
A Problem Based Approach to Teaching Programming

W. Pullan1, S. Drew2, and S. Tucker1
1School of ICT, Griffith University, Gold Coast, Queensland, Australia

2Griffith Institute of Higher Education, Griffith University, Gold Coast, Queensland, Australia

Abstract - Java Programming Laboratory (JPL) is a cloud
based learning environment used for teaching object-oriented
programming at Griffith University, Australia. JPL
incorporates a number of features found in other successful
programming learning environments and builds upon them
with a range of innovative features. JPL provides a database
that tracks individual students’ successes and progression
through scaffolded programming exercises and assessment
items and gives students immediate feedback on their use of
programming language syntax and correctness of problem
solutions. A data querying and visualisation facility allows
analysis of the database to provide real-time performance
indicators from the overall course / problem level down to the
individual student / specific problem level. Programming
instructors and curriculum designers will find that this facility
allows a responsive approach to student engagement,
assistance and progression; as well as course problem tuning
in a just-in-time manner.

Keywords: Object-oriented Programming; Problem-Based
Learning; Real-Time Progress Tracking; Scaffolded
Development;

1 Introduction1
 Learning object-oriented programming is a difficult process
for most first-year students but, once mastered, it is
transformative in that it provides a means to represent and
solve a range of computing related problems in many
application areas. Compounding the difficulty in learning
programming is the fact that it is normally taught, in first year,
to a cohort of students with a considerable range of academic
abilities and experiences. During the pre-2000 dot.com boom,
by far the majority of ICT students at the authors’ university
were high achievers who had studied relevant preparatory
courses at high school and were motivated by the prospect of
a relatively highly paid career in an industry where they were
in high demand. More recent moves towards massification of
higher education (Altbach, Reisberg and Rumbley, 2009) and
a local reduction in popularity of many ICT related
professions has resulted in the lowering of entry requirements
for ICT programs to maintain budget quotas. While these
moves have increased the difficulty of teaching programming,
it should be noted that, even in the past, teaching introductory
programming was challenging and often resulted in student

1 This paper uses the naming convention program and courses to refer to a
degree structure where a program is a set of courses. This is in contrast to the
course / (unit/subject) naming convention.

avoidance of further programming based courses. What is
reported in this paper are the results of a project that addresses
these challenges by implementing a successful learning and
teaching system based on engagement theory (Kearsley and
Schneiderman, 1998) and constructivist design philosophy
(Jonassen, 2003; Karagiorgi and Symeou, 2005).

In the professional setting, where most academics are
untrained in educational theory, a simple and effective
approach is provided by having a focus on “active learning”
strategies. Biggs (1999) strata of conceptions of teaching
progress from concentration on student as recipient of the
teacher’s wisdom, or what the student is, to a concentration on
executing the act of teaching, or what the teacher does, and
ultimately a focus on what the student does in the quest for
knowledge and eventual understanding. It is this final
conceptual level of teaching that leads to a focus on active
learning (Jonassen and Rohrer-Murphy, 1999; Scanlon et al.,
2002; Tetard and Patokorpi, 2005; Baugh, 2009) and student
learning through experience (Kolb, 1984; Boud, Cohen and
Walker, 1993). Active learning, in the context of teaching
introductory programming, where a student is to learn a
programming language and the tools of programming they
must write programs so task setting is not difficult. However,
the best effect will be obtained in an environment that
facilitates and motivates them to write programs and, with a
wide range in student ability, this is where the challenge arises
- how to keep the poorer students progressing while not
causing the more able students to lose interest.

A programming learning environment, Java Programming
Laboratory (JPL) was developed to address the design
criterion of providing scaled levels of challenge to maintain
student engagement with learning for a cohort of varied
ability. An active learning approach allows teaching staff to
concentrate on what the student does on their journey to
learning programming in an immersive software development
environment. There are a number of key design features of
the JPL learning environment to address relevant instructional
design theory. Firstly, it presents a component approach
(Pintrich and de Groot, 1990; Biggs, 1999b) that is as
‘concrete’ conceptually as possible with students having to
focus only on the topic currently being taught. Secondly, it
presents a problem-based learning approach (Savery and
Duffy, 1995) and provides a large range and number of
problems, selected from an even larger range of problems
available for each topic. Problems are designed to scaffold
development (Simons and Klein, 2007) to cater for the wide
range of student abilities, providing multiple entry points into

each topic, and additional problems for better students.
Thirdly, it promotes responsive, formative feedback (Nicol
and Macfarlane-Dick, 2006), with continuous access to
personal and class (group) performance measures, and access
to just-in-time assistance. Fourthly, it provides a consistent,
simple environment available for any computing platform;
and flexible access to the learning environment that is
available in university computer laboratories or off campus
via the Internet. Fifthly, as a client-based application it
ensures students can maintain learning momentum and time-
on-task even while the Internet may not be accessible.
Finally, to maintain originality of student learning it does not
allow solutions to problems to be passed from year to year
which mitigates the learning process.

