Use of anti-cancer drugs, mitocans, to enhance the immune responses against tumors

Hahn¹, T.; Polanczyk¹, M.J.; Borodovsky¹, A.; Ramanathapuram¹, L.V.; Akporiaye¹ E.T; Ralph², S.J.

1. Robert W. Franz Cancer Research Center, Earle A. Chiles Research Institute, Providence Portland Medical Center, 4805 NE Glisan St. Portland, OR 97213, USA;
2. School of Medical Sciences, Griffith Health Institute, Griffith University, Parklands Ave., Gold Coast, Queensland 4222, Australia.

ABSTRACT

Cytotoxic drugs in cancer therapy are used with the expectation of selectively killing and thereby eliminating the offending cancer cells. If they should die in an appropriate manner, the cells can also release danger signals that promote an immune reaction that reinforces the response against the cancer. The identity of these immune-enhancing danger signals, how they work extra- and intracellularly, and the molecular mechanisms by which some anti-cancer drugs induce cell death to bring about the release of danger signals are the major focus of this review. A specific group of mitocans, the vitamin E analogs that act by targeting mitochondria to drive ROS production and also promote a more immunogenic means of cancer cell death exemplify such anti-cancer drugs. The role of reactive oxygen species (ROS) production and the events leading to the activation of the inflammasome and pro-inflammatory mediators induced by dying cancer cell mitochondria are discussed along with the evidence for their contribution to promoting immune responses against cancer. Current knowledge of how the danger signals interact with immune cells to boost the anti-tumor response is also evaluated.

Keywords: Mitocans, immunotherapy, inflammasome, cancer therapy, reactive oxygen species, mitochondria.

IMMUNOGENIC CANCER CELL DEATH

Cancer cells can undergo several alternative modes of cell death depending upon the cytotoxic drug treatment applied and the conditions in the tumor microenvironment. However, certain forms of drug-induced cell death are much more effective than others because of their ability to activate potent anti-cancer immune responses. It is well known that infectious pathogen-associated molecular patterns (PAMPs) activate immune cells through pattern recognition receptors (PRRs). Similarly, cellular injury can release endogenous ‘damage’-associated molecular patterns (DAMPs) or alarmins that activate immunity (reviewed in [1]). Therefore, it is important to understand at the molecular level the cytotoxic events induced in cancer cells by chemotherapy and the DAMP signals that these dying cells are capable of releasing. It should then become possible to selectively apply anti-cancer
drugs with the aim of provoking the type of cell death induced that will promote a potent immune reaction to help eliminate the cancer. Over the past several years, evidence has been mounting that the DAMPS released by dying cancer cells has a strong bearing on the ability of the host to develop a suitable immune response that will help to eliminate remaining live cancer cells and provide sustained immunity. Factors that impact on this outcome are the focus of this review.

MECHANISMS OF CANCER CELL DEATH AND THEIR RELEVANCE TO ANTI-CANCER IMMUNE RESPONSES

Apoptosis was originally believed to represent a “tidy” form of cell death whereby intracellular components were constrained within membrane encased cellular fragments which were then engulfed and cleanly removed by macrophages thereby avoiding the potential for autoimmune problems. However, the recent discovery of the inflammasome response (detailed below) has significantly improved the understanding and development of protective immune responses targeting cancers and reawakened studies on the role of cytotoxic drug-induced cell death in inflammation. Thus, intracellular mediators released from dying cancer cells provide essential signals that promote innate immune responses and facilitate immune cell recognition of tumor cells and generation of protective adaptive immune responses.

The different types of cell death

Numerous reviews have recently been published distinguishing between the properties and characteristics of the various forms of cell death [2-6] and they are only briefly discussed here. Historically, apoptosis and necrosis represented two extreme forms of a broad spectrum of cell death modes. In this review, the four main cell death programs of autophagy, necrosis, pyroptosis and apoptosis are described as alternative pathways and more importantly, examined in the context of their impact and relevance to the immune system. In 1988, the discoverers of apoptosis reviewed the differences in what were then identified as the two predominant and distinct forms of cell death, necrosis and apoptosis [7], that have since become well recognised and characterised molecularly. The following is a quotation from this report: “Necrosis is a degenerative phenomenon that follows irreversible injury. Apoptosis, in contrast, appears to be an active process requiring protein synthesis for its execution… Morphologically, apoptosis involves condensation of the nuclear chromatin and cytoplasm, fragmentation of the nucleus, and budding of the whole cell to produce membrane-bounded bodies in which organelles are initially intact. These bodies are disposed of by adjacent cells without inflammation. Biochemically, there is distinctive internucleosome cleavage of DNA in apoptosis, which is quite different from the random DNA degradation observed in necrosis.”
Already it can be seen from the last sentence that the authors were well aware of the fact that DNA degradation was a common factor in cell death, albeit that differences in the nature of this degradation were apparent. Apoptosis has since become molecularly characterized as programmed cell death involving a sequence of orchestrated events mediated by either an extrinsic (external) or intrinsic (internal) activation pathway leading to a characteristic type of nuclear DNA fragmentation. The intrinsic pathway of apoptosis involves the mitochondria whereby several pro-apoptotic proteins including cytochrome c are released from the intermembraneous space in mitochondria following formation of a mitochondrial outer membrane permeability pore or MOMP. When cytochrome c is released through the MOMP channel it is recruited into a large protein complex known as the apoptosome – a scaffold platform that binds to other proteins in the cytosol including Apaf-1 and the protease precursor, pro-caspase-9. The apoptosome cleaves pro-caspase 9 to the proteolytically active form caspase-9, which in turn activates the effector protease, caspase-3, triggering the execution phase of apoptosis. At this point, the cytoplasmic DNase (CAD) is activated and this enzyme leaves the cytosol, enters the nucleus, and induces DNA fragmentation by cleaving internucleosomal DNA, causing chromatin (DNA and histones inside the nucleus) to condense with other proteins. The dying cell under the influence of the proteolytic action of caspases also undergoes phosphatidylserine externalization causing the cell membrane to bleb, forming vesicles that contain condensed former components of the cell which fragment into several apoptotic bodies that are phagocytosed by macrophages or adjacent cells.

In contrast to apoptotic events, necrotic cells result from the rapid loss of cell homeostasis as intracellular ATP stores become depleted. The necrosing cells swell (oncosis) as water and ion influx occurs increasing their volume, leading to rupture and associated loss of cellular organelles and cell membrane integrity. Apoptotic bodies or blebs do not occur and the nuclear chromatin in necrotic cells is irregularly clumped but without extensive changes in nuclear condensation. Leakage results in release of cellular contents which can promote inflammation.

Two other forms of cell death have been identified that are in between necrosis and apoptosis and are described as autophagy and pyroptosis. They also show opposing outcomes on the immune response. Pyroptosis is similar to necrosis in that the dying cells also lose cell membrane integrity, resulting in an even more highly inflammatory process. The name pyroptosis refers to the fever induced by the inflammatory response associated with this form of cell death with plasma membrane rupture. The nuclear modifications occurring during pyroptosis show greater similarities to the type of DNA fragmentation and nuclear condensation detected in apoptosis except that a caspase-1 activated DNAse (identity unknown) produces a more necrosis-like smeared DNA cleavage without nuclear fragmentation which differs from the distinct form of oligonucleosomal fragmentation pattern and laddering with nuclear fragmentation that is the hallmark of apoptosis [8]. Apoptotic cells fragment into discrete apoptotic
bodies unlike pyroptotic cells, which do not. Another characteristic feature of pyroptotic cells is the activation of caspase-1 to cleave the precursor forms of the cytokines pro-IL-1beta and -IL-18 resulting in the secretion of their mature active forms promoting inflammation.

Similar to apoptosis, autophagy is believed to be a more immunologically silent process by which cells can undergo death and autophagic cells maintain their membrane integrity. However, they exhibit a profound vacuolization as a result of organelle fusion and enveloping membrane-based autophagosome formation.

Contrary to the earlier popular belief about a tidy apoptosis induced by chemotherapy, apoptosis has since been shown to induce potent immune reactivity under the right circumstances. Hence, in order for strong immune responses to be induced during the cell death process, including by apoptosis, activation of inflammasomes is required resulting in the caspase mediated proteolytic maturation of the pro-inflammatory cytokines, interleukin-1beta (IL-1beta) and interleukin-18 (IL-18) from their respective precursor molecules and subsequent release. This pro-inflammatory response occurs either as a result of dying cells releasing these signals or indirectly by the release of danger signals alerting and activating nearby immune cells to do the same. In an effective response, IL-1beta release ultimately promotes the maturation and activation of CD8+ CTL immune responses essential for the longer term killing and elimination of tumor cells [9] [10]. A vast range of extra- and intracellular generated danger signals are released by dying cancer cells and some of these relevant to this review are described in the ensuing sections. Particularly the essential mediators signalling and activating the inflammasome response in bystander immune cells such as dendritic cells (DCs) to promote the adaptive immune responses are discussed in detail.

