4-amino-2,6-dichloro-5-nitropyrimidine

Author
McKeveney, Declan, Quinn, Ronald, Janssen, Christian, Healy, Peter

Published
2004

Journal Title
ACTA Crystallographica Section E - Structure Reