 N: Number of iteration
2 // typically N = conf.length()/10

3 crossbred.add(conf, conf′)
4 for i = 1 to N do
5 pos← random(1, conf.length())

6 c, c′ ← applyOperator(conf, conf′, pos)

7 crossbred.add(c, c′)

8 return best2Conformations(crossbred)

Fig. 4. Our new genetic algorithms for PSP

generate child conformations by randomly selecting the crossover points on the
parent conformations. Note that the child generation method is not strictly ex-
haustive in crossovers. However, unlike typical GAs, a number of child confor-
mations are generated by our algorithm. The best two conformations from the
parents and the children then become the resultant conformations.

4.2 Macro-Move Operator

Protein structures have hydrophobic cores (H-core) that hide the hydrophobic
amino acids from water and expose the polar amino acids to the surface to
be in contact with the surrounding water molecules [27]. H-core formation is
the main objective of HP based PSP. To achieve this, the total distance of all
H-H pairs is minimised in [5]. A predefined motif based segment replacement
strategy is applied in [14]. In this paper, we present a macro-move operator to
aid forming the H-core. Our macro move performs a series of diagonal-moves on
a given conformation to build the H-core around the hydrophobic core centre
(HCC). See Fig. 5 for an example. The macro-move squeezes the conformation
and quickly forms the H-core. In our implementation, the macro-move is used
like any other mutation operators.

In the macro-move (Fig. 6 Procedure macroMove), the HCC is calculated by
finding arithmetic means of x, y, and z coordinates of all hydrophobic amino
acids. The macro-move for a given number of iterations repeatedly applies the

Fig. 5. A macro move operator comprising a series of diagonal moves. For easy under-
standing, the figures are presented in 2D space. The solid-black circles represent the
hydrophobic amino acids and the hollow ones the hydrophilic.



Procedure macroMove(conf)
1 for i = 1 to Repeat do
2 T = P if bernoulii(p), else H
3 A[j] : jth amino acid in conf.
4 foreach j : type(A[j]) = T do
5 apply diagonal move at j, if T = P
6 or dist(A[j],hcc) is non-increaseing.
7 break on first success.

8 return conf

Procedure rndWalk(pop)

1 foreach conf ∈ pop do
2 for i = 1 to Repeat do
3 A[j] : jth amino acid in conf.

4 foreach A[j] do
5 apply pull-move move at j.
6 break on first success.

7 return pop

Fig. 6. Our macro move and random walk algorithms

diagonal move either at each P- or at each H-type amino acid positions. Whether
to apply the diagonal move on P- or H-type amino acids is determined by using
a Bernoulii distribution with probability p (typically p = 20% for P-type amino
acids). For a P-type amino acid, we consider the first successful diagonal move.
For a H-type amino acid, we take the first successful diagonal move that does
not increase the distance of the amino acids from the HCC. Note that a large
number of iterations would prematurely squeeze the conformation to a great
extent while a small number of iterations could allow other genetic operators
to play their roles in the search. We typically use 10 iterations for the first few
hundreds of generations, later we use 5 iterations as the search progresses.

4.3 Stagnation Recovery by Random Walk

When the best conformation found so far remains the same for a number of
generations (Fig. 4 Procedure gaPlus Line 14), we term this as a stagnation.
In a stagnation, a random-walk algorithm (Fig. 6 Procedure rndWalk) applies
unconditional pull moves on each conformation of the new population. We repeat
the process for a number of iterations. A large number of iterations would greatly
diversify the population. We typically use a number between 5 to 10 for this.

4.4 Further Implementation Details

Below we describe the other implementation choices of our algorithm in details.
Conformation Representation: We represent conformations by 3D coor-

dinates and relative encodings. While coordinates help us determine whether a
point on the lattice is free, relative encodings help apply genetic operators in
generating conformations and then eliminate duplicate conformations.

Conformation Generation: For conformation generation, we use the ge-
netic operators listed in Sect. 2 as well as the macro-move operator.

Conformation Evaluation: The fitness function we use in our algorithm
to evaluate conformations is the exact energy function for the HP energy model
(see Sec. 2). We do not use any other fitness functions such as sum of all H-H
pair distances as is used in [5].