JPL incorporates a large number of features, some of which
are based on existing open-source programming teaching
systems. These include the Stanford University (Stanford,
2011) teaching initiative titled CodingBat that has been used
to teach Java programming at that institution, VideoNotes
(Cornell, 2011) and interactive web-pages (Kjell, 2006).
Using the lessons learned from these teaching systems, this
paper now describes the JPL approach that has been taken to
dealing with the issues highlighted above in teaching
introductory programming.

2 Java Programming Laboratory
 Java Programming Laboratory is an educational system
designed to assist students learning Java as their first
programming language. Basically, JPL provides a software-
based environment, available on both the universities and
students computers, that allows students to develop their
programming skills by starting with simple, targeted, Java
code fragments and slowly transitioning to complete Java
programs. The fundamental concept underlying JPL is – “you
can learn programming skills by writing many, small,
targeted code fragments”. Within JPL, learning a
programming language is devolved into smaller steps of
learning and practicing computer-based problem solving
techniques. This simultaneously aids learning of programming
language constructs, their syntax and semantics.

The overall system structure of JPL is shown in Figure 1 and
the components of this system are described in the following
bullet points / sub-sections.

Figure 1 : JPL System Overview

• Lecture / Workshops : The lectures / workshops are very
much a “teach by example, learn by doing” exercise in
that the lectures are a 50/50 combination of topic
discussions and joint (lecturer / students) JPL problem
solving and implementation. The on-campus workshops
are solely based on the student working in JPL with
tutorial assistance to solve a specific issue directly
available if required.

• JPL VideoTutes : An integral part of JPL is the use of
short (~10 minutes) video tutorials explaining key
programming concepts and problem solving techniques.
In effect the student is able to ‘look over the shoulder’ at
the computer screen as an experienced programmer
demonstrates both programming language features and
computer based problem solving from problem analysis
to program implementation. Shorter versions of video-
tutes are also used to provide hints to solve problems.
These video micro-tutorials that support student learning
of individual constructs provide an indexed system of
instruction and reviewable examples to support
incremental development of problem solving and
programming knowledge through guided practice.

• JPL Website : The JPL website contains a number of
interactive learning tools, some of which were originally
created by Bradley Kjell, Central Connecticut State
University (Kjell, 2006). For the object-oriented
programming course in Java, these include multiple
choice quizzes, each with correct answers supplied on
completion, fill-in-the-blank review sessions and multi-
page interactive topic discussions. The JPL Website is
available at www.ict.griffith.edu.au/JPL.

• JPL Fileserver : The JPL Fileserver acts as the central
repository for all JPL related files. When JPLIDE is
initiated, if needed and the Internet is available, a merge
of the local copy of the student’s log and the student’s
log on the JPL Fileserver is performed and a new copy
of the JPL Course Control File downloaded from the JPL
Fileserver. As the student performs JPL activities, both
copies of the student’s log are kept up to date. If the
Internet is not available, the student is still able to use
JPLIDE and the logs will be merged when the Internet
does become available.

2.1 JPL Integrated Development Environment

(JPLIDE)
 Students perform all programming activities completely
within the JPLIDE, which is based on the DrJava open source
IDE and has the user interface shown in Figure 2. To choose a
problem, students access the Problems item on the Toolbar
and this produces the JPL Problem Selector display shown in
Figure 3. The problem selector contains a table of problem
identifiers for the course, where the current status of the
problem (template obtained, compiled, failed test, successfully
completed (Green)) for the student is colour coded as
background to the problem identifier. The leading character of
the problem identifier gives the problem type (W ->
Workshop problem, H -> Homework problem). Students start

at the bottom row of the problem selector table and work their
way up the table (which allows for the situation where
problem rows are released as the semester progresses) with
problem difficulty increasing from left to right.

For straight-forward problems, such as that shown in Figure 2,
the complete problem specification is stored in the problem
template and the Java code after the Problem Statement is not
present in the initial template. For more difficult object
oriented problems, the problem specification, including items
such as UML diagrams, are stored in a PDF file that is
automatically downloaded when the associated problem is
selected. In addition, all source files for supplied classes for a
more advanced problem will be automatically downloaded
directly into JPLIDE and any input disk files required will
also automatically downloaded on the first execution of the
student’s Java program. This automatic downloading of
everything that is required for a problem, allows the student to
focus solely on developing a class which demonstrates a
particular object oriented concept (e.g. inheritance,
polymorphism).