STRUCTURE AND FUNCTION OF INFLAMMASOMES

One of the greatest advances in understanding the immune system over the past decade has been the discovery of inflammasomes (reviewed in [10-12]). As the name suggests, inflammasomes are responsible for activating inflammatory processes, [11] and have been shown to induce cell pyroptosis, a process of programmed cell death distinct from apoptosis [3, 8]. These intracellular pro-inflammatory alarm signalers and cytosolic sensors respond to a variety of danger signals including toxic substances or component materials derived from infectious agents such as viruses, bacterial pathogens or other components of dying cells. Hence, the particular inflammasome activated will depend on the type of danger signal binding to and assembling the complex, providing its specificity. From this large family of cytosolic multiprotein complexes, three of the more characterized forms relevant to this review; NLRP3, AIM2, and IPAF, will be described as representative examples (Fig. 1). The complete assembled inflammasome structure has not yet been determined but likely resembles that of the Apaf-1/apoptosome and the related wheel of death, the CD95/Fas death-inducing signaling complex (DISC), involved in apoptosis [13, 14].
Thus, inflammasomes also contain different caspase enzymes (aspartic acid targeting, cysteine-dependent proteases) comprising part of their activity. A hallmark of inflammasome activation is that they promote the maturation of the pro-inflammatory cytokines, IL-1beta and IL-18.

Although caspases -3, -8 and -9 are recognised for their essential roles as pro-apoptotic mediators of cell death, the other members of the caspase family, particularly caspase-1 (aka ICE), are pro-inflammatory because they are important in regulating secretion of the cytokines IL-1beta and IL-18, cleaving the precursor or immature forms of these cytokines to facilitate release of the mature, active factors. The pro-inflammatory caspases include caspase-1, caspase-4 and caspase-5 in humans and caspase-1, caspase-11, and caspase-12 in the mouse.

Inflammasomes are large molecular complexes of proteins forming recruitment platforms to activate the inflammatory caspases in a similar way that the apoptotic caspases-8 and -9 are activated by the DISC and the Apaf-1/apoptosome, respectively [13, 14]. The inflammasome complexes include nucleotide-binding oligomerization domain (NOD1/Apaf-1 family, NACHT or NOD-like) receptor (NLR) family proteins (Fig. 1). These proteins, also known as the caspase recruitment domain (CARD) family play a very important role in the immune system. They belong to the superfamily of intracellular pattern/pathogen recognition receptors (PRRs) that are conserved in evolution from plants to animals and recognize molecules containing specific structural components derived from pathogens such as viruses and bacteria [9-12]. The C-terminal portions of these proteins contain leucine-rich repeat (LRR) domains involved in ligand binding/recognition interactions. The middle of the protein is characterized by a NOD involved in protein self-oligomerization. The N-terminal portion contains the CARD regions required for the caspase binding and activation that then leads to apoptosis and cytokine expression pathways [15, 16]. Mutations in the NLR genes that encode these proteins have often been associated with genetically linked inflammatory diseases, once again indicating the important roles they play in the immune response.

DANGER SIGNALS

ATP release during cell death as an important danger signal activating inflammasomes.

Many different danger signals have been found to activate inflammasomes (see reviews [17, 18]) and one of the most characterised and directly relevant to this review is cellular ATP, as an important energy source derived from glycolysis and also supplied by mitochondria. Tumor cells contain millimolar levels of ATP and apoptosis releases much higher levels of cellular ATP (~100 nM, [19]) compared to necrosis, where ATP levels in the dying cells are greatly depleted during cell death. In studies investigating the ability of a range of different cytotoxic agents including some chemotherapeutic drugs (cadmium, etoposide, mitomycin C, oxaliplatin, cis-platin, staurosporine, thapsigargin, mitoxanthrone, doxorubicin) to induce ATP release from cancer cells, it was found that
intra cellular ATP concentrations decreased before and during early apoptotic events such as dissipation of the mitochondrial transmembrane potential or exposure of phosphatidylserine on the plasma membrane [19]. Then, as apoptosis progressed, intracellular ATP levels further declined and ATP was released extracellularly by an undefined mechanism, and even advanced-stage apoptotic cells were shown to still contain sizeable residual ATP. When cellular ATP levels became extensively depleted, the cells then entered into necrosis as a secondary response (secondary necrosis) [19]. Many studies have revealed that it is possible to switch apoptotic cell death to necrosis by reducing cellular ATP levels upon inhibiting mitochondrial energy production [20-23]. Hence, ATP release is characteristic of apoptotic cell death induced by conventional anti-cancer therapies, but is unlikely to result from necrosis or autophagic processes in which ATP becomes depleted.

More recent studies showed that the ATP released by apoptosing cells is important for tumor cell immunogenicity. Thus, oxaliplatin or anthracycline treated colon cancer cells admixed with ATP scavengers (antimycin A plus glucose or apyrase or dinitrophenol) or treated with inhibitors of ATP binding to purinergic receptors, abolished the capacity of the tumor cells to elicit protective antitumor immune responses upon subcutaneous inoculation of the cells into normal mice (reviewed in [24]). Together with the observed general release of ATP by multiple distinct cell death inducers, this led to the proposal that dying tumor cell ATP release is indispensable for their immunogenicity [24]. Earlier studies had revealed that extracellular ATP release at micromolar levels would be sufficient to activate and promote migration of macrophages producing IL-6 [25, 26]. In more elaborate studies with apoptotic tumor cell supernatants obtained using apoptosis induction (either by UV-induced DNA damage, FAS receptor-mediated or dexamethasone/steroid-induced), 100 nM extracellular ATP release by chemotherapeutic agents was shown to be sufficient to act as a “find-me” signal and promoted chemotactic attractant binding via the purinergic receptor P2Rx7 on the surface of phagocytes such as monocytes, macrophages and dendritic cells (DCs), leading to their recruitment and the subsequent disposal of the debris from the decomposing cells [27]. Hence, the role of sub-micromolar cellular ATP release as an immunogenic danger signal is well supported by the experimental data.

Cytosolic DNA damage sensing systems for double stranded (ds) DNA are key internal triggers of pro-inflammatory responses including inflammasome activation in dying cancer cells. Although many of the cell death pathways include nuclear DNA fragmentation as an outcome as described in section 1.2 above, the role that these dsDNA fragments and associated DNA bound proteins play in the direct intracellular activation of the inflammasomes by anti-cancer drugs has not yet been well characterized. Nevertheless, in situations that have been studied in which viral or microbial infection or tissue damage leads to the presence of cytosolic DNA, this is quickly followed by the potent activation of the innate and adaptive immune
responses. For this to occur, a range of different cytosolic DNA sensors become activated with ensuing induction of type-I interferons (IFNs), pro-inflammatory cytokines and chemokines, characteristic of innate immune responses (reviewed in [28]). Not surprisingly these cytosolic dsDNA sensing systems show a high level of redundancy such that if one is counteracted or lost, then other alternatives will operate.

Historically, the earliest described cytosolic DNA sensors were DAI [the DNA-dependent activator of the interferon regulatory transcription factors (interferon regulatory factors or IRFs)] [29, 30], and absent in melanoma 2 (AIM2) [29, 31-33], the latter being an inflammasome that triggers the innate and adaptive immune systems. DAI (also known as DLM-1/ZBP1) is different from the inflammasomes as it does not contain a CARD, but functions rather to induce expression of IFNs by triggering the TANK binding kinase (TBK)-1/interferon regulatory factor (IRF)-3-dependent type I IFN response [34] (Fig. 2). DAI contains three DNA binding domains in its N-terminal region, Zα, Zβ and D3, with the D3 region critical for DNA binding and oligomerization. DAI binds to poly(dA-dT) (B-DNA). In the C-terminal region are located three receptor-interacting protein (RIP) homotypic interaction motifs (RHIMs) and when arrayed along the length of DNA, these domains provide scaffolding for recruiting the RHIM-containing kinases, RIP1 and RIP3 which signal by phosphorylation and activation of NF-kappaB and IRF-3 transcription factors to induce type I IFN gene expression [35, 36]. Thus, knockdown of RIP1 or RIP3 was shown to greatly reduce the DAI-induced NF-kappaB activation.