Operator Selection: The probability distribution to select operators is cho-
sen intuitively. The single- and multi-point crossovers are selected with 15% and
5% probabilities giving 20% chance to crossovers. The rotation, diagonal-move,
pull-move, tilt-move, and macro-move are selected respectively with probabili-
ties 20%, 10%, 30%, 10%, and 10%. For experiments, when macro-moves are not
used, diagonal moves are alone given 20% chance. Pull moves are given more



chance than tilt moves as the latter tends to make more changes (in both sides)
to the conformation than the former (in one side).

Population Size: The number of conformations explored in each generation
should be more for a large protein than for a small one. In our algorithm, the
number of such conformations are O(n× l) where n is the population size and l
is the protein length. This is because we apply mutation operators at each amino
acid position of each conformation in the population. For crossovers, the case is
slightly different, but they are selected only with 20% probability. For the time
being, we use n = 100, 80, 60, 50 for l >= 50, 100, 200, 400 respectively.

Population Initialisation:We generate the initial population by randomly
selecting the basis vectors between each consecutive pair of amino acids. The gen-
erated conformations are all valid and satisfy the self-avoiding walk constraint.

5 Experimental Results

Among the protein instances (Table 1) used in our experiment, the H instances
are taken from Harvard benchmarks [28]; F, S, and R instances are taken from
Peter Clote laboratory website1. Cebrian et al. [5] and Dotu et al. [9] used
these instances to test their algorithms. We also use three more large sequences,
which are taken from the CASP2 competition having CASP target IDs: T0516,
T0570, and T0563. The CASP targets are converted to HP sequences based
on the hydrophobic and polar properties of the constituent amino acids. The
lower bounds of free energy (in Column LB-FE of Table 1) are obtained from [5]
and also by using the CPSP tool [19]; however, there are some unknown values
because CPSP tool cannot find lower bounds of free energy for large sequences.

Protein Energy Values (-ve) Achieved by Different Algorithms

Info BGA RGA WGA MGA GA+ LS [5] T

Seq Size LB-FE Best Avg Best Avg Best Avg Best Avg Best Avg Best Avg mins

H1 69 65 58 = 67 = 68 = 67 = 69 68 66

H2 48 69 63 57 = 67 = 68 = 68 = 69 = 65 30

H3 72 64 57 71 69 = 70 = 71 = 72 69 66

F90 1 168 133 119.5 159 144 165 161 165 159 = 166 164 160

F90 2 91 168 132 123.5 155 142 166 161 164 158 = 165 165 158 120

F90 3 167 138 124.4 158 146 165 161 163 158 = 164 165 159

S1 135 357 300 279.0 332 313 352 342 344 336 355 348 351 341

S2 151 360 298 258.2 332 301 351 339 346 335 356 349 355 343 120

S3 162 367 290 250.4 322 297 347 336 347 334 361 349 355 340

R1 384 249 221.6 295 274 353 331 345 327 355 346 332 318

R2 200 383 262 219.4 302 277 351 334 345 327 360 346 337 324 300

R3 385 250 220.8 299 274 344 331 340 323 363 344 339 323

T0516 229 455 274 251.2 340 310 399 384 395 373 423 402 390 373

T0570 258 494 288 250.9 359 317 406 388 394 376 421 404 388 359 480

T0563 279 ? 359 315.5 428 390 494 474 482 459 519 490 491 461

= denotes the lower bound of free energy is found. ? denotes unknown.

Table 1. Experimental results of GA+, different GA variants, and the local search
algorithm in [5]. Column LB-FE presents the lower bound of free energies.

1 Peter Clote Lab: http://bioinformatics.bc.edu/clotelab/FCCproteinStructure/
2 CASP website: http://predictioncenter.org/casp9/targetlist.cgi



The main goal of the experiment is to compare the result of our final algo-
rithm GA+ with the state-of-the-art result obtained by LS [5,9]. However, to
prove the effectiveness of our new enhancement techniques, we implemented a
baseline genetic algorithm denoted by BGA. In BGA, we select one operator for
each generation based on the given probability distribution. However, like other
typical genetic algorithms, we select parents in BGA by using a Roulette Wheel

based on the quality of conformations in the current population. Also, we gen-
erate only one (for mutations) or two (for crossovers) child conformations from
each application of the genetic operators. The points on the conformations, to
apply the operators to, are selected randomly as well. Further, inspired by the
results of twin-removal in [13], we discard duplicate solutions from new genera-
tions. Notice that BGA does not use any of the macro-move, random-walk, and
exhaustive generation approaches.