Once a problem has been selected, the student will start
creating code and use JPL automated testing to check for
correct logic. Figure 2 shows the completed program and the
response to a successful execution for a simple, non-object
oriented problem.

A brief summary of the JPL related commands available on
the JPLIDE ToolBar is:

• News/Workshops : Display current course news and
expected workshop activity for each week of the course.

• Statistics : Provides information on how well a student is
performing with regard to the rest of the class and a
weekly / overall breakdown of the JPL tasks they have
performed. In particular, this shows the student their JPL
Performance Indicator and how it compares to the
performance indicators for the complete class (Figure 4).
This data is available immediately after the first
workshop in Week 1 of semester.

• Problems : Presents the JPL Problem Selector (Figure 3)
that displays all the problem identifiers, the current
status of the problems for this student and allows a
problem to be selected.

• Compile : Compiles the current Java program and saves
a copy of the source file to the JPL Fileserver.

• Test : Using the current Java program, performs the JPL
automated testing which uses test data and expected
outputs stored in the JPL Course Control File.

• Run : Executes the current Java program outside the JPL
testing environment (i.e. with manual input and normal
output).

• Stop : DrJava command which terminates the currently
executing Java program. Primarily used to terminate an
infinite program loop.

• Examples : This allows students access to many Java
code fragments to perform specific tasks and also to

complete Java programs that they can compile and
execute.

• Hints : These include a solution flowchart available as a
hint; solution pseudo-code available as a hint; and hint
suggesting Java methods to use – e.g. for a String
problem, which String methods (of the 43 available) is
best to use in the solution.

Figure 2 : JPLIDE User Interface and Automated Testing
Result

Figure 3 : JPLIDE Problem Selector

• Solutions : Provides, via a problem selector, solutions to
selected problems. These are released after the relevant
topic has been covered and students are unable to access
a solution until they have made a reasonable effort at
solving the problem.

• Assistance : Allows a student to request assistance with a
problem. This results in an automatic email being sent to
the course convenor who, working in Admin mode, is
able to take over the student’s JPL environment, make
code corrections or just insert suggestions into the java
source files. Once help has been given, the course
convenor returns to their own JPL environment and an
email is automatically generated and sent to the student.

• Assessed : Causes JPLIDE to enter Assessed Mode so
that an Assessed Workshop can be performed. In
Assessed Mode, JPLIDE is ‘locked down’ and the only
file that can be opened is the Assessed Problem that is
not normally assessable. In addition, a number of other

JPLIDE commands (e.g. Paste) are disabled. Assessed
mode can only be entered as the first command after
JPLIDE is started and, while JPLIDE is in Assessed
Mode, all other executing programs on the computer are
monitored to detect disallowed programs.

• Quit : Terminates JPLIDE after updating the JPL
Fileserver (if the Internet is available).

Less commonly used JPLIDE commands that are available via
a menu items include: Last Test Result, Student History,
Restart Problem, Change Course, Java Tutorials, JPL Videos,
JPL Website, and Administration items such as those
described in the next sub-section.

2.2 JPL Course Administrator (JPLAdmin)
 The JPLAdmin interface allows the course convener to
create the workshop contents and also update the
News/Workshop display. For the course convener only, the
menu items available in JPLIDE under the Admin menu item
include:
• Assist Student : In response to a student request for

assistance, the course convenor is able to directly assist
the student using the mechanism described for menu
item Request Assistance above.

• Workshop Problems : This allows the course convenor to
scan a library of problem templates (over 500 are
available) for possible inclusion in a workshop.
Problems are grouped by topic and difficulty ranking.
There is a simple Course Definition text file that is
updated to include a problem in a workshop.

• Build Workshop : This command takes the Course
Definition text file edited above and creates the JPL
Course Control File.

• Update Server : Loads the current JPL Course Control
File up to the JPL Fileserver ready for automatic
download by JPLIDE.

