
This elegant book of some two hundred pages tackles another that boasted twenty thousand facts. Pliny the Elder’s *Natural History* was the largest surviving work from the Roman Empire, and in the late medieval and Renaissance periods it was continually quarried for anecdotes and facts on a wide range of subjects. In his preface, Pliny seemed to align his work with “what the Greeks call *enkyklios paideia*” (pp. 45, 49), perhaps implying that the Greek notion of a general course of education required knowledge of the natural world. Yet this very notion of well-rounded study clashed with Pliny’s explanation that the “Summarium” placed at the start of the work allowed the reader to select portions rather than read the whole: as he said, “everyone will look for the particular thing they want and know where to find it” (p. 95). Aude Doody offers expert commentary on how to construe Pliny’s intentions, but her book is mainly about the reception of the *Natural History* over many centuries.

Subsequent compilers, editors, and readers fashioned Pliny’s work (comprising thirty-seven books) into the one they wanted. Isidore of Seville and Vincent de Beauvais treated him as a fellow compiler of textual authorities, extracting what they needed for their own works. So, too, did Conrad Gesner and Ulisse Aldrovandi. In apparent contrast, Francis Bacon castigated Pliny’s reliance on untested sources and his diffusion of *mirabilia*: the *Natural History*, he wrote in 1605, was “fraught with much fabulous matter, a great part not only untried but notoriously untrue” (p. 35). However, this did not prevent him from admiring Pliny’s work as a model for the collection of a vast natural history. Indeed, Bacon was able to look beyond Pliny’s errors to welcome him as one who at least focused on the singular rather than the general. Moreover, he admired Pliny’s risk-taking, empirical bent. As Doody recounts, in his last letter (sent to the Earl of Arundel) Bacon forecast that he was likely to have had the fortune of Caius Plinius the elder, who lost his life by trying an experiment about the burning of mountain Vesuvius” (p. 33). Bacon died soon after, following his own experiment on the effects of cold, reportedly involving stuffing a chicken with snow.

I think *Pliny’s Encyclopedia* offers a suggestive account of how, by the eighteenth century, Pliny’s work was conceived in two divergent ways: as a database to be searched for particular items; and as a proto-encyclopedia, as this genre was understood from the eighteenth century. As early as 1514, Joannes Camerius produced a printed, free-standing index giving references to line numbers of the codex printed in Venice in 1497 (pp. 120 –121). As other indexes followed, Pliny’s work, hitherto only roughly navigable via his “Summarium” (more a table of contents than an index), became a storehouse from which tiny facts could be retrieved without any regard to the narrative sequence in which Pliny had placed them—in spite of his remarks about reading the work in any order. Even without printed indexes, compendia of special subjects were removed and reassembled, so that there was a *Medicina Plinii* from the fourth century and a printed version by 1509; other editions followed, usually arranging Pliny’s information according to illness rather than type and source (such as plant or animal) of medicine. Despite such reconstructions of the *Natural History*, Denis Diderot (but Jean le Rond d’Alembert less so, I suspect) was able to regard it as an early attempt at total coverage of a large field of knowledge and, with more of a stretch, as expressing the interconnections of various subjects. Yet on the latter point, the long-term mining and rearrangement of the material meant that any such relationships were unlikely to be those intended by Pliny.

At one level, Doody’s book is a fine contribution to the study of Pliny’s immensely influential text; at another, it touches on themes in the history of the sciences, including the continuing puzzle of whether scientific information can, or should, be communicated independent of an appropriate theoretical context.

Richard Yeo


Mutio Oddi (1569–1639) presents the historian with a model mathematical practitioner, not of the stature of Galileo, but whose life provides extensive documentation (extant papers, publications, and artifacts) and is nonetheless worthy of study to complement and deepen our understanding of the harmonious and synthetic ways in which art and science were all of one piece in the late Renaissance. This beautifully written and elegantly executed book on Oddi’s life and work navigates several fields: history of science,