We ran experiments with our algorithm denoted by GA+ and three of its
other variants. These variants and BGA all are implemented in Java2 program-
ming language. Nevertheless, these variants allow us to investigate the effect of
each new aspect of GA+ individually and in a combined way. RGA adds ex-
haustive generation in the genetic operators (as described in Sect. 4) to BGA.
Variants WGA and MGA respectively add random-walk and macro-move meth-
ods to RGA. Thus, variants WGA and MGA respectively exclude macro-move
and random-walk methods from GA+ while RGA excludes both methods. For
the time being, we do not consider other possible combinations that include
adding macro-move or random-walk, or their combinations to the BGA.

We also ran the local search algorithm in [5], which is developed in COMET
[11]. This algorithm [5] helps us compare our results with the state-of-the-art
results of PSP on FCC lattice and HP energy model. We tried to run the al-
gorithm in [9], but unfortunately for most of the proteins, the program aborted
on exhausting the memory available. Any effective comparison in this case is
therefore not possible.

We ran the experiments on the NICTA3 cluster. The cluster consists of a
number of identical Dell PowerEdge R415 computers, each equipped with 2
x AMD 6-Core Opteron 4184 processors, 2.8GHz clock speed, 3M L2/6M L3
Cache, 64 GB memory and running Rocks OS (a Linux variant for cluster).
For each protein, we ran each algorithm 50 times with a time limit specified in
Table 1 Column T. In the same table Columns Best and Avg, we report the
best and average energy values obtained over 50 runs. Due to space limits, only
the magnitudes of the energy values (ignoring the minus signs in all) are shown.
Therefore, the larger the number in the table, the better the performance.

From the results in Table 1, we see that the energy values obtained in small
proteins by all algorithms are close to the lower bounds. For better comparison,
we therefore consider the large proteins, where our RGA significantly outper-
forms BGA. The differences between RGA and BGA are in the application of
the genetic operators. In BGA, genetic operators generate one (for mutations)
or two (for crossovers) random conformations. In RGA, an exhaustive genera-

3 NICTA website: www.nicta.com.au



a) by LS, E=-333 b) by GA+, E=-355 c) LB-FE=-384

Fig. 7. 3D structures of Protein R1 obtained by a) LS and b) GA+, and c) the structure
with the lower bound free energy.

tion is used and the best children are returned. These results clearly show the
effectiveness of the exhaustive generation.

The results in Table 1 also show that WGA and MGA clearly outperform
RGA. These results indicate the importance of our random-walk based stagna-
tion recovery approach and the macro-move operator. Notice that when WGA
is compared with MGA, the former significantly outperforms the latter; which
means the random walk alone is more effective than the macro-move. This fur-
ther suggests that given an exhaustive generation approach accompanied by a
greedy best child selection method as in RGA, recovery from stagnations is more
crucial than intensifying the search.

As noted before, GA+ is the final version of our algorithm. GA+ combines
both macro-move and random-walk with RGA. Notice that GA+, benefited from
our all three techniques, clearly outperforms BGA, RGA, MGA and WGA. Nev-
ertheless, we observe that the results obtained by GA+ are better than that of
LS with wide margins. LS is also outperformed by WGA, but it outperforms
RGA and BGA; the results of LS and MGA are very close.