2.3 JPL Course and Student Analysis

(JPLAnalysis)
 JPLAnalysis is a stand-alone program that performs analysis
of all student logs held on the JPL Fileserver. Statistics can be
obtained at the problem, student, course level and any
combination of these through a command line interface.
2.3.1 Student Level Reports
 As an example of tracking an individual student, Figure 3
and Figure 4 show some of the information available at the
student level. From Figure 3 it can be seen that this student,
from the 74 JPL problems available in this course,
successfully completed 60 problems, attempted 4 more and
did not attempt 10 problems. The first graph in Figure 4
shows how a students JPL Performance Indicator (horizontal
blue line) compares with the performance indicators for all the
class (red columns). This graph is constantly available to
students from Week 1 of semester and gives them constant
feedback on their performance in relation to other students in

the course. Obviously this student is performing very well
however the second graph shows the students work pattern
and clearly they were able to work ahead during the first
portion of the semester and then able to make less effort
during the latter part of semester.

Figure 4 : JPL Performance Indicator and activity for a
particular student

Tracking individual student activity within JPL has a number
of uses in the university context. These range from
identifying points in the course where students ‘switch-off’ to
evaluating the amount of effort a student has put into
producing an assignment so as to flag possible plagiarism
cases.

2.3.2 Course Level Reports
 An example of a course level report is shown in Figure 5
which shows the total student JPL activity on a week by week
basis for the course.

 Figure 5 : Total student activity for each week of the
semester

The slow decline in JPLIDE commands during semester is
mostly due to the fact that the JPL problems became more
difficult as the semester progressed so the rate at which
students were inputting commands decreased.

2.4 JPL Course Results

 The topics covered in this course are shown on the left-hand
side of the JPL Problem Selector in Figure 3 and a summary
of student activity is given in Table 1.

JPL Activity Semester
Total

JPLIDE Starts 8,065
Total JPLIDE Commands 189,805
Open a new JPL Template 7,794
Compiles 123,734
Failed Tests 10,239
Passed Tests 4,495
Total JPLIDE Dev. Commands 157,105
Home activity as a % of total activity 62%

Table 1 : JPLIDE Usage Counts for the Object Oriented
Programming course with around 100 Students

A frequency analysis of constructs derived from student
survey responses under the headings of “what worked well”
and “what needs improvement” in the JPL based course
revealed constructive information. Most popularly, JPL was
perceived as helpful to students learning programming and
that they appreciated the learning environment as being easy
to use. Next most popular responses relate to the instructor
facilitated laboratory learning experience based around
practical exercises. Here students appreciated the quality of
the tutorial assistance, the tutorial/laboratory learning
experience, and the level and access to help that they found
most effective. Frequent mentions were made of the flexible
access to JPL from outside of laboratory classes and the
appreciation of the lecturer and lecture/workshop classes.
Interestingly, students found that JPL assisted them in
understanding the curriculum and course structure and that the
curriculum design assisted their learning. Several other lower
frequency constructs were mentioned relating to various JPL
and course design features.

In the area of what students felt needed most improvement
there was a wide range of issues of low frequency suggesting
a range of mainly individual learning needs that could be
addressed. For most students a lack of understanding or
experience of curriculum design for learning programming
may limit the number of ideas they can offer for course
improvement. Many, above, experienced an effective
learning experience and would not seek to make changes.
Indeed, the most frequent response in the survey was that they
could think of no improvements. Next most frequent
responses were from the percentage of the class having had
no experience of learning to program. Some of these students
suggested more help, and a softer introduction to the course,
technical language, and requirements for undertaking
programming. Relating to this there were requests for more
tutorial assistance, more tutorials, and making the course less
difficult. In direct contrast, and indicating the mixed levels of
ability and experience amongst students, there were also
requests for more problems with higher levels of difficulty

and challenge. From the broad range of responses it appears
that JPL and the course design managed to succeed in
meeting the needs of such a diverse class.

3 Conclusions
 JPL is based on the premise ‘to learn programming you
have to do programming’ and places students in an
environment where they can totally focus on that. An
observation from the current semester is that students are
motivated by the JPL testing feedback they receive and are
also motivated by the JPL Performance Indicator and the
colour indicators on the JPL Problem Selector panel. These
factors enhance student engagement with learning to program.

Within JPL, learning a programming language is devolved
into smaller steps of learning and practicing computer based
problem solving techniques. This simultaneously aids
learning of programming language constructs, their syntax
and semantics. Problems available in JPL are designed to
scaffold student learning through a number of stages. These
problems range from modifying existing programs, ‘fill in the
blanks’ type exercises, developing Java code fragments and
finally developing full Java programs. All student work in JPL
is automatically tested and, as each student performs work on
an exercise, the event is registered by the system. At a glance,
at any point in the semester, the convenor or tutor can see how
each student is performing and investigate any potential
problems immediately.

