The Prime Ministerial Task Group’s Report on Emissions Trading

A Solution in Search of a Problem

Alex Robson

Introduction

The Prime Ministerial Task Group on Emissions Trading was asked to ‘advise on the nature and design of a workable global emissions trading system in which Australia would be able to participate’. In response to the report, the Prime Minister announced on 17 July that a ‘cap and trade’ system would be introduced in Australia. Whilst details have yet to be announced, reports suggest that the system will cover around 55 per cent of total emissions.

In advocating the policy action of establishing a carbon dioxide (CO₂) emissions-trading system, the report argues that such a system will minimise the costs of achieving any given emissions-reduction target. Even if this is true, however, it does not automatically follow that emissions should be reduced in the first place, let alone by the significant amounts that are being contemplated in various policy circles.

As far as policy is concerned, what matters is not so much the costs to Australia of higher average global surface temperatures, but the costs and benefits of various policy actions which are aimed at addressing the possible undesirable effects on Australia of higher average global surface temperatures. This is a subtle but important distinction. Any policy contemplated by the Australian government should be focused on the net benefits to Australia of that particular policy. Only a full economic cost-benefit analysis of emissions reductions versus alternative policies can shed light on these issues for Australia. No credible economist (or anyone else, for that matter) has demonstrated that there are significantly positive total benefits (let alone significantly positive marginal benefits) to Australia from the policy of reducing our CO₂ emissions. There is a very good reason for this: since Australia’s emissions are so small, any benefits (both in total and at the margin) of emissions reductions are likely to be extremely

1 School of Economics, College of Business and Economics, The Australian National University, Canberra.

2 Essex et al. (2006) show that the ‘average’ temperature of an out-of-equilibrium climate system is not a well-defined physical concept, and that the calculation and widespread use of the simple mean temperature to address global climatological questions is completely arbitrary from a physical point of view. Just as it is possible to define and compute an infinite number of social welfare functions in order to compute a ‘social’ or ‘aggregate’ ranking over various policy alternatives in economics, it is also possible to define and compute an infinite number of average global temperature statistics.
small — almost certainly zero. The report therefore constitutes a solution in search of a problem.

Background: Australia is Still a Small, Open Economy

The earth’s temperature is determined by a balance of incoming solar radiation (‘insolation’) energy and outgoing terrestrial infrared radiant energy emitted by the planetary surface and atmosphere. Any gas which partially ‘traps’ outgoing terrestrial radiation is classified as a greenhouse gas (nitrogen and oxygen, which together make up over 99 per cent of the dry atmosphere, are passive in this respect and are not greenhouse gases). Thus, water vapour is a greenhouse gas (indeed, it is the most important one). The natural ‘trapping’ of terrestrial long-wave radiation by these stocks of gases leads to surface temperatures some 30° Celsius higher than they would otherwise be in the absence of an atmosphere.\(^3\) This is the greenhouse effect.\(^4\)

Greenhouse gases are therefore responsible for providing liveable conditions on earth. In the familiar terminology of economics, the marginal benefits of greenhouse gases are obviously positive over some range. In addition to its ‘trapping’ properties, carbon dioxide (a naturally occurring greenhouse gas) is vital for photosynthesis and encourages plant, tree and marine growth. Nevertheless, the greenhouse effect may be enhanced by additional man-made greenhouse gases, with possible undesirable effects.

In understanding the relative contribution of these anthropogenic greenhouse gases, it is important to distinguish between stocks and flows. For example, CO\(_2\) cycles naturally through the earth’s atmosphere, land mass and oceans. The stock of carbon contained in atmospheric CO\(_2\) is around 730 Gigatonnes of carbon (GtC), and the annual gross flow or exchange of carbon to and from the earth’s surface and the atmosphere is estimated at 120 GtC. Between the oceans and the atmosphere the estimated gross flow or exchange is 90 GtC.\(^5\)

In contrast, the annual flow of carbon dioxide into the atmosphere resulting from human activities (fossil-fuel burning and land-use change) is just over 7 GtC.\(^6\) This is just over 3 per cent of the natural annual gross flows, and less than 1 per cent of the total atmospheric CO\(_2\) stock.

The Shergold Report takes a rather strange view of the desirability of a policy of emissions reductions. A ‘cap and trade’ system involves setting a cap or a

\(^3\) This naive calculation ignores a number of important factors. See, for example, the discussion in Lindzen (1994).