Other cytosolic DNA sensors that have been identified to date include the RIG-I-like receptors (RLRs), retinoic acid-inducible gene-I (RIG-I) and melanoma differentiation-associated gene-5 (MDA-5), although these are better known as sensors for RNA as they act indirectly by facilitating the induction from cytoplasmic DNA of an RNA polymerase III-transcribed RNA intermediate [37-40].

Although the role of DNA fragments in anti-cancer drug-induced cell death and ensuing inflammatory responses has not yet been extensively characterized, it is possible to examine the effects that anti-cancer drugs such as doxorubicin exert on cancer cells and obtain some insight into the roles of cytosolic DNA fragments in this process. Hence, from as early as 1994, doxorubicin treatment of whole rat glomeruli and dissociated mesangial and resident glomerular macrophage cells was found to induce secretion of IL-1beta [41], consistent with inflammasome activation. This observation also provided an explanation for the drug induced inflammatory nephrosis that was associated with doxorubicin treatment. In addition, analysis of cardiotoxicity with rat cardiomyocytes after in vivo treatment with doxorubicin showed increased oxidative stress and mitochondria-mediated apoptosis as a result of cytochrome c release [42]. In the longer term, the drug reaction was associated with an adaptive protective/pro-survival response involving increased oxidative phosphorylation, ROS production, superoxide dismutase activity,
and BCL-2:BAX ratio [42]. Comparative analyses between normal cells (such as glomeruli tissue and cardiocytes) and tumor cells to doxorubicin-induced inflammasome activation may help to understand the different responses of both cell types to such chemotherapeutic drugs. Doxorubicin has been shown to promote IL-1β levels in mice thereby mediating increased IL-6, G-CSF serum levels and induced the processing and release of IL-1β from LPS-primed BMDM by providing danger signals that led to assembly and activation of the inflammasome [43]. A similar study in mice confirmed the IL-6, MCP-1 increase and associated influx of neutrophils, demonstrating that acute inflammation induced by doxorubicin was associated with apoptosis of monocytes/macrophages and involved TLR2 and TLR9 but did not address the role of IL-1β [44].

Importantly, the extent of apoptosis was measurable by the amount of cytosolic mononucleosomal and oligonucleosomal DNA fragments (180 bp or multiples), which was significantly increased by drug treatment. Subsequently, doxorubicin-induced apoptosis of MCF-7 breast cancer cells was shown to involve activation of caspase-1 and the IPAF inflammasome and caspase 1-dependent apoptosis induced by doxorubicin was inhibited by BCL-2. In addition, mitochondrial membrane permeabilization induced by caspase-1 and activated IPAF resulted in the activation of BAX in mitochondria [45]. Thus, although it is not clear exactly how the anti-cancer drug doxorubicin activated inflammasomes, based on the above results it is highly likely that cytosolic DNA fragments acting in combination with mitochondrial ROS are important signals in the processes leading to the activation of the IPAF/caspase-1 inflammasome response.

Pro-inflammatory responses to cytoplasmic DNA fragments produced during retroviral, DNA viral or bacterial infections are likely to arise during cell death events associated with infection as well as from cytotoxic chemotherapeutic drug treatment. One of the best examples of the effects of cytosolic DNA fragments comes from studies where poly(dA:dT) transfected into the cytosol of bone marrow derived macrophages (BMM) or human THP-1 acute monocytic leukemia cells activated the ASC/AIM2 inflammasome response and resulting pyroptosis [31, 32, 46, 47]. In this manner, cytoplasmic DNA also caused upregulation of MHC Class I, induction of IFNβ and other cytokines as well as cell death [47]. The observed toxicity was a specific response to dsDNA and not ssDNA and depended on the length of transfected DNA with very short ds oligonucleotides unable to efficiently induce cell death, whereas 44–base pair (bp) DNA transfected at high concentration efficiently killed the cells [47]. These events, including both cytokine induction and cell death, were shown to be independent of recognition of “CpG motifs”, ruling out a role of the TLR9 receptor. Rather, they indicated a more direct, intracellular activation process was occurring depending on cytosolic dsDNA fragment length, with 100bp fragments even more effective [47]. In support of this, knockdown studies revealed the DNA binding HIN-200 family protein, p202, to be a regulatory protein that inhibited the dsDNA-induced caspase-1 and -3 activation. Conversely, the related pyrin domain-
containing HIN-200 related factor, AIM2 (p210) was required for caspase-1 and -3 activation by cytoplasmically introduced dsDNA [47].

AIM2 is a non-NLR family member (in that it has no NOD domain) but acts as an inflammasome scaffold, and oligomerization of this complex involves clustering by multiple binding sites across its ligand, dsDNA, to which AIM2 binds via its C-terminal HIN domain [31, 32, 47, 48] (Fig. 1). AIM2 multimerises along the length of cytosolic DNA fragments providing a scaffold leading to the formation of the AIM2/ASC inflammasome complex (reviewed in [10]). AIM2 contains a region that shows homology to a domain in the protein, PYRIN, originally discovered in relation to the genetic autoimmune disorder, familial Mediterranean fever (FMF) and hence was given the name PYRIN to indicate fever. The PYRIN domain (PYD) in AIM2 recruits the adaptor protein, apoptosis-associated speck-like protein (ASC), through homotypic PYD interactions to build the AIM2/ASC inflammasome complex (Fig. 1). ASC then recruits caspase-1, leading to proteolytic caspase auto-activation and production of IL-1beta and IL-18 [47-49]. AIM2, like DAI, is a cytosolic double-stranded DNA (dsDNA) sensor, but unlike DAI which induces type I IFNs, AIM2 is distinct in that it induces caspase-1-dependent IL-1beta and IL-18 maturation [31, 32, 47-49].

AIM2 and NLRP3 both contain a PYD that interacts with ASC via homotypic PYD-PYD interactions enabling the ASC CARD domain to then recruit pro-caspase-1 to the growing assemblage of the inflammasome complex. As for other inflammasomes, upon autoactivation, caspase-1 directs pro-inflammatory cytokine maturation and secretion (such as IL-1beta and IL-18). Ligands including any cytosolic dsDNA from viruses, bacteria, or the host cell nucleus itself will activate the AIM2 inflammasome [31, 32, 47-49]. More studies are required to determine the significance and relative importance of the AIM2 pathway in anti-cancer drug-induced cell death pathways of inflammasome activation.

HMGB DNA Binding Proteins.

Another type of sensor for DNA associated danger signals is the high mobility group box (HMGB) family of DNA binding nucleoproteins 1, 2 and 3 ([50] reviewed in [51]). HMGB1 released from dying cells after DNA fragmentation binds to TOLL receptors (TLRs), thereby activating DC cells to induce IL-1beta production and secretion. HMGB1 can be released from either necrotic or apoptotic cells, although during apoptosis it is in an oxidised state that is inactive as an inflammatory molecule. However, when cells die via autophagy leading to necrosis, HMGB1 is released in a non-oxidised state as a powerful pro-inflammatory signal. A large range of partner molecules bind HMGB1 including cytokines, endotoxins, nucleosomes and DNA and this results in different interactions of HMGB1 complexes with cell surface receptors, including the receptor for advanced glycation end
products (RAGE) and it promotes pro-inflammatory signals including activation of transcription factors, IRF-3 and NF-kappaB.

Collectively, it is clear from the above studies that the DNA damage initiated during cytotoxic drug-induced death of cancer cells can activate the inflammasome responses by several different mechanisms, both intra- and extracellularly mediated.

CELLULAR ROS PRODUCTION, INFLAMMASOME ACTIVATION AND RELEASE OF IL-1 BETA.

The role of ROS in activating the inflammasome is supported by studies using a variety of different inflammasome signalling modulators, ROS inhibitors, or pro-oxidants like H$_2$O$_2$ and/ or anti-oxidants (reviewed in [52, 53]). Significantly, the evidence indicates that for inflammasome activation, ROS can emanate from different cellular sources including mitochondria or cytosolic NADPH oxidases. For example, Tschopp’s group [54] showed that activation of the NLRP3 inflammasome by asbestos or silica was dependent on ROS generated by an NADPH oxidase and mitochondria did not appear to be required because they could be inhibited with respiratory complex inhibitors rotenone or TTFA without affecting subsequent IL-1beta release from the human acute monocytic leukemia cell line, THP-1. However, this result is inconclusive since two independent studies with primary monocytes derived from patients with chronic granulomatous disease (CGD) containing mutant, defective cytosolic NADPH oxidases revealed no differences in the secretion of IL-1beta induced by the NLRP3 inflammasome activators uric acid, silica, imiquimod or LPS [55, 56]. In addition, earlier studies of CGD patients with defective NADPH oxidases showed no impaired production of superoxide anion or H$_2$O$_2$ upon stimulation of their polymorphonuclear cells or skin fibroblasts by TNF or IL-1 [57]. Hence, alternative sources such as mitochondrial ROS production probably occur and still explain inflammasome activation.