Relative Improvement: In Table 2, we present a comparison of (%) im-
provements in average conformation quality. We compare GA+ (target) with
BGA and LS (references). For each protein, the relative improvement of the tar-
get t w.r.t. reference r is (Et − Er)/(Elb − Er) × 100; where Et and Er denote
the average energy value achieved by t and r respectively, and Elb is the lower

Relative improvements of GA+ w.r.t. BGA and LS

Protein info GA+ BGA LS
Seq Size LB-FE Avg Avg RI Avg RI
H1 -69 -69 -58 100% -66 100%
H2 48 -69 -69 -57 100% -65 100%
H3 -72 -72 -57 100% -66 100%

F90 1 -168 -166 -120 96% -160 75%
F90 2 91 -168 -165 -124 93% -158 70%
F90 3 -167 -164 -125 93% -159 63%
S1 135 -357 -348 -279 88% -341 44%
S2 151 -360 -349 -268 88% -343 35%
S3 162 -367 -349 -250 85% -340 33%
R1 -384 -346 -223 76% -318 42%
R2 200 -383 -346 -219 77% -324 37%
R3 -385 -344 -221 75% -323 34%

T0516 229 -258 -402 -251 74% -373 35%
T0570 258 -494 -404 -251 63% -359 33%

Table 2. Relative improvements (RI columns) of GA+ over BGA and LS. The values
are calculated using the formula explained in Relative Improvement subsection. Column
LB-FE presents the lower bound of free energies.



bounds of free energy for the protein in the HP model. We present the relative
improvements only for the proteins having known lower bounds of free energy.
Further, we show the best structures found by GA+ and LS for protein R1 in
Fig. 7; the figure also shows the structure of R1 with the lower bound free energy.

Search Progress: We compare the search progresses of different variants
of GA and LS over time. Fig. 8 shows the average energy values obtained with
times by the algorithms for Protein R1. We observe that MGA achieves very
good progress initially, but almost becomes flat later on. WGA and LS perform
equally initially but later WGA makes more progress than LS. GA+ combines
the positive aspects of MGA and WGA. Initially, it achieves the same progress
as MGA does and later it is mostly benefited by random-walk as WGA is. The
difference between performances of WGA and GA+ roughly remains in the initial
boosted progress made by the macro-move i.e. MGA.

-340

-320

-300

-280

-260

-240

-220

-200

0 50 100 150 200 250 300 350

A
ve

ra
ge

 E
ne

rg
y 

(-
ve

)

Time (Minutes)

BGA
RGA
WGA
MGA
GA+
TLS 

Fig. 8. Search progress of different approaches for Protein R1.

6 Conclusion and Future Work

In this paper, we presented five variants of genetic algorithms that individually
and in a combined way use three different enhancement techniques: i) an exhaus-
tive conformation generation approach; ii) a novel hydrophobic-core directed
macro-move; and iii) a random-walk based stagnanation recovery technique. We
compared our results with the state-of-the-art local search algorithm for sim-
plified PSP. We found that our final algorithm GA+ that use a combination of
all the three enhancements significantly outperforms all current approaches of
simplified PSP. In future, we intend to apply GA+ in high resolution PSP.

Acknowledgments

NICTA is funded by the Australian Government as represented by the Depart-
ment of Broadband, Communications and the Digital Economy and the Aus-
tralian Research Council through the ICT Centre of Excellence program.

References

1. Berger, B., Leightont, T.: Protein folding in the hydrophobic-hydrophilic (HP)
model is NP-complete. Journal of Computational Biology 5(1), 27–40 (1998)



2. Blum, C.: Ant colony optimization: introduction and recent trends. Physics of Life
reviews 2(4), 353–373 (2005)

3. Böckenhauer, H.J., Ullah, A.Z.M.D., Kapsokalivas, L., Steinhöfel, K.: A local move
set for protein folding in triangular lattice models. In: WABI. Lecture Notes in
Computer Science, vol. 5251, pp. 369–381. Springer (2008)

4. Bonneau, R., Baker, D.: Ab initio protein structure prediction: progress and
prospects. Annual Review of Biophysics and Biomolecular Structure 30(1), 173–89
(2001)

5. Cebrián, M., Dotú, I., Van Hentenryck, P., Clote, P.: Protein structure prediction
on the face centered cubic lattice by local search. In: Proceedings of the 23rd
national conference on Artificial intelligence - Volume 1. pp. 241–246 (2008)