\(^4\) Diffuse radiation from clouds can provide an additional indirect component to radiation received at the earth’s surface. For example, Mason (2002) estimates that if the constitution of the atmosphere remained as it is now, in the absence of clouds the mean global surface temperature would be 4° Celsius higher than its present value.

\(^5\) See, for example, Kininmonth (2004), p.130.

\(^6\) Around 4 GtC of these emissions are taken up again by the land and oceans.
target, but nobody knows for sure what this cap should be, or whether an upper
bound even makes good scientific or economic sense for Australia. Indeed, the
report admits as much:

The goal of the United Nations Framework Convention on Climate Change,
to which Australia is a party, is to achieve ‘stabilisation of greenhouse
gas concentrations in the atmosphere at a level that would prevent
dangerous anthropogenic interference with the climate system’ (United
Nations, 1992). Understanding of the complex environmental, economic
and social impacts of climate change is currently not sufficient to identify
confidently what this level should be. [Emphasis added] (p.21)

Instead of acknowledging these issues or trying to pin down what an
appropriate ‘cap’ might look like, the Shergold Report takes the following ‘risk
management’ view regarding emissions reductions:

Addressing climate change is a risk management issue on a global scale.
While there are costs in acting now, the consequences of inaction are
potentially large for many countries. Given the potential for significant
costs arising from climate change in the future, a prudent risk
management approach suggests that steps to reduce emissions should be
undertaken now.

This ‘insurance policy’ argument was also made by the Prime Minister on 18
July:

A prudent conservative knows we are but temporary stewards of the
environment. The Burkean sentiment — that society is a partnership
between those who are living, those who are dead, and those who are
yet to be born — comes as second nature.

In the face of risk, a prudent conservative takes insurance. We should,
in the words of Rupert Murdoch, give the planet the benefit of the doubt
given the potential dangers of climate change.7

With respect to emissions reductions by Australia, as a matter of science,
economics and logic this ‘insurance policy’ analogy is completely inappropriate
and indeed grossly misleading. As far as Australia’s CO₂ emissions reductions
are concerned, the entire ‘risk management’ argument simply cannot be sustained.
Australia’s CO₂ emissions comprise around 1.5 per cent of total global emissions
from human activity.8 This fact suggests that even if we assume that all of

7 See Howard (2007).
8 In 2005, Australia’s total greenhouse emissions were 559 megatonnes in carbon dioxide equivalent
terms: 74.3 per cent of this is carbon dioxide, giving total CO₂ emissions of 415 megatonnes. The ratio
of the molecular mass of CO₂ to that of carbon is 3.66419, so this equates to about 113 megatonnes of
carbon, or 0.113 GtC. Dividing this by global anthropogenic carbon emissions of just over 7 GtC gives
the 1.5 per cent figure. (Prime Ministerial Task Group Report pp. 28, 30)
Australia’s emissions currently remain in the atmosphere and add directly to the global stock of CO$_2$ each year, a policy of completely eliminating our CO$_2$ emissions would have a negligible effect on the total global atmospheric CO$_2$ stock. This is true no matter what actions are taken by other countries.

The marginal benefit of a policy action is the change in total economic benefit with respect to a change in that action, holding everything else constant. In many economic problems encountered by policymakers, the marginal benefit of an action is inherently uncertain or may depend on the actions taken by other economic actors. That is simply not the case here. The contention that the marginal benefits of a reduction in emissions by Australia are so small as to be negligible, irrespective of the actions taken by other countries, involves very little — if any — uncertainty.

Simply put, as far as the benefits of emissions reductions are concerned, there is no ‘risk’ for Australia to ‘manage’. A policy of emissions reductions is like taking out an ‘insurance policy’ in which there is never any positive payoff. It is doubtful that Edmund Burke would have regarded such an action as particularly prudent.

Perhaps the best that we can hope for with respect to emissions reductions is an international ‘signalling’ effect, whereby our emissions reductions generate goodwill and encourage major emitters to take action. But there is little evidence that this signalling effect in international affairs works, particularly when it comes to reducing CO$_2$ emissions. After all, Australia has, thus far, gone very close to meeting its Kyoto emissions targets, and yet this does not seem to have had any signalling effect on the rest of the world — particularly on European countries, many of which have consistently failed to meet their Kyoto targets, or on China, which is now the largest CO$_2$ emitter.