Role of mitochondria in ROS production activating inflammasomes.

Two examples of specific inflammasome activating signals for which the role of mitochondria and ROS has been confirmed are silica [58] and ATP [59], both resulting in activation of NLRP3 inflammasome and release of pro-inflammatory cytokines [60] in a process that involves ROS. Thus, in a careful study on the role of mitochondria in silica-induced apoptosis of primary alveolar macrophages, pre-treating cells with the mitochondrial targeting rhodamine 6G at levels that inhibited ATP and mitochondrial ROS production also inhibited cytokine release [58]. However, treating the cells with exogenous H$_2$O$_2$ [0.1mM] or the superoxide inducing pyrogallol overcame this inhibition. In this regard, H$_2$O$_2$ and antioxidants like N-acetyl-L-cysteine have long been known to have opposing effects on the activation of NF-kappaB leading to IL-1beta and TNFalpha cytokine release [61, 62]. It
is also noteworthy that the release of these cytokines enhances ROS production, and hence, can feed back in a self-stimulatory manner [63, 64], thereby amplifying the response.

The second example which points to an essential role for mitochondria as a major source of ROS comes from studies of the intracellular effect of ATP as a danger signal as described in section 1.2.3 above. Extracellular ATP is known to bind via purinergic receptors (P2X7) causing a rapid pulse of ROS production in alveolar macrophages within minutes of addition and leading to downstream PI3K/Akt and ERK1/2 activation [59, 65]. ROS was shown to act via the glutathionylation and inhibition of PTEN phosphatase, thereby favouring PI3K activation leading to activation of caspase-1. However, caspase-1 activation by ATP was inhibited when the general flavoprotein inhibitor, diphenylene iodonium (DPI), that is proposed to directly inhibit cytosolic NADPH oxidases, was used to block NADPH oxidases. In addition, in agreement with a previous report [66], release of pro-inflammatory cytokines (IL-1beta and IL-18) did not occur upon ATP stimulation via the P2X7 receptor alone, but also required pre-activation with the TLR4 ligand, LPS [52]. These results suggest that ROS alone, although shown to activate caspase-1, requires in addition an NLR activator to enable complete inflammasome formation and activation.

In mammalian cells, mitochondria are a major source of ROS important for diverse events such as cellular proliferation, differentiation and migration (reviewed in [67, 68]). Understanding the role of ROS in cellular function has advanced to the stage where cellular “redox” signalling is accepted to be involved in regulating normal processes and disease progression, including angiogenesis, oxidative stress, aging, and cancer. Now it is possible to add inflammatory responses. A key point is that excessive ROS production from mitochondria overloads the thiol redox system and causes progressive inactivation of thiol containing anti-oxidant proteins such as the reducing enzymes, sulfiredoxins and thioredoxins, thereby compromising redox homeostasis. Thus, once mitochondrial ROS levels overload the threshold capacity of this anti-oxidant cellular system, the excessive ROS will continue to build up as increased superoxide (\(\cdot O_2^-\)) and \(H_2O_2\) levels [69]. It is outside the scope of this review to describe in detail the production processes of mitochondrial ROS and the topic has been well covered in a recent review [70].

The role of oxidative stress in activating the inflammasome responses is further supported by many other studies where the ROS scavenger, N-acetyl-L-cysteine, has been used to negate ROS action [54, 56, 58, 59]. In addition, DPI, that is proposed to directly inhibit cytosolic NADPH oxidases, was found to greatly inhibit caspase-1 activation and reduce levels of secreted IL-1beta [56, 58, 59]. However, this effect of DPI was recently suggested to result from inhibition of IL-1beta gene expression rather than NADPH oxidase inhibition per se [66].
More recently, several specific and distinct mechanisms involving mitochondria in inflammasome activation have been identified. One signalling pathway involves ROS acting on the thioredoxin (TRX)-interacting protein (TXNIP), an inhibitor of TRX, to release it from TRX, allowing TXNIP to then bind and activate the NLRP3 inflammasome [71]. A second involves activation of one of the Nod-like receptor family – NLRX1, by signals including dsRNA, Shigella or TNFalpha [72]. The NLRX1 protein is mitochondrial localised and contains an N-terminal mitochondrial targeting sequence although its exact function has not been completely defined [73, 74]. One report showed NLRX1 interacted by binding via its CARD to that on the mitochondrial antiviral signalling protein, MAVS (also known as IPS-1, VISA or Cardif). The net effect of this binding was to inhibit MAVS function by sequestering and preventing it from interacting and activating the RIG-I or MDA-5 retinoic acid-inducible gene I (RIG-I)-like RNA helicase (RLH) receptors [74]. However, another study showed NLRX1 overexpression amplified ROS production, thereby mediating activation of the NF-kappaB and JNK pathways [72]. Consequently here, further studies are required to determine the precise role of MAVS in the inflammasome activation pathway.

Biochemical studies of NLRX1 in HeLa cancer cells and HEK293T transformed cells showed that NLRX1 was imported into the mitochondrial matrix by a process involving proteolytic maturation and removal of the N-terminal mitochondrial targeting sequence and required the transmembrane potential [73]. In addition, NLRX1 was shown to co-immunoprecipitate with the UQCRC2 subunit of respiratory chain complex III. Given that complex III can be a key source of intracellular ROS production, it is tempting to speculate that NLRX1, upon maturation and import to the matrix face of mitochondria modulates complex III to activate ROS production, much like p66Shc does in ras transformed malignant cells [75]. More study will be required to resolve the precise nature of the relationships that exist between mitochondrial ROS and NLR function in activating inflammasomes.

The important collective message from the various results discussed above connecting mitochondrial ROS production activating inflammasomes and ROS scavengers inhibiting this process is that mitochondria are key intermediaries involved in inflammasome activation induced by a variety of different signals. This conclusion provides the basis for one of the key proposals raised in this review in that drugs targeting mitochondria to increase ROS production will promote an inflammasome response and lead to greater pro-inflammatory activation of immune cells, thereby increasing their anti-cancer effectiveness.

ROS PRODUCTION AND ACTIVATION OF NF-kappaB and IRF-3 PROMOTES PRO-INFLAMMATORY CYTOKINE EXPRESSION

Although the role of ROS released from mitochondria by targeted anti-cancer drugs in activating the NLRX1/MAVS pathway is not yet resolved, the indications are that ROS does activate this pathway. For example,
when the classical inhibitor, rotenone was used as a mitochondrial complex I inhibitor, it was shown that in wild type cells, ROS produced by the dysfunctional mitochondria was predominantly responsible for enhanced RLR signaling and that antioxidants blocked the excess RLR signalling [76]. An essential role for MAVS in the innate immune response by RLR group RNA helicases RIG-I or MDA-5, which can be activated by dsDNA through the induction of an RNA polymerase III-transcribed RNA intermediate has been well established [37-40].

After MAVS activation, IRF-3, downstream of MAVS can bind to and activate cytosolic BAX, inducing BAX translocation to the mitochondria and initiation of the intrinsic apoptotic pathway. The RLR/MAVS signalling results in activation of transcription factors NF-kappaB and IRFs, including IRF-3 and IRF-7, which then induce pro-inflammatory cytokines and chemokines including IL-1beta, TNF, IL-6 and type I IFNs. MAVS is cleaved during apoptosis and when apoptosis is prevented by over-expressing the anti-apoptotic BCL-xL protein, MAVS cleavage is blocked placing this process downstream of caspase activation in the apoptotic program [77]. MAVS over-expression in cells induces caspase mediated apoptosis which is dependent on caspase localisation to the mitochondria in cells [78]. MAVS has also been shown recently to facilitate cell death by disrupting the mitochondrial membrane potential and by activating caspases [79].

