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Summary

The method of harmonic balance is applied to nonlinear jerk equations, which

involve the third-order time-derivative. For many types of cubic nonlinearities, the

method yields good estimates of the period and displacement amplitude of oscillations

for a range of values of initial velocity amplitude when compared with numerical

solutions. Some limitations, notably the restriction to zero initial acceleration, as well

as implications and possible extensions are discussed.
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1. INTRODUCTION

The method of harmonic balance (HB), as described for example in the book by

Mickens [1] for second-order nonlinear oscillators, can be very successful in

predicting the oscillation frequency in terms of the amplitude of periodic solutions to

nonlinear “acceleration” equations of the form )x,x(fx !!! = . In its simplest form, the

dependent variable is assumed to be a harmonic, cosinusoidal, function of angular

frequency × time, and powers and products of trigonometric functions arising from

substitution into the differential equation are re-expressed in terms of linear

combinations of multiple-angle functions. Then higher-multiple functions are

discarded, and coefficients of the lowest-order terms are matched (“balanced”).

Interest in “jerk”  equations

 )x,x,x(Jx !!!!!! =    ,                                               (1.1)

involving the third temporal derivative of displacement (which might also be termed

“triceleration”), has recently been rekindled [2]. As well as originally being of some

interest in mechanics (see e.g. refs [3], [4]), nonlinear jerk equations are finding

increasing importance in the study of chaos (see the article by von Baeyer [5], and the

recent paper by Sprott & Linz [6] and references therein). Many third-order nonlinear

systems (three simultaneous first-order nonlinear differential equations), both

mathematically and physically motivated, such as the now-classical Rössler system

[7], may be recast into a single nonlinear third-order differential (jerk) equation

involving only one of the dependent variables by suitable elimination [2], [8]. Some

early investigations into nonlinear jerk equations (although not termed as such)
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include oscillations in a nonlinear vacuum tube circuit [9], and third-order mechanical

oscillators [10], [11], [12].  Other physical situations in which nonlinear jerk-type

equations have been investigated, with more emphasis on chaotic solutions (called

aperiodic in earlier works), include a thermo-mechanical oscillator model with

thermal dissipation [13], [14], fluid dynamical convection [15], and stellar ionization

zone oscillations [16]. Jerk equations, though not nearly as common as acceleration

(or force) equations )x,x(fx !!! = , are therefore of direct physical interest. Moreover,

simple forms of the jerk function J which lead to perhaps the simplest manifestation

of chaos have been found by Sprott [17].

This paper sets out to investigate not chaotic solutions to jerk equations (as

many of the above references do), but the analytical approximations, via the method

of harmonic balance, to periodic solutions to nonlinear jerk equations in appropriate

parameter regions where these exist. Such solutions do not appear to have been dealt

with by other authors before. At first sight, difficulties seem apparent in this approach.

First of all, a couple of facts contributing to the usefulness of the HB method in

investigating nonlinear second-order differential (acceleration) equations are

mentioned. (i) The linear d.e. xx 2ω−=!!  has two independent periodic solutions

{cos;sin}(ωt). (ii) Two initial conditions, on x and its derivative, are required, and it is

always possible to have only one of these, viz. cos(ωt), non-zero at t=0.

On the other hand, for third-order differential (jerk) equations, the situation is

different. (i) The linear d.e. xx 3ω−=!!!  does not have any periodic solutions. (The

special linear third-order o.d.e. 0)xx(xx 22 =ω+α+ω+ !!!!!!  does possess the above two

independent periodic trigonometric solutions, but also (for α≠0) may have a third,

nonperiodic, solution.) (ii) The third-order d.e. requires three initial conditions, for x
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and its first and second derivatives. Assuming an approximate solution to a

third-order nonlinear d.e. of the form x ~ cos(Ωt), it is not possible to have only one

non-zero initial condition at t=0, because )0(x!!  is also required which moreover would

involve the unknown Ω.