6. Cutello, V., Nicosia, G., Pavone, M., Timmis, J.: An immune algorithm for protein
structure prediction on lattice models. IEEE Transaction on Evolutionary Com-
puting 11(1), 101–117 (2007)

7. Dill, K.A.: Theory for the folding and stability of globular proteins. Biochemistry
24(6), 1501–1509 (1985)

8. Dobso, C.M.: Protein folding and misfolding. Nature 426(6968), 884–890 (2003)
9. Dotu, I., Cebrián, M., Van Hentenryck, P., Clote, P.: On lattice protein structure

prediction revisited. IEEE Transactions on Comp. Bio. and Bioinformatics (2011)
10. Hales, T.: A proof of the kepler conjecture. The Annals of Mathematics 162(3),

1065–1185 (2005)
11. Hentenryck, P., Michel, L.: Constraint-based local search. The MIT Press (2009)
12. Hoque, M.T.: Genetic algorithm for ab initio protein structure prediction based on

low resolution models. Ph.D. thesis, Gippsland School of Information Technology,
Monash University, Australia (Sep 2007)

13. Hoque, M.T., Chetty, M., Lewis, A., Sattar, A.: Twin removal in genetic algo-
rithms for protein structure prediction using low-resolution model. Transactions
on Computational Biology and Bioinformatics 8(1), 234–245 (2011)

14. Hoque, M.T., Chetty, M., Sattar, A.: Protein folding prediction in 3D FCC HP
lattice model using genetic algorithm. vol. 2007, pp. 4138–4145. IEEE Congress on
Evolutionary Computation (2007)

15. Klau, G.W., Lesh, N., Marks, J., Mitzenmacher, M.: Human-guided tabu search.
In: The Eighteenth National Conference on Artificial Intelligence (AAAI-02) (2002)

16. Lau, K.F., Dill, K.A.: A lattice statistical mechanics model of the conformational
and sequence spaces of proteins. Macromolecules 22(10), 3986–3997 (1989)

17. Lee, J., Wu, S., Zhang, Y.: Ab initio protein structure prediction. From protein
structure to function with bioinformatics pp. 3–25 (2009)

18. Lesh, N., Mitzenmacher, M., Whitesides, S.: A complete and effective move set for
simplified protein folding. In: Research in comp. mol. biology (RECOMB) (2003)

19. Mann, M., Will, S., Backofen, R.: CPSP-tools – exact and complete algorithms for
high-throughput 3D lattice protein studies. BMC Bioinformatics 9(1), 230 (2008)

20. Patton, A.L., Punch III, W.F., Goodman, E.D.: A standard GA approach to native
protein conformation prediction. Int. Conf. on Genetic Algorithms (1995)

21. Rohl, C., Strauss, C., Misura, K., Baker, D.: Protein structure prediction using
Rosetta. Methods in enzymology 383, 66–93 (2004)

22. Tantar, A.A., Melab, N., Talbi, E.G.: A grid-based genetic algorithm com-
bined with an adaptive simulated annealing for protein structure prediction. Soft
Computing-A Fusion of Foundations, Methodologies and Applications (2008)

23. Thachuk, C., Shmygelska, A., Hoos, H.H.: A replica exchange monte carlo algo-
rithm for protein folding in the HP model. BMC bioinformatics 8(1), 342 (2007)

24. The Science Editorial: So much more to know. The Science 309(5731), 78–102 (July
2005)

25. Unger, R., Moult, J.: A genetic algorithm for 3D protein folding simulations. p.
581. Morgan Kaufmann Publishers, The 5th International Conference on Genetic
Algorithms (1993)

26. Xia, Y., Huang, E.S., Levitt, M., Samudrala, R.: Ab initio construction of protein
tertiary structures using a hierarchical approach. Journal of Mol. Biology (2008)

27. Yue, K., Dill, K.A.: Sequence-structure relationships in proteins and copolymers.
Physical Review E 48(3), 2267 (1993)

28. Yue, K., Fiebig, K.M., Thomas, P.D., Chan, H.S., Shakhnovich, E.I., Dill, K.A.: A
test of lattice protein folding algorithms. Proceedings of the National Academy of
Sciences of the United States of America 92(1), 325 (1995)