MITOCHONDRIAL TARGETED ANTI-CANCER DRUGS (MITOCANS) INDUCE APOPTOSIS – RELATIONSHIP TO ROS PRODUCTION AND THE IMMUNE RESPONSE AGAINST CANCER

The mitocan, vitamin E succinate (VES, alpha-tocopheryl succinate, alpha-TOS) selectively targets cancer cell mitochondria to induce cell death by triggering ROS production as one of the early events occurring within 30–60 min [80-82]. In particular, the pro-oxidant, alpha-TOS, has become well established as a potent inducer of ROS generation leading to apoptosis in cancer cells, but not in related normal cell types (reviewed in [73-75]). Alpha-TOS is preferentially selective for cancer cells because normal cells, particularly non-dividing cells, are much less sensitive to the apoptosis inducing effects of alpha-TOS. The lack of toxic effects on normal cells occurs because they are endowed with greater anti-oxidant defences and contain higher levels of esterase activity that inactivate the pro-oxidant alpha-TOS, releasing the succinate moiety (converting the pro-vitamin to the non-apoptogenic alpha-tocopherol, alpha-TOH). In general, malignant cells are more active than normal cells in producing \(\cdot \text{O}_2^- \), are under intrinsic oxidative stress, and thus are more vulnerable to further damage by ROS-generating agents [83]. The intrinsic oxidative stress in cancer cells is also associated with increased SOD and catalase expression, presumably as a mechanism to tolerate increased ROS stress. These features make agents like alpha-TOS excellent candidates for cancer therapy, as it is eventually inactivated in normal cells and tissues and it works \textit{in vivo}, suppressing experimental malignancies in pre-clinical models such as colorectal or lung carcinomas, melanomas, mesotheliomas and breast cancers (reviewed in [84]).
The major form of ROS produced by cancer cells in response to α-TOS is \(\cdot \text{O}_2^- \) because adding SOD removed the radicals and inhibited subsequent apoptosis [85, 86]. The site of \(\cdot \text{O}_2^- \) generation as well as the target of ROS action is the mitochondria because in studies where cancer cells were pre-treated with the mitochondrially targeted antioxidant, mitoquinone (Mito Q) [87], production of ROS was suppressed and induction of apoptosis inhibited following subsequent addition of α-TOS was inhibited [82, 88]. The importance of ROS in mediating apoptosis induced by α-TOS has been confirmed in several reports where the efficacy with which α-TOS induced apoptosis closely paralleled ROS accumulation and cells with low anti-oxidant defences were more vulnerable to α-TOS [85, 89]. More recently, α-TOS was shown by biochemical analyses and genetic studies to inhibit the succinate dehydrogenase (SDH) activity of the respiratory chain complex II by interacting with the proximal and distal ubiquinone (UbQ)-binding site (QP and QD, respectively) [90, 91]. Studies of immortalized Chinese hamster lung fibroblast cells with a dysfunctional mitochondrial respiratory chain complex II showed a failure of these cells to accumulate ROS or to undergo apoptosis in the presence of α-TOS. Reconstituting the defective complex II in cells again restored sensitivity to α-TOS. Similar resistance to α-TOS was also observed when complex II subunits were knocked down with siRNA in wild type immortalized cells. These results indicated that α-TOS displaced ubiquinone from binding to complex II, so that electrons arising from oxidation of succinate to fumarate were no longer accepted by their natural receptor and, instead, interacted with molecular oxygen to generate \(\cdot \text{O}_2^- \) [90].

In a follow up study [91], the Chinese hamster lung fibroblasts with functional, dysfunctional, and reconstituted complex II were transformed using H-RAS. The cells were then used to form xenografts in immunocompromised mice, and the results obtained from treating cells with α-TOS either in culture or as tumors in vivo were again consistent with complex II as an essential mitochondrial target for the ability of the drug to kill cancer cells. The mechanism of killing is likely to involve \(\cdot \text{O}_2^- \) production which is then converted by SOD into highly diffusible \(\text{H}_2\text{O}_2 \) that activates the intrinsic apoptotic pathway leading to structural rearrangement and dimerization of cytosolic BAK or BAX via disulfide bridges and/or externalization of the BH3 C-terminal membrane-targeting sequence [90, 92-95]. The net result is to form channels in the mitochondrial outer membrane inducing apoptosis.

CANCER IMMUNOTHERAPY AND THE MITOCAN CLASS OF VITAMIN E ANALOGS

During the process of tumor development and tumor progression the immune system acts as a tumor suppressor poised to eliminate tumor cells by a process referred to as immune editing [96, 97]. This process in which both the innate and adaptive components of the immune system participate, involves continuous scanning and
elimination of cancerous cells. However, progressively growing tumors can develop in the presence of a functioning immune system when tumor cells emerge that either display reduced immunogenicity or employ immunosuppressive mechanisms to weaken antitumor immune responses [98, 99].

The goal of the fast expanding field of tumor immunotherapy is to exploit the exquisite capacity of the immune system to recognize “non-self” to tip the scale in favor of the immune system towards recognition and elimination of the tumor. This objective can be achieved using a variety of approaches including infusion of ex vivo expanded tumor-specific cytotoxic T cells [100] or antigen-loaded DC [101, 102], administration of immunomodulatory agents which directly stimulate cells of the immune system [e.g. Toll-like receptor (TLR) agonists [103], cytokines (IL-2, IL-7, IL-15, IFN-γ, GM-CSF) [104], agonists of co-stimulatory molecules (e.g. anti- OX40 [CD134], anti-4-1BB [CD137]) [105, 106] or abrogation of regulatory mechanisms which dampen the immune response such as depletion of suppressive regulatory T cells (Treg) [107] or treatment with antagonistic (anti-CTLA-4, anti-PDL-1 anti-PD-1) antibodies [108, 109]. To varying degrees, these strategies have resulted in significant anti-tumor effects in several murine cancer models. However, these treatments have not translated into consistent objective clinical responses in humans [105, 110-112]. These observations have now led to the prevailing view that multi-modal therapy using a combination of agents that target different signaling pathways has a greater likelihood of therapeutic efficacy against established cancer.

Although chemotherapy as a frontline treatment modality of cancer is often effective in controlling tumor growth, it is plagued by undesirable toxicities such as marrow suppression and generalized immune suppression that are oftentimes life threatening. However, recent studies have revealed that at certain doses some conventional chemotherapeutic drugs behave as adjuvants that potentiate the anti-tumor immune response [113-116]. Evidence is mounting that some drugs induce immunogenic cell death characterized by specific cellular responses including up-regulation and/or release of endogenous damage associated molecular pattern (DAMP) molecules. For instance, anthracyclines such as doxorubicin result in the release of high mobility group box-1 (HMGB-1) proteins and translocation of calreticulin [113, 116, 117] and bortezomib causes heat shock protein (Hsp) up-regulation and release [118]. Furthermore, chemotherapeutic agents can modulate the immune response by directly acting on immune cells. A prime example is low dose cyclophosphamide therapy that preferentially depletes Foxp3-expressing regulatory T cells [115, 119] or inhibits their immune suppressive function [120].

Although there is a growing number of compounds that have recently been identified as mitocans (Table 1) and that have been shown to have anti-tumor effects [121], with few exceptions, little is known about their ability to modulate anti-tumor immune responses. Nevertheless, certain mitocans namely some of the thiol redox inhibitors,
the electron transport chain targeting tamoxifen, the natural compound resveratrol, and in particular the ROS-modulating and Bcl-2 mimetic Vitamin E (α-tocopherol) analogs (VEA) have been examined for their immune modulating properties.

The thiol redox inhibitory isocyanates and arsenic trioxides have both been shown to increase natural killer (NK) and lymphokine activated killer (LAK) cell function [122, 123]. In particular, the isocyanate sulforaphane has been shown to increase NK cell activity and increase IL-2 and IFN-γ production of splenocytes [123] from Ehrlich ascite tumor bearing mice, suggesting an immune supportive role of this agent.

Among the electron transport chain targeting mitocans, tamoxifen has been one of the front-line therapies of estrogen-sensitive breast cancer, though studies examining the effect of tamoxifen treatment on the immune system revealed immune suppressive properties. While two studies report decreased NK cell activity in tamoxifen treated patients [124, 125], mitogen induced T cell proliferation was either inhibited [124] or increased [125]. Furthermore, in vitro studies of the direct effect of tamoxifen on human monocyte-derived dendritic cells (DC) showed that their ability to produce IL-12 and to induce T cell proliferation was diminished [126]. For these reasons, it has been suggested that tamoxifen may be better utilized in the treatment of immune-mediated disorders than in cancer immunotherapy [127].