Difficulty (i) can be overcome by considering jerk equations whose linear

term, if any, involves only x! . Difficulty (ii) may be addressed by using the Ansatz x ~

sin(Ωt), so that only the initial velocity is non-zero, with the initial displacement and

also acceleration being zero. A consequent restriction on the jerk equations amenable

to harmonic balance using this approach is that (choosing time t=0 when x=0) only

problems with zero initial acceleration can be considered. This has to be appreciated

from the outset. However, this situation of starting off with a constant velocity is a

feasible condition, depending on the actual physical meaning of the dependent

variable x and interpretation of the equation. For instance, the initial conditions

( 0)0(x,0)0(x,0)0(x =≠= !!! ) are quite common in investigations of third-order d.e.s,

such as for example those corresponding to physically implementable chaotic

electrical circuits [18].



6

2.  SUITABLE JERK FUNCTIONS

It is well known from the situation for second-order d.e.s described in the first

paragraph of the Introduction that the harmonic balance method for finding periodic

solutions works most successfully for equations which are parity-invariant and time-

reversal invariant, i.e. all terms have the same space-parity (behaviour under x → -x)

and time-parity  (behaviour under t → -t). For d.e.s involving the jerk )x,x,x(Jx !!!!!! =

there should therefore only be odd powers of the x-type variables and only an odd

total number of time derivatives in each term. Thus equations such as the equation

(30) cited at the end of a recent paper by Mickens [19], containing an x3 nonlinearity,

do not fall within the ambit of the present paper. Further, the only linear term of the

three possible arguments is x! . Thus jerk equations containing a term linear in x!! , such

as in references [9-16] discussed above, are not considered here. There are ten

possible cubic-type terms (for simplicity in this paper, we do not go higher than third-

order nonlinearities), of which only the following four meet the requirements as

desired: 232 xx)IV(;xxx)III(;x)II(;xx)I( !!!!!!!!  . The harmonic balance approach to

such third-order nonlinear differential equations does not appear to have been carried

out before.

Interest here is in distinct jerk equations, not merely equivalent to or derived

from second-order equations. Thus first of all the linear jerk equation xx !!!! −=  is

simply the time derivative of a linear acceleration equation, in the form

]x)[dt/d(]x)[dt/d( −=!! ; and the third solution is a constant. The third-order equation

corresponding to (I) is xxx 2 !!!! −=  which is simply the time-derivative of an
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acceleration equation, when written as ]x)3/1()[dt/d(]x)[dt/d( 3−=!! , and so is not

regarded as distinctively jerk-like. The third-order equation corresponding to (II) is

3xx !!!! −=  , which is equivalent to the second-order system 3yy −=!!  with xy != . (This

equation, termed the “velocillator”,  was analyzed in some detail in [20].) Similar

statements may be made concerning the preceding two nonlinear d.e.s if a linear term

involving y)x)(dt/d(x ==! is added. The other two allowed nonlinear forms (III)

and (IV) listed in the preceding paragraph involve the higher, second-order, derivative

x!!  , and will be considered later.
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3.  GENERAL NONLINEAR JERK FUNCTIONS

The most general jerk function which is invariant under time-reversal and

space-reversal and which has only cubic nonlinearities as specified in Section 2 above

may be written as

223 xxxxxxxxxx !!!!!!!!!!!! ε−δ+β−α−γ−=       ,                     (3.1)

where the parameters γ, α, β, δ and ε are constants (and the signs have been chosen to

most naturally suit the harmonic balance procedures). By rescaling x and/or t, any one

or two of these parameters (except α and δ simultaneously) may be set to unity to

obtain standard equations with fewer control parameters suitable for more extensive

study. (If the behaviour as the coefficient of a particular term becomes very small is to

be investigated, that parameter should not of course be thus “normalized”. )

As mentioned above, this paper is not concerned with jerk equations which

may simply be recast into a second-order equation for the variable xy != , so at least

one of β, δ, ε should be nonzero. Furthermore, as also mentioned in Section 2 above,

we are not here interested in jerk equations which are simply the time-derivative of an

acceleration equation. Such equations, which may be termed “Newtonian jerk” (c.f.

[8], [21]), have the form x)x/f(x)x/f(x !!!!!!! ∂∂+∂∂=  where )x,x(fx !!! =  can be

considered as an expression of Newton’s Second Law for f , the force function per

unit mass. Thus, if ε = 0, we would require δ ≠ -2α (since ]xx)[dt/d(xxx2x 23 !!!!! =+ ).

