Climate change, ocean acidification and individual-based models: why the little things matter

Acknowledgements

– Australian Rivers Institute – Coast and Estuaries, Griffith University
– Coastal settlements node, ACCARNSI
– Ecological Modelling Services Pty Ltd, University of Queensland
– Griffith Centre for Coastal Management, Griffith University
– Griffith Climate Change Response Program, Griffith University
What if.....?

Why focus on the little things?

What are the little things?
Individual vs Ecosystem

Relationship between acidification effects, socio-economic impacts and hierarchical levels of biological complexity (Le Quesne & Pinnegar, 2011)

Le Quesne and Pinnegar 2011. Fish and Fisheries (DOI:10.1111/j.1467-2979.2011.00423.x)
It’s complicated….

Drivers
- GHG, CO₂ Increase
- Long shore current strength
- Rainfall intensity
- Sea level Rise
- Storm intensity
- Wind speed

Ocean Acidification
- Indicators
 - pCO₂
 - pH
 - CaCO₃ solubility (Ω_{CaCO₃})

Impacts
- Calcification
- Enzyme activity
- Hypercapnia
- Membrane permeability
- Motility
- Proton pump
- Toxicant concentrations

Organism Response
- Behavior
- Condition
- Development
- Disease
- vulnerability
- Fecundity
- Fertilization
- Mating
- Survival
- Reproductive cues
- Settlement cues

Physical Effects
- Ω_{CaCO₃}
- pH
- Coastal erosion
- Mixing
- Salinity
- Stratification
- Upwelling

Ecosystem Effects
- Dispersion (planktonic stage)
- Nutrient, sediment and toxicant loading patterns
- Phytoplankton / zooplankton community composition
- Prey availability
- Predator-prey interactions
- Habitat change (GBR, mangroves, sea grass)

Recruitment
- Growth
- Mortality
Individual-based models

- Explicitly model individual dynamics
- Individual variability
 - Physiology (E.g. growth, feeding, mortality, reproduction)
 - Behavioural (E.g. habitat selection, movement)
- Spatially explicit
- Integrate physical and biogeochemical
- Individual-level to Ecosystem-level
- Numerically intensive
- Difficult to calibrate / validate
Case study

- Mud crabs - Important fishery
- Lake Coombabah - Marine Protected Area
- Interested in population dynamics:
 - Efficacy of MPA
 - Impact of environment at different life stages (SST)
- Heuristic model (investigative)
- Compliment data collection
- Framework for integrating data
Lake Coombabah, Queensland
Mud Crab - life cycle

- Adult
- Juvenile
- Megalopa
- Zoa I
- Zoa IV

Locations:
- Mangrove Forest
- Estuary
- Ocean
- Mud flats

Life Cycle Stages:
Mud Crab - IBM

• **Physiological:**
 - Growth rates
 - Mortality rates

• **Movement:**
 - **Lagrangian**
 - Larvae - planktonic
 - Adults (moulting) - stationary
 - Adults (default) - random
 - Adult males (mating) - searches for females that are soft-shell, smaller, available, visible
 - Adult females (mated) - leave system to spawn, then return
Hydrodynamics

- Hydrodynamic model (larval movement)
 - Depth-averaged
 - Current velocities along transect
 - Full neap-spring cycle
 - 1 hour time steps (696 steps)

Hydrodynamics
Movement Rules

- **Larvae**
 - planktonic movement (incoming tide)
 - No movement (outgoing tide)

- **Males and females (post-larval)**
 - random movement (hard-shell stage)
 - Stationary (soft-shell stage)

- **Mature males seek out available mature females:**
 - Visible (field of network)
 - Mature
 - Soft shell state
 - Smaller
 - Not already mated
Model Scenario

- Initial empty population
- ‘Seed’ system with larvae
- Let system run for two years
- (Test harvest scenarios)
Preliminary Model Output
Preliminary Model Output
Outcomes

• Individual variability explicitly modelled
• Coupled processes:
 – physical (larval movement)
 – biological (growth / death)
 – behavioural (mating/migration) processes
• Management framework:
 – climate (SST)
 – non-climate (harvesting strategies)
Findings

• Uncalibrated
 – Census data required
 – Behavioural data

• Model expansion:
 – Ocean acidification / offshore effects
 – Habitat
 – Predator-mediated effects
 – Catchment runoff (salinity, pH, nutrients, toxicants)
Take home message

Management of marine species in the context of climate and non-climate drivers of change require models that can:

• explicitly account for individual variability,
• explicitly account for different lifecycle stages,
• explicitly account for movement (planktonic, motile),
• integrate physical-biogeochemical processes, and
• incorporate management scenarios.

Individual-based models