The natural occurring resveratrol, found in grapes and grape products such as red wine, has recently garnered attention as an anti-tumor agent and a limited number of studies have examined the immunomodulatory properties of resveratrol in respect to tumor immunity. Using a murine colon cancer model, Yang et al. reported that resveratrol decreased the number of immune suppressive regulatory CD4⁺CD25⁺ T cells and increased the number of INF-γ producing CD8⁺ T cells [126]. Increases in Treg cell numbers in tumor settings is often a major hurdle for successful immunotherapy [128]. However, this is in contrast to a study showing that resveratrol in vitro inhibited proliferation and IL-4 and IFN-γ secretion by T cells, and impaired B cell proliferation and antibody production [129]. In addition, resveratrol treatment of macrophages resulted in decreased co-stimulatory molecule expression making them poor T cell stimulators [129].

The inhibitory effects of resveratrol on antigen presenting cells was also corroborated in a recent study showing that resveratrol-treated DC had low expression of co-stimulatory molecules, exhibited low T cell stimulatory activity and did not secret IL-12 upon activation [130]. Resveratrol’s anti-tumor properties stem from its ability to induce apoptosis in tumor cells, but it has also been reported that resveratrol causes apoptotic death of activated T cells [131, 132]. The conflicting in vivo data of the beneficial decrease of Treg in tumor bearing mice
and the apparent immune cell suppressive effects of resveratrol in vitro warrants more comprehensive research, but resveratrol may be a poor choice for tumor immunotherapy.

In this respect the Vitamin E (α-tocopherol) analogs (VEA), alpha-tocopheryl succinate (α-TOS) and alpha-tocopherylxyacetic acid (α-TEA) have not only been examined for their anti-tumor activities in various rodent and human xenograft tumor models [133-140], but our research group has pioneered studies demonstrating the immune modulating properties of this novel class of anti-cancer drugs. The remainder of this review will focus on the current state of knowledge of how these VEAs interact with cells of the immune system to boost the anti-tumor response.

α-TOS and α-TEA as anti-cancer agents

Alpha-TOS and α-TEA are semi-synthetic derivatives of vitamin E that structurally share the phytol-tail and the chroman head with vitamin E (Fig. 3). While α-TOS differs from vitamin E in that the hydroxyl group at the number 6 carbon of the phenolic ring of the chroman head has been replaced by a succinic acid residue α-TEA has an acetic acid moiety at this position [137]. These drugs are highly hydrophobic in nature and are frequently delivered to cells or experimental animals in various oils [137], organic solvents (DMSO), ethanol [141, 142], or after vesiculation in phosphate buffered saline (PBS) [134, 140, 141]. In contrast to α-TOS that is susceptible to hydrolytic cleavage by intestinal esterases [133], the acetic acid moiety of α-TEA is attached via an ether bond (Fig. 3) [137], making it resistant to esterase hydrolysis and permitting stable delivery via the oral route. Oral gavage and aerosol delivery of α-TEA have been successfully employed to suppress primary tumor growth and reduce the incidence of metastasis in several murine tumor models [136, 137].

Hahn et al. recently reported, that when supplied to mice in the diet, α-TEA significantly inhibited the growth of a transplanted, highly metastatic breast cancer and dramatically reduced the incidence of lung metastases [134] and was able to delay the onset, and suppress the growth of spontaneous-arising breast cancer in transgenic MMTV-PyMT mice [135]. VEAs are particularly attractive as anti-tumor agents because of their selective toxicity towards tumor cells [139, 143-145] while displaying minimal toxicity towards immune cells [142]. Furthermore, in vivo administration of α-TOS did not interfere with TNF-α induced IL-12 production by dendritic cells or mitogen-induced proliferation of T lymphocytes (Fig. 4). Although the above referenced studies have established the efficacy of the VEAs against various forms of cancer, studies that have examined the mechanisms of VEA-induced anticancer activity have largely focused on the pro-apoptotic nature of these analogs [144, 146, 147], and we are
only recently beginning to unravel the potential contribution of the immune system to the *in vivo* antitumor activity of these agents.

COMBINING VITAMIN E ANALOGS AS ANTICANCER AGENTS WITH DENDRITIC CELL IMMUNOTHERAPY

Combination chemotherapy has emerged as a preferred modality of cancer treatment because of the potential to target multiple signaling pathways employed by tumor cells to escape drug or immune-mediated cell death. Unlike single drug therapy where the potential for host toxicity is high, combination chemotherapy allows for the use of lower drug concentrations with reduced toxicities to achieve clinical benefit. Recent data demonstrating that certain classes of chemotherapeutic drugs cause immunogenic tumor cell death which leads to enhancement of antigen cross-presentation and stimulation of the anti-tumor immune response have galvanized interest in chemotherapeutic agents as immune modulators [113-116, 148]. It is within reason to expect that combining immunotherapy with such immune modulating drugs will enhance the anti-tumor response while mitigating drug-related host toxicity. Our research group has pioneered the use of tumor-selective α-TOS and α-TEA mitocans as immunologic adjuvants to stimulate effective anti-tumor immune responses.

When administered in combination with *ex vivo* generated DC for the treatment of established murine Lewis lung and mammary cancers, α-TOS synergizes with DC to inhibit the growth of established primary tumors and suppress the formation of spontaneously-arising metastases [140, 142, 149]. The observed anti-tumor responses were strongly correlated with polarization toward a T helper 1 (T_{H1}) immune response evidenced by increased interferon-gamma (IFN-γ) secretion and enhanced tumoricidal activity by tumor-draining lymph node and splenic lymphocytes [140, 149]. An unexpected result from these studies was that non-antigen pulsed DC were as effective as TNF-α-matured DC in suppressing tumor growth [149]. In a similar fashion, α-TEA potentiated the efficacy of adoptively-transferred non-matured DC in reducing overall tumor burden and tumor multiplicity in a transgenic model of spontaneous murine breast cancer (Fig. 5). These intriguing findings led us to hypothesize that VEAs induce a form of immunogenic tumor cell death that results in the release of activating “danger signals” and putative tumor-associated antigens that can be ingested and efficiently cross-presented by DC to stimulate naïve antigen (tumor)-specific T lymphocytes. In support of this hypothesis, supernatant generated from α-TOS-treated tumor cells was shown to induce DC maturation evidenced by up-regulation of the co-stimulatory molecules, CD40, CD80 and CD86. The phenotypic change in DC maturation status was also accompanied by an increase in production of interleukin-12 (IL-12) [140, 149] that favors the development of a T_H1 immune response [150].

Although these studies indicated that VEAs transform immature DC to become more efficient stimulators of T cells capable of mediating tumor suppression, a pre-requisite for T cell activation by DC is efficient uptake,
processing and loading of antigenic peptides onto MHC complexes for presentation. Regarding antigen uptake, we have shown that non-matured bone marrow-derived DC incubated with supernatants obtained from VEA-treated tumor cell were as efficient as TNF-α-matured DC in their endocytic and phagocytic functions (Fig. 6). Our experiments also demonstrated that components of the antigen-presenting machinery (APM) belonging to the multi-catalytic proteasome complex (delta) and the MHC class I loading complex (tapasin, ERp57) as well as surface expression of MHC class I itself were up-regulated in these DC (Fig. 7). The final essential step in DC-mediated T cell activation upon antigen acquisition, is migration to lymphatic organs for T cell priming. To this end, we have shown that VEA-treated tumor cell supernatant-pulsed DC demonstrate an increased ability to migrate in vitro toward CCL21, a chemokine that attracts antigen presenting and T cells to lymph nodes.

VITAMIN E ANALOGS AS INDUCERS OF IMMUNOGENIC TUMOR CELL DEATH

The mechanisms of α-TOS-mediated cell death has been thoroughly investigated [81, 144, 146, 151, 152]. Mitochondrial depolarization resulting in the generation of reactive oxygen species is considered an initiating event leading ultimately to apoptotic cell death [90, 153]. Similar to α-TOS, α-TEA stimulates mitochondrial depolarization and ROS generation (Fig. 8). A hallmark of immunogenic cell death is the up-regulation and/or release of DAMP molecules such as heat shock proteins and HMGB-1 proteins that play important roles in DC activation and enhancement of antigen cross-presentation [154-161]. As mentioned earlier, although this property has been described for a select group of chemotherapeutic drugs including anthracyclines [116] and taxanes [162], this property was recently identified with VEAs. Thus, tumor cells treated with α-TOS and α-TEA up-regulated expression and translocation of Hsp60, Hsp70 and Hsp90 to the cell surface [140, 149].