Substitution, according to the Introduction, of )tsin()/B()t(x ΩΩ=   into

equation (3.1), and use of the harmonic balance procedure, leads, from the coefficient

of cos(Ωt), to
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0B]B)3(4[]B4[ 22242 =β−Ωδ+α+γ−Ωε−         .          (3.2)

This quadratic equation in Ω2 may be solved to give positive Ω in terms of the initial

velocity amplitude B as the harmonic balance approximation to the angular frequency

and thence the period. If also the coefficient of the cos(3Ωt) term in the HB procedure

is zero, viz.

024 =β+Ωα−δ+Ωε )(    ,                                            (3.3)

then the above sine solution for x(t) is will be exact; but this will only sometimes be

possible.

The general equation (3.1) and the approximate frequency equation (3.2)

involving three essential control parameters and one amplitude parameter are not

easily analyzable in generality as regards their key features, and will not as such be

pursued further here. Rather, several special cases of equation (3.1) will be dealt with

in some explicit detail in succeeding Sections.
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4.  JERK FUNCTION CONTAINING VELOCITY-CUBED AND VELOCITY

TIMES DISPLACEMENT-SQUARED

We now note that the simplest, parity- and time-reversal-invariant, distinctive

jerk equation with polynomial nonlinearities and lowest time-derivatives will involve

a linear combination of the cubic forms (I) and (II) above. This was analyzed as a

paradigm in [20], where it was shown that all of its solutions are periodic and phase

plane curves (for initial condition 0)0(x =! ) were found; that work was not concerned

with the actual values of the periods. In this section, as a first detailed application of

the harmonic balance method to a jerk equation, approximations to the periods of this

paradigm equation are derived, and compared with exact results found by numerical

integration of the third-order d.e..

The equation to be investigated is

)xx(xx 22 +−= !!!!!    .                                                (4.1)

Without loss of generality, given that both terms appear on the right hand side, the

coefficients of both these terms can always be set to 1 by appropriate rescalings of

displacement x and time t. The harmonic balance approximation for such equations is

)tsin()/B(x ΩΩ=    ,   with    0)0(x =    ,                          (4.2a,b)

so

)tcos(Bx Ω=!    ,   with   B)0(x =!    ;                                  (4.3a,b)

)tsin(Bx ΩΩ−=!!    ,   with   0)0(x =!!    ,                             (4.4a,b)

where Ω is the angular frequency. Then the period is given by

T   =   2π/Ω   ,                                                             (4.5)

and the (approximate) displacement amplitude in equation (4.2a) is given by
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A   =   B/Ω   .                                                            (4.6)

Note that the above choice of the form (4.2a) of x allows for the non-zero initial

condition, for x! , to involve the independent velocity-amplitude constant B, which

may in principle be assigned arbitrarily. The forms for x and x!!  involve the unknown

frequency parameter Ω, but this does not appear in their initial conditions because

they are zero. As mentioned in the Introduction, for the harmonic balance method to

be applicable as formulated here, the initial acceleration, as well as the initial

displacement, should be zero.

Substitution into equation (4.1), and manipulation using trigonometric

identities, yields, for B≠0,

)tcos()13)(/B)(4/1()tcos( 2222 Ω+ΩΩ=ΩΩ

)t3cos()1)(/B)(4/1( 222 Ω−ΩΩ+    .                           (4.7)

It is immediately apparent that if B=1 and Ω=1 then equation (4.7) is satisfied exactly:

x = sin(t) is an exact solution of equation (4.1), as can easily be verified by direct

substitution. If B≠1, then the harmonic balance approximation is invoked: the higher

harmonic in equation (4.7) is ignored and the coefficients of cos(Ωt) are equated,

yielding  )13/(4B 242 +ΩΩ=  and thence the approximate expression for angular

frequency Ω (>0) in terms of velocity amplitude B:

242 B16B9B3)]22/(1[ ++=Ω    .                           (4.8)

It can be seen that, in this approximation, as B → 0 , Ω → 0, i.e. T → ∞, and A ~

√2√B → 0. As B → ∞, T → 0, i.e. Ω → ∞, and A → 2/√3 = 1.15470054 .