The Shergold Report’s (rather meagre) discussion of the advantages of cap-and-trade systems over taxes, subsidies and other regulatory measures in situations of uncertainty (and the associated literature beginning with Weitzman (1974)) is therefore completely beside the point. If the total and marginal benefits of emissions reductions for Australia are trivially small in all possible states of the world, it does not matter how such reductions by Australia are ultimately brought about. All policies will be welfare-destroying. There is no tax, subsidy or ‘cap’ in existence which will equate the marginal benefits of emissions reductions with marginal costs of emissions reductions in any state of the world.

Towards an Optimal Policy for a Small Open Economy

Does it automatically follow that nothing should be done about the possible undesirable effects of global warming? Absolutely not! The Shergold Report and the entire current debate offer us a false choice between reducing CO$_2$ emissions on the one hand, and doing nothing on the other. But these are not
the only two choices available to us. Different kinds of ‘insurance policies’ — policies which at least offer the possibility of a positive payoff — exist.

Parish (1972), following arguments similar to those made by Coase (1960), points out that welfare improvements can be made by either reducing pollution or mitigating its possible undesirable effects.\(^9\) Recall that the marginal benefit of an action is defined as the change in total benefits with respect to a change in that action. The point here is that there are other actions available which could be taken by Australia to reduce the possible undesirable effects of higher average surface temperatures in Australia and climate change more generally, even if we may not be able to do anything about the alleged causes of those effects.\(^10\) The marginal benefits to Australia of such appropriately chosen damage-prevention measures will likely be positive, at least in some states of the world.

For example, suppose that one of the anticipated adverse effects of higher average global surface temperatures on Australia is a reduction in existing sources of potable water in a major population centre. In this scenario the benefit of any action can be easily measured as the consumption benefits of fresh water. Reducing Australia’s CO\(_2\) emissions will have absolutely no effect on these possible benefits — marginal benefits of emissions reductions are always and everywhere zero in this scenario, for reasons discussed earlier. On the other hand, building new dams, desalination plants and so on may have positive benefits (depending on the state of the world that actually eventuates). These (appropriately discounted) expected benefits could then be weighed against expected costs in the usual way.

In the global warming debate these actions often come under the general heading of adaptation, but this terminology does not quite encompass the above scenario or what Parish was actually referring to. Adaptation implies that one waits passively until an adverse consequence is observed before acting. But, as the above scenario indicates, damage-prevention measures can take place in anticipation of possible adverse climatic conditions, well before those events actually occur. This is real ‘risk management’ in action. In contrast to the policy of reducing emissions, these measures may constitute an ‘insurance policy’ that actually offers the prospect of a positive payout if adverse circumstances occur.

\(^9\) Parish (1972), p.36. As discussed earlier, CO\(_2\) is vital for the flourishing of life on earth and is not a ‘pollutant’ in the commonly accepted meaning of that term. Nevertheless, we will use the term for convenience.

\(^{10}\) The idea that one particular economic activity can ‘cause’ social costs was completely demolished by Coase (1960). Those individuals whose wellbeing is reduced by pollution could just as easily be said to ‘cause’ social costs. Indeed, to the extent that polluting activity is also associated with economic benefits, the absence of pollution also ‘causes’ social costs or an absence of benefits. Social costs are exactly that — social. They are not ‘caused’ by any single party or activity.
Conclusion

The choice between active damage prevention, passive adaptation and emissions reduction (or possibly a combination of all three) should be governed by an assessment of the relative costs and benefits of each particular policy proposal. In all likelihood, the benefits of investment in damage prevention are likely to be much greater than emissions reduction, because Australia is such a small contributor to the global stock of greenhouse gases. Because any adverse economic effects of higher average global surface temperatures on Australia are likely to be localised and seasonal, investment in damage-prevention measures offers a more sensible approach and a more appropriate use of valuable resources than emissions reductions.

To date there seems to have been very little formal empirical work conducted on the relative costs and benefits of emissions reductions versus damage-prevention measures for Australia, and there has been very little — if any — serious discussion of these issues among economists or policymakers. All attention has been focused on the false dichotomous choice between drastic emissions reductions on the one hand, and doing nothing on the other.

Damage-prevention measures are a more flexible option that can be implemented in a more decentralised fashion, by individuals (via insurance markets and by individuals taking advantage of their knowledge of local conditions and self-insuring) and by state and local governments. In contrast, the policy proposals contained in the Shergold Report (and the recent announcement made by the Prime Minister) envisage the establishment of at least one new federal bureaucracy to monitor individual and aggregate CO$_2$ emissions and enforce the obligations embodied in each individual emissions permit. Despite all the politically charged fanfare, the policies examined in the report will do absolutely nothing to reduce any future adverse effects of higher average global surface temperatures on Australia.
References