Supportive evidence for the role of Hsps released from tumor cells in response to VEA treatment as partly responsible for DC activation was shown by blocking the cognate Hsp receptor CD91 [163] on DC. Blocking of CD91 prior to co-incubation with α-TOS-derived tumor supernatant resulted in partial inhibition of co-stimulatory molecule expression [140, 149] and down-regulation of the antigen presenting machinery components (data not shown). HMGB-1 is a chromatin binding protein that is released by cells experiencing autophagy [164] or undergoing necrotic or apoptotic forms of cell death [165, 166] and which contributes to DC activation by binding to, and triggering the toll-like receptor-4 (TLR-4) signaling pathway [161]. We have recently demonstrated the presence of HMGB-1 in enriched autophagosome fractions and in the culture supernatant of tumor cells treated with α-TEA (data not shown). Whether or not DC activation and enhancement of cross-presentation are mediated through HMGB-1-TLR4 interactions remains to be verified in this system.

CONCLUDING REMARKS/ThERAPEUTIC IMPLICATIONS FOR CANCER
The relative absence of in vivo host toxicity of VEAs coupled with their immune-enhancing properties make this class of mitocans attractive targets for cancer treatment compared to current chemotherapeutic agents. Their selective toxicity towards tumor cells without causing measurable damage to the immune system is another desirable attribute of this class of mitocans. Cumulatively, the work from our laboratory has shown that α-TOS and α-TEA can: 1) suppress growth of established tumors and dramatically reduce the incidence of spontaneous metastases when combined with DC vaccination and 2) cause immunogenic tumor cell death which results in the release of “danger signals” that contribute to enhanced antigen cross-presentation and T cell effector function. The next important step in exploiting the utility of this novel class of mitocans as anti-cancer agents is to translate these laboratory findings to the clinic. Efforts are underway by our group to conduct animal toxicity studies on both α-TOS and α-TEA prior to initiating Phase I trials in humans. The knowledge that these mitocans can stimulate the immune system while directly killing tumor cells, suggests that they can be combined with additional immune modulators such as anti-cytotoxic T-lymphocyte associated protein 4 (CTLA-4 (ipilumimab), anti-programmed death ligand-1 (PDL-1), anti-programmed death-1 (PD-1) or small molecule inhibitors of TGF-β signaling (e.g. SM16) to overcome tolerance and tumor-mediated immune suppression respectively and further improve anti-tumor responses.

LIST OF ABBREVIATIONS

- α-TEA
 α-tocopherylxyacetic acid
- α-TOH
 α-tocopherol
- α-TOS
 alpha-tocopheryl succinate
- AIM2
 absent in melanoma 2
- Apaf-1
 apoptotic protease activating factor 1
- ASC
 apoptosis-associated speck-like protein
- BAX
 BCL-2 associated x protein
- BCL-2
 B cell lymphoma/leukemia 2
- BCL-xL
 BCL-2-like large protein
- BH3
 BCL-2 homology domain 3
- CAD
 cytoplasmic Dnase
- CARD
 caspase recruitment domain
- CGD
 chronic granulomatous disease
- CTL
 cytotoxic T lymphocyte
- CTLA-4
 cytotoxic T lymphocyte associated protein 4
DAI DNA-dependent activator of IRF
DAMP damage-associated molecular patterns
DMSO dimethylsulfoxide
DC dendritic cell
DISC death-inducing signaling complex
DPI diphenylene iodonium
ERK1/2 extracellular signal-regulated kinase 1/2
GM-CSF granulocyte-macrophage colony-stimulating factor
HIN-200 hemopoietic IFN-inducible nuclear protein 200
HMGB1 high mobility group protein 1
Hsp heat shock protein
ICE interleukin converting enzyme
IFN type-I interferon
IFN-β interferon beta
IFN-γ interferon gamma
IL interleukin
IPAF ICE protease-activating factor
JNK c-Jun N-terminal kinase
FMF familial mediterranean fever
LPS lipopolysaccharide
LRR leucine-rich repeat
MAVS mitochondrial antiviral signalling protein
MDA-5 melanoma differentiation-associated gene-5
MHC Class I major histocompatibility complex I
Mito Q mitoquinone
MOMP mitochondrial outer membrane permeability
NACHT neuronal apoptosis inhibitor protein, C2TA, HET-E and TP1
NF-κB nuclear factor kappa B
NLR NACHT or NOD-like receptor
NLRP3 NACHT, LRR and PYD domain-containing protein 3 (also known as NALP3)
NLRX1 Nod-like receptor family
NOD nucleotide-binding oligomerization domain
PAMP pathogen-associated molecular patterns
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PI3K</td>
<td>phosphoinositide 3 kinase</td>
</tr>
<tr>
<td>PD-1</td>
<td>programmed death-1 protein</td>
</tr>
<tr>
<td>PDL-1</td>
<td>programmed death protein ligand-1</td>
</tr>
<tr>
<td>PRR</td>
<td>pattern recognition receptors</td>
</tr>
<tr>
<td>PYD</td>
<td>PYRIN domain</td>
</tr>
<tr>
<td>RAGE</td>
<td>receptor for advanced glycation end products</td>
</tr>
<tr>
<td>RHIM</td>
<td>RIP homotypic interaction motif</td>
</tr>
<tr>
<td>RIG-1</td>
<td>retinoid-inducible gene 1</td>
</tr>
<tr>
<td>RIP</td>
<td>receptor-interacting protein</td>
</tr>
<tr>
<td>RLR</td>
<td>RIG-I-like receptors</td>
</tr>
<tr>
<td>ROG-I</td>
<td>retinoic acid-inducible gene-I</td>
</tr>
<tr>
<td>ROS</td>
<td>reactive oxygen species</td>
</tr>
<tr>
<td>SDH</td>
<td>succinate dehydrogenase</td>
</tr>
<tr>
<td>siRNA</td>
<td>small interfering RNA</td>
</tr>
<tr>
<td>SOD</td>
<td>superoxide dismutase</td>
</tr>
<tr>
<td>TANK</td>
<td>TRAF family member-associated NF-κB activator</td>
</tr>
<tr>
<td>TBK-1</td>
<td>TANK binding kinase 1</td>
</tr>
<tr>
<td>TGF-β</td>
<td>transforming growth factor beta</td>
</tr>
<tr>
<td>TH₁</td>
<td>T helper 1</td>
</tr>
<tr>
<td>TLR</td>
<td>toll like receptor</td>
</tr>
<tr>
<td>TNF-α</td>
<td>tumor necrosis factor alpha</td>
</tr>
<tr>
<td>TRAF</td>
<td>TNF receptor associated factor</td>
</tr>
<tr>
<td>TRX</td>
<td>thioredoxin</td>
</tr>
<tr>
<td>TTFA</td>
<td>thenoyltrifluoroacetone</td>
</tr>
<tr>
<td>TXNIP</td>
<td>thioredoxin-interacting protein</td>
</tr>
<tr>
<td>UbQ</td>
<td>ubiquinone</td>
</tr>
<tr>
<td>UQCRC2</td>
<td>ubiquinol cytochrome reductase</td>
</tr>
<tr>
<td>VEA</td>
<td>vitamin E analog</td>
</tr>
<tr>
<td>VES</td>
<td>vitamin E succinate</td>
</tr>
</tbody>
</table>