The numerical values for period T (4.5) and also the displacement amplitude

A (4.6) resulting from the approximate expression (4.8), for a range of values of

initial velocity amplitude B, are compared in Table 1 with the exact numerical values
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obtained by solving the third-order differential equation (4.1) with initial conditions

(4.2b), (4.3b), (4.4b) using the computational software ODE Workbench [22]. For

these, as for subsequent, computations, it was checked that the phase plane ( xx vs! )

orbits did indeed close. Furthermore, since these are third-order d.e.s, it was also

checked, here and subsequently, that the orbits in another phase plane ( xx !!! vs ) were

also closed and resulted in the same computed period. (Whilst orbits in the first case

progressed clockwise, those in the second case progressed anti-clockwise. Note that in

the present instance, the initial conditions in both phase planes are the same.)

It may be mentioned that for equation (4.1) the exact phase plane orbits were

given in reference [20]. For the present initial conditions (4.2b), (4.3b), (4.4b) they are

given by

)xcos()B(xx 211 222 −+=+!      ,              (4.9)

and they form a set of nested, closed curves. Successive differentiations of equation

(4.9) show that the effective potential there has a minimum at x=0, generating a stable

centre. The associated closed paths (4.9) therefore are Poincare stable orbits (see, for

example, the text-book by Jordan and Smith [23, p.280].)

The exact displacement amplitude defined as the value of x when 0=x!

satisfies the equation, following from (4.9),

0211 22 =−+− )Acos()B(A       ,      (4.10)

so for given B the exact value for A can be found by numerical solution of this

algebraic equation. The results agree with the results obtained by numerical solution

of the differential equation, thus checking the accuracy of the ODE software [22].

The accuracy of the harmonic balance approximation as exhibited in Table 1 is

very good throughout the wide range of B, being better than about 7% for the period.

(The “exact” results for the B=1 case corresponding to the exact solution x = sin(t)
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with T=2π and A=1 are quoted to more significant figures to further confirm the

accuracy of the numerical software.) The accuracy is better for B values near B=1,

and worsens a little as B departs from this value. The reason for this may be

understood by making the next harmonic balance approximation, as outlined in the

following sub-section.

4.1.  HARMONIC-BALANCE CORRECTION

The correction to the simple harmonic balance approximation is obtained in a

way similar to that for the more usual second-order nonlinear oscillator equations [1]

by adding a third-harmonic term, for convenience in the present case as follows:

x   =   (B/Ω) sin(Ωt)  +  (b/(3Ω)) sin(3Ωt)   ,                            (4.11)

so that the initial velocity is now given by bB)0(x +=!  . Two equations are now

obtained by equating the coefficients of cos(Ωt) and of cos(3Ωt). After some

manipulation there results the  ratio

b/B   =   (1/7) (Ω2-1)/(3Ω2+1)     .                          (4.12)

(This vanishes when Ω=1, corresponding to the exact solution where b=0.) Since the

right side of equation (4.12) is an increasing function of Ω2, it follows that

-1/21   <   b/(3B)   <   1/63      for   0   <   Ω2   <   ∞      ,     (4.13)

so the ratio of coefficients in the expression (4.11) for x has modulus always less than

1/21, i.e. the amplitude correction is less than 5%, which is small as desired.

Furthermore, from equation (4.13), better relative accuracy is expected for Ω large

than for small, i.e. for T small rather than large. This is borne out in Table 1.
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4.2.  JERK FUNCTION CONTAINING VELOCITY-CUBED,

VELOCITY TIMES DISPLACEMENT-SQUARED, AND VELOCITY

This section investigates a slightly more complicated case which extends the jerk

function of the above section by incorporating a linear, velocity, term. The equation is

first presented with general coefficients:

x)xx(xx 22 !!!!!! γ−β+α−=    .                              (4.14)

Since the β=0 case of this equation is just a second-order d.e. for the dependent

variable xy !=  , and the α=0 case is just the time-derivative of the acceleration

equation x3/xx 3 γ−β−=!!  , both the cubic terms are needed for a non-trivial jerk

equation. By rescaling, both coefficients α and β may be set equal to unity as before,

and γ remains the single essential control parameter.