Flexibility and continuity of access is important for our
cohorts so the complete JPL system is available to students
both in the ICT computer laboratories and also on their home
computers. JPL has been used in a number of programming
courses including high schools, an Australian university and a
Chinese university. Within the university context, JPL seeks
to address student retention and poor learning outcomes by
improving scaffolding and learning support for key ICT
programming courses. For the flagship ICT undergraduate
programs, the courses that involve learning programming
languages have been identified as containing key threshold
concept areas. In all major strands of these degrees, learning
to program is normally compulsory and starts from first
semester, first year. Computer programming is considered a
difficult learning area and can have a high student failure rate.
Building upon a successful international blended-learning
model, JPL provides an integrated program development
environment which also includes automated testing and a
comprehensive set of construct level, video-tute resources to
aid computer program development and self-paced learning.
This online program development and problem-based
experiential learning environment enables academics and
students to monitor progression through automatically
evaluated learning objectives. JPL instructor access to
students’ achievements on tutorial and assessment tasks
allows earliest possible identification of students who are at
risk of failing in order to provide timely remedial assistance.
JPL also provides feedback to the academic/teaching team

designing problem sets and curricula to identify where extra
learning assistance or redesign is required.

Outcomes of the JPL approach to teaching introductory
programming have thus far been very encouraging in terms of
impacting positively on student learning experience and
learning outcomes.

4 References
[1] Altbach, P. G., Reisberg, L., & Rumbley, L. E. (2009).
Trends in global higher education: Tracking an academic
revolution. Center for International Higher Education.

[2] Baugh, J. M. (2009). Let's Have Fun with That Required
Computer Information Systems Introduction Course.
Information Systems Education Journal, 7(73).

[3] Biggs, J. B., (1999a). Teaching for Quality Learning at
University, Open University Press / Society for Research into
Higher Education.

[4] Biggs, J. B. (1999b). What the Student Does: teaching for
enhanced learning. Higher Education Research &
Development, 18(1), 57 - 75.

[5] Boud, D., Cohen, R., & Walker, D. (1993). Using
experience for learning. Buckingham [England]; Bristol, PA:
Society for Research into Higher Education and Open
University Press.

[6] Cornell University, (2011). VideoNote, from
http://www.videonote.com/study.aspx

[7] Jonassen, D. H., & Rohrer-Murphy, L. (1999). Activity
theory as a framework for designing constructivist learning
environments. Educational Technology Research and
Development, 47(1), 61-79.

[8] Jonassen, D. H. (2003). Learning to solve problems with
technology: a constructivist perspective (2nd ed.). Upper
Saddle River, N.J.: Merrill.

[9] Karagiorgi, Y., & Symeou, L. (2005). Translating
Constructivism into Instructional Design: Potential and
Limitations. Journal of Educational Technology & Society,
8(1), 17-27.

[10] Kearsley, G., & Schneiderman, B. (1998). Engagement
Theory: A Framework for Technology-Based Teaching and
Learning. Educational Technology, 38(5), 20-23.

[11] Kjell, Bradley , (2006), Introduction to Computer
Science Using Java, Central Connecticut State University
http://chortle.ccsu.edu/CS151/cs151java.html

[12] Kolb, D. A. (1984). Experiential learning : experience
as the source of learning and development. Englewood Cliffs,
N.J.: Prentice-Hall.

[13] Nicol, D., & Macfarlane-Dick, D. (2006). Rethinking
Formative Assessment in HE: a theoretical model and seven
principles of good feedback practice. Studies in Higher
Education, 31(2), 199-218.

[14] Pintrich, P. R., & de Groot, E. V. (1990). Motivational
and self-regulated learning components of classroom
academic performance. Journal of Educational Psychology,
82(1), 33-40.

[15] Savery, J. R., & Duffy, T. M. (1995). Problem-based
learning: An instructional model and its constructivist
framework. In B. G. Wilson (Ed.), Constructivist learning
environments: Case studies in instructional design (pp. 135-
148). Englewood Cliffs, NJ: Educational Technology
Publications.

[16] Scanlon, E., Morris, E., diPaolo, T., & Cooper, M.
(2002). Contemporary approaches to learning science:
technologically-mediated practical work. Studies in Science
Education, 38(1), 73 - 114.

[17] Simons, K. D., & Klein, J. D. (2007). The Impact of
Scaffolding and Student Achievement Levels in Problem-
based Learning Environment. Instructional Science, 35(1), 41-
72.

[18] Stanford University, (2011), CodingBat, from
http://www.codingbat.com

[19] Tetard, F., & Patokorpi, E. (2005). A Constructivist
Approach to Information Systems Teaching: A Case Study
on a Design Course for Advanced-Level University Students.
Journal of Information Systems Education, 16(2), 167-176.