ACKNOWLEDGEMENTS: The authors would like to thank Prof. R.K. Ralph for careful reading and editing of the manuscript. This work was supported in part by grants from the Australian Research Council, the Queensland Cancer Fund and the National Breast Cancer Foundation.
<table>
<thead>
<tr>
<th>Class</th>
<th>Name</th>
<th>Activity/Target</th>
<th>Modulation of anti-tumor immune response</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hexokinase inhibitors</td>
<td>3-bromopyruvate</td>
<td>Chen et al. Biochim Biophys Acta, 2009, 1787, 523-40; Xu et al., Cancer Res., 2005, 65(2), 613-21</td>
<td>unknown</td>
</tr>
<tr>
<td></td>
<td>Gossypol</td>
<td>Ktadja et al. J Med Chem. 2013, 46(20), 4259-64</td>
<td>unknown</td>
</tr>
<tr>
<td>Voltage dependent anion channel and/or asense nucleotide translocase targeting drugs</td>
<td>Lonidamine</td>
<td>Oudard et al.; J Neurooncol., 2003, 63(1), 31-4</td>
<td>unknown</td>
</tr>
<tr>
<td></td>
<td>Arsenites</td>
<td>Bilz et al.; Oncogene., 2001, 20(52), 7579-87</td>
<td>unknown</td>
</tr>
<tr>
<td></td>
<td>Sterics analogs (CD437)</td>
<td>Marchetti et al., Cancer Res., 1999, 59(24), 6257-64; Bilz et al.; Oncogene., 2001, 20(52), 7579-87</td>
<td>unknown</td>
</tr>
<tr>
<td>Electron transport chain targeting drugs</td>
<td>4-OH retinside</td>
<td>Hall et al., J Biol Chem., 2001, 276(49), 45814-21</td>
<td>unknown</td>
</tr>
<tr>
<td></td>
<td>Vitamin E analogs (α-tocopheryl succinate)</td>
<td>Dong et al., Oncogene., 2008, 27(11), 4324-35</td>
<td>see above</td>
</tr>
<tr>
<td>Lipophilic cations targeting inner membrane</td>
<td>Rhodamine-123</td>
<td>Lampidis et al., Biochemistry., 2001, 40(16), 5542-7</td>
<td>unknown</td>
</tr>
<tr>
<td></td>
<td>F16</td>
<td>Fanite et al.; Cancer Cell., 2002, 2(1), 29-42</td>
<td>unknown</td>
</tr>
<tr>
<td>(KLAKKLAK) peptide</td>
<td>Ellery et al.; Acta Biochim Pol., 2006, 53(4), 801-5</td>
<td>known</td>
<td></td>
</tr>
<tr>
<td>Drugs targeting other (unknown) sites</td>
<td>Resveratrol</td>
<td>Gedhill et al.; PNAS., 2007, 104(34), 11632-7</td>
<td>Yang et al.; Int Immunopharmacol., 2008, 8(4), 542-7</td>
</tr>
<tr>
<td></td>
<td>Betulinic acid</td>
<td>Fuda et al., Cancer Res., 1997, 57(21), 4956-64.</td>
<td>unknown</td>
</tr>
<tr>
<td></td>
<td>Panthenolide</td>
<td>Guzman et al.; Blood., 2005, 110(5), 4153-8</td>
<td>unknown</td>
</tr>
</tbody>
</table>
Fig. (1). A. Structural domains in representative examples of the inflammasomes: AIM; NLRP3 (NALP3) and IPAF.

The inflammasomes include a superfamily of multi-domain proteins that on ligand binding provide scaffolds for the assembly of large oligomeric complexes resulting in the activation of caspases that then cleave pro-inflammatory cytokines pro-IL-1beta and –IL-18 into the mature form for secretion to promote the immune response. The multiple domains in their structure can include: leucine-rich-repeats (LRR); HIN-200 like DNA binding domains (HIN); Nucleotide binding and oligomerization domain (NACHT or NOD); PYRIN like domains (PYD); and Caspase recruitment domain (CARD). B. Insert: Structural domains of the DNA-dependent activator of IRFs (DAI) [26, 27].
Fig. (2). Diagram indicating the cytosolic DNA sensors, AIM2 and DAI and their function in cells as pro-inflammatory signalling agents.
Figure 3. Structure of vitamin E (RRR-\(\alpha\)-tocopherol, \(\alpha\)-TOH, A) and the vitamin E derivatives RRR-\(\alpha\)-tocopheryl succinate (\(\alpha\)-TOS, B) and RRR-\(\alpha\)-tocopheryloxy acetic acid (\(\alpha\)-TEA, C). \(\alpha\)-TOS possesses an ester-linked succinate moiety attached to carbon number 6 of the chroman head, making it susceptible to hydrolysis and cleavage by esterases. In contrast, \(\alpha\)-TEA possesses an ether-linked acetic acid moiety attached to the carbon number 6 of the chroman head rendering \(\alpha\)-TEA resistant to cleavage by esterases.
Figure 4: Effect of α-TOS on the function of immune cells in vivo. Mice received 3 intraperitoneal injections of α-TOS (4 mg per injection) or vehicle (Ethanol) four days apart. Forty-eight hours after the last injection, DC or CD4+ T cells were enriched from pooled splenocytes from 3 mice. (A) IL-12p70 secretion by DC was determined by ELISA after in vitro stimulation with 20ng/ml TNF-α for 24 hours. (B) CD4+ T cells were stimulated in vitro with the mitogen Concanavalin A (ConA) for 4 days and proliferation was determined by [3H]-thymidine incorporation. The values represent mean ± SD of triplicate samples.
Figure 5: Efficacy of the combination of α-TEA and DC against spontaneous murine breast cancer. (A) Transgenic MMTV-PyMT mice that spontaneously develop up to 10 breast carcinomas received α-TEA in the diet (~2mg/day) starting at 6 weeks of age (day 42) until 15 weeks of age (day 105). Three s.c. injections of 10^6 non-matured, bone marrow-derived DC were given at weeks 8, 9 and 10. The values represent the cumulative tumor areas per mouse on day 105. Boxed number: average cumulative tumor area ± SEM. (B) Average tumors per mouse (tumor multiplicity) calculated as: Tumor multiplicity = [# tumors per group] / [# of mice per group]. Multiplicity curves were determined by non-linear regression. Boxed numbers: tumor multiplicity±SEM.
Figure 6. Effect of Vα-TOS-derived tumor cell supernatant on endocytosis and phagocytosis by DC. Non-matured DC were incubated at 37°C with supernatant derived from tumor cells treated with Vα-TOS (Vα-TOS₈), PBS (PBS₈) or TNF-α or left untreated for 24 hours. The phagocytic and endocytic properties of the DC were evaluated by determining the ability to take up FITC-conjugated dextran beads (endocytosis) and FITC-conjugated E.coli particles (phagocytosis) at 4°C and at 37°C using flow cytometry. The change of mean fluorescence intensity (DMFI) was calculated as DMFI=[(MFI at 37°C)-(MFI at 4°C)]. Data represent mean DMFI ± SD of MFI values from 3 independent experiments. Cells were gated on light scatter and CD11c-expression.
Figure 7. Vα-TOS-derived tumor cell supernatant increases expression of antigen processing machinery (APM) components by DC. DC were incubated for 24 hours with supernatant derived from Vα-TOS (Vα-TOSa), PBS-treated (PBSs) tumor cells or with TNF-α and then stained with delta-specific mAb (SY-5), ERp57-specific mAb (TO-3) and tapasin-specific mAb (TO-2) by intracellular staining and analyzed by flow cytometry. Surface expression of MHC Class I antigens was determined by staining with a PE-conjugated H2Dd-specific antibody. Cells were gated on light scatter and CD11c-expression.
Figure 8. α-TEA induces mitochondrial depolarization and production of reactive oxygen species. (A) 4T1 breast tumor cells were treated with the indicated concentrations of Vα-TEA for 6 hours and subsequently mitochondrial membrane potential was evaluated by staining with 5,5′,6,6′-tetrachloro-1,1′,3,3′-tetraethylbenzimidazolyldihyridocyanine iodide (JC-1) and flow cytometry. Data represent fold change of percent monomeric JC-1-stained cells (normalized to untreated cells) ± SEM of three independent experiments. (B) 4T1 tumor cells were treated with 80μM Vα-TEA for the indicated time periods and the accumulation of reactive oxygen species (ROS) was determined by 2′,7′-dichlorodihydrofluorescein diacetate (DCFDA) stain and flow cytometry. Data represent fold change of mean fluorescence intensity of DCFDA stained cells (normalized to untreated cells) ± SEM of three independent experiments.
VEAs modulate several pathways associated with the generation of antigen-specific immune response but the initial events seem to be directly connected with the selective pro-apoptotic properties of VEAs towards tumor cells. In this scenario VEAs target mitochondria of tumor cells and induce the accumulation of reactive oxygen species (ROS). This mitochondrial damage may stimulate the caspase cascade and other pathways, ultimately leading to apoptotic tumor cell death promoting the release of putative tumor antigens. Autophagic tumor cell death and necrosis may also play a role. VEAs also act as adjuvants at all stages of antigen presentation starting from the mobilization of immature DC by up-regulating or inducing the release of heat shock proteins (Hsp) Hsp60, Hsp70 and Hsp90 and other factors such as HMGB-1 which help “sense” dying tumor cells. VEAs also increase antigen uptake and up-regulate proteins associated with the antigen-presenting machinery (APM) including proteins belonging to the multicatalytic proteasome complex (delta) as well as the MHC class I loading complex (tapasin, ERp57). In addition, VEAs may enhance the expression of co-stimulatory molecules (CD40, CD80, CD86) on DC and the ability of DC to migrate toward chemokines attracting matured DC (mDC) to lymphatic organs where they encounter naïve T cells and antigen cross-presentation to CD8+ T cells occurs. The VEA-induced phenotypic changes in DC are associated with increased production of IL-12, which are essential for stimulation of naïve T cells and skewing the immune response toward Th1. The activated tumor specific T cells can then attack tumor tissue and metastases.
Reference List