Two identities involving jerk were introduced in reference [20]:

)x(
dx
dxx 2

2

2

2
1 !!!!! ≡                                             (4.15a)

dx
xdx
!!!≡              .                                           (4.15b)

Use of the first identity (4.15a) enables one to find the explicit phase plane curve

equations for the d.e. (4.14) (with α = β = 1), for the initial conditions of this paper:

)xcos()B(xx 211 222 γ+−+γ−=+!      .         (4.16)

These are again closed, nested curves, with the γ term in equation (4.14) just

modifying constants in equation (4.16); this may be compared with equation (4.9)

above for the case γ=0, so the orbits are again stable (c.f. Sect. 4. above).

The  harmonic balance approach via equations (4.2) – (4.4) is now applied to

the rescaled jerk equation



15

x)xx(xx 22 !!!!!! γ−+−=              .                               (4.17)

The coefficient of cos(Ωt) yields the relation

B2   =   4 Ω2 (Ω2 - γ) / (3Ω2 + 1)         .                              (4.18)

From the coefficient of the cos(3Ωt) term, it is found that the solution is exact if Ω =

1, i.e. γ−= 1B  . Thus no exact sine solution is possible if γ > 1. If γ−≠ 1B  ,

then equation (4.18) may be solved to find the approximate harmonic balance

expression for the angular frequency in terms of the initial velocity amplitude:

2222 B16)4B3(4B3)]22/(1[ +γ++γ+=Ω       .                   (4.19)

Two examples are considered, first for parameter value γ=1/2, for which the

possibility of an exact solution exists for suitable choice of B ( = 1/ √2  in this case),

and  secondly for γ=2 , for which it was found above that no exact sinusoidal solution

exists. Some representative results are presented in Tables 2(a),(b). The harmonic

balance results for period T and displacement amplitude A are remarkably accurate,

within a couple of per cent, even in case (b) where no exact sine solution is possible.
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5.  JERK FUNCTIONS CONTAINING THE ACCELERATION

The functions (III) and (IV) listed in Section 2 above involve the second-order

time-derivative, as distinct from the functions dealt with in Section 4. They will be

now be dealt with in turn.

5.1.  JERK FUNCTION CONTAINING DISPLACEMENT TIMES VELOCITY

TIMES ACCELERATION, AND VELOCITY

For the function (III), after rescaling of the x variable, the corresponding jerk

equation would take the form

xxxx !!!!!! =    .                                                  (5.1)

The harmonic balance approximation would give Ω = B/2 so T = 4π/B and A = 2.

However, the solution x!  = B = constant to equation (5.1) satisfies the initial

conditions (4.3b), (4.4b), and this is the solution obtained by numerical integration.

The solution is not periodic, and the harmonic balance approach is spurious in this

instance. From the identity (4.15b) together with )/x)(dx/d(x 22!!! =  follow the phase

plane equations

22
2
1x

01
2 BdX)Xexp(cx =∫+!     ,                       (5.2)

where c1 is some constant, satisfying the initial conditions 0)0(x =  ; B)0(x =! .  For

c1 = 0, the above constant velocity solution is obtained. If c1 ≠ 0, the curves (5.2) are

not closed.
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To find an equation amenable to harmonic balance analysis, a term linear in

the velocity is incorporated. The resulting standardized jerk equation, after rescaling

of both x and t, is therefore taken to be

xxxxx !!!!!!! −=                                                        (5.3)

(which is free of parameters). The phase plane curves for this equation may be written

in the form

22
2
1

0
2

2
1

0
2

2
1

01
2 2 BdX]d)exp([)Xexp(dX)Xexp(cx Xxx =ξξ−∫∫+∫+! . (5.4)

Harmonic balance now gives the approximate result

421 2 +=Ω B)/(                                          (5.5)

with period T and displacement amplitude A then given by (4.5) and (4.6). (There is

no exact sinusoidal solution for any value of B.) Table 3 gives some results, compared

with exact computed results, for a range of values of B, over which the phase plane

orbits form nested closed curves and hence are again stable. Note that, in this case, as

B→0, T→2π (corresponding to a small amplitude linear oscillator), and this is

reflected in the trend. The harmonic balance results are very good, especially for the

period, improving as B decreases.

To justify the approach and explain the good results for B!1, the harmonic

balance correction (4.11) may here be inserted into equation (5.3). It is found that, to

first order in b/B, this ratio is approximately given by

b/B   ≈   1/[(32/B2) - 7]   .                                         (5.6)

If B≤1, the ratio of coefficients b/(3B) in (4.11) for this equation is therefore less than

1/75 ≈ 1.3% which is indeed small.
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5.2.  JERK FUNCTION CONTAINING VELOCITY TIMES

ACCELERATION-SQUARED, AND VELOCITY

For the final function (IV) of Section 2, after rescaling of the x variable, the

corresponding jerk equation may be taken to have the form

2xxx !!!!!! −=    .                                                  (5.7)

The harmonic balance approximation would actually give B = 2, with no value for Ω.

However, once again the solution x!  = B = constant is a solution to equation (5.7)

which satisfies the initial conditions (4.3b), (4.4b), and this is again the solution

obtained by numerical integration. The harmonic balance approach is again spurious

in this instance. From the identity (4.15b) follow the phase plane equations

21
2

2
1 c|]cxln[|x =+−!        ,                          (5.8)

where c1 and c2 are constants. These curves are not closed.

To find an equation amenable to harmonic balance analysis, a term linear in

the velocity is again incorporated. The resulting jerk equation is written in the form

which for the present retains the parameter γ>0:

xxxx !!!!!!! γ−−= 2              .                          (5.9)

The phase plane curves may be written in the form

  21
2

2
1 C|])Cxcos(ln[|x =+γ−!    ,                       (5.10)

where C1 and C2 are constants.

Harmonic balance gives the approximate equation

)B/( 242 −γ=Ω           ,                                   (5.11)
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for B<2. Results have been given so far with parameter γ included because, for

instance, the form of equation (5.8) cannot immediately be deduced from equation

(5.10) by letting γ→0, although compatibility can be achieved by a careful

consideration of the relations between the constants specified in the phase plane

equations. (See Appendix A.)

Now the jerk equation may be brought into a standard form by also rescaling

the time to give

xxxx !!!!!!! −−= 2    .                                             (5.12)

The expression (5.11) becomes

242 B/ −=Ω    ,                                          (5.13)

and the period T and the displacement amplitude A are then given by (4.5) and (4.6).

(Here again there is no exact sinusoidal solution for any value of B.) Table 4 gives

some results, compared with exact computed results, for a range of values of B. Note

that, as B→0, again T→2π, and this is reflected in the trend. The harmonic balance

results are very good, particularly for B<1. (Evidently B cannot get too large for the

approximation (5.13) to be relevant.)

It may be noted that the exact phase plane curves for the jerk equation (5.12),

with the present initial conditions, may be written as

2
2
12

2
1 B|])xsec([|logx e =+!        .       (5.14)

For oscillations about x=0, the second term can be interpreted as a potential whose

shape guarantees stability of the orbits. Furthermore, in this case the exact

displacement amplitude may be found explicitly by the expression

( ))/Bexp(cosarA 22−=         .                (5.15)

This checks the ODE numerical solution results for A in Table 4.



20

6.  DISCUSSION

In this paper, parity-  and time-reversal- invariant jerk equations with cubic

nonlinearities were subjected to a harmonic balance analysis. The results for periods

and displacement amplitudes for a number of different types of appropriate equations

were compared with the results of numerical computations and found to be generally

in good agreement over a range of the initial velocity amplitude values. Evidently the

work could be extended to higher order, in particular quintic, nonlinearities.

Mixed-parity equations were avoided, as they are known to produce

difficulties for the harmonic balance method even for second-order “acceleration”

nonlinear equations [24], [25]. However, they may be important, because the

“simplest” chaotic third-order d.e.s [17] involve only quadratic nonlinearities, such as

xx ! , 2x! ,  or x2 (although the latter two have the opposite time-reversal behaviour).

The condition 0x =!!  utilized above, whilst not unusual, is certainly restrictive.

This raises the question as to whether some other set of periodic trial functions, rather

than the two standard trigonometric functions, may be more suitable for third-order

nonlinear equations. For instance, the three Jacobian elliptic functions sn, cn, dn [26]

have found some successful applications for second-order nonlinear d.e.s [27], [28].

(In particular, their derivatives [26] involve the other two of the trio, as compared

with the other one for the pair sin, cos.)
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TABLE 1

Values for period T and displacement amplitude A of equation (4.1) for initial

conditions (4.2b, 4.3b, 4.4b) as given by formulae (4.5) and (4.6) with harmonic

balance (harm. bal.) equation (4.8), for a range of values of initial velocity amplitude

B, together with exact values obtained by numerical computation. (For the B=1 case,

harmonic balance is exact.)

___________________________________________________________________

T A

B harm. bal. exact harm. bal. exact

.1 27.065998 25.359725 0.430769 0.468121

.2 18.438632 17.495410 0.586920 0.627919

.5 10.461083 10.210761 0.832466 0.860011

1 2π=6.283185307   6.283185307 1 1.000000000

2   3.457326   3.508793 1.100501 1.074352

5   1.438527   1.468638 1.144743 1.104257

10   0.723920   0.739762 1.152154 1.109078

20   0.362559    0.370580 1.154060 1.110308
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TABLE 2

Values for period T and displacement amplitude A of equation (4.17) for initial

conditions (4.2b, 4.3b, 4.4b) as given by formulae (4.5) and (4.6) with harmonic

balance (harm. bal.) equation (4.19), for a range of values of initial velocity

amplitude B, together with exact values obtained by numerical computation, for two

values of the parameter γ. (For the γ=1/2 case with B=1/√2, harmonic balance is

exact.)

___________________________________________________________________

(a)  γ = 1/2

T A

B harm. bal. exact harm. bal. exact

.5 7.165959 7.160833 0.570249 0.572279

1/√2 2π=6.283185307 6.283185307 1/√2=0.7071067812 0.7071067812

1 5.262752 5.276160 0.837593 0.831912

2 3.237910 3.276060 1.030659 1.006639

_____________________________________________________________________
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[Table 2, continued]

(b)  γ = 2

T A

B harm. bal. exact harm. bal. exact

.5 4.221081 4.221545 0.335903 0.335066

1 3.729641 3.734078 0.593591 0.588522

2 2.757326 2.775201 0.877684 0.859563
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TABLE 3

Values for period T and displacement amplitude A of equation (5.3) for initial

conditions (4.2b, 4.3b, 4.4b) as given by formulae (4.5) and (4.6) with harmonic

balance (harm. bal.) equation (5.5), for a range of values of initial velocity amplitude

B, together with exact values obtained by numerical computation.

___________________________________________________________________

T A

B harm. bal. exact harm. bal. exact

.1 6.275346 6.275347 0.099875 0.099917

.2 6.252003 6.252016 0.199007 0.199338

.5 6.095585 6.096061 0.485071 0.489978

1 5.619852 5.626007 0.894427 0.927839

2 4.442883 4.491214 1.414214 1.580210
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TABLE 4

Values for period T and displacement amplitude A of equation (5.12) for initial

conditions (4.2b, 4.3b, 4.4b) as given by formulae (4.5) and (4.6) with harmonic

balance (harm. bal.) equation (5.13), for a range of values of initial velocity

amplitude B, together with exact values obtained by numerical computation.

___________________________________________________________________

T A

B harm. bal. exact harm. bal. exact

.1 6.2753264 6.2753338 0.099875 0.099917

.2 6.251690 6.251809 0.198997 0.199334

.5 6.083668 6.088449 0.484123 0.489651

1 5.441398 5.527200 0.866025 0.919107

1.5 4.155936 4.690247 0.992157 1.240150
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APPENDIX A

The compatibility of equation (5.8) with equation (5.10) in the limit as the

parameter γ tends to zero is detailed here. For γ small, in equation (5.10),

1 1 1cos( x C ) cos( x) cos(C ) sin( x) sin(C )γ + = γ − γ

1 1cos(C ) x sin(C ) O( )= − γ + γ

( )1 1sin(C ) x (1/ ) cot(C ) O( )= − γ − γ + γ

∴    1ln cos( x C )γ +     ∼     1 1ln x (1/ ) cot(C ) ln sin(C )− γ + γ    .

Thus, as γ→0,

1c ∼    1(1/ ) cot(C )− γ

and

2c     ∼     2 1C ln sin(C )+ γ

in equation (5.8).

There is a γ-dependent relationship between the constants. The singularity of

the relationship is not surprising since there is a transition from closed phase plane

curves to open curves. This will not be pursued further here, since Section 5.2 is

essentially concerned with the periods of solutions to the parameterless equation

(5.12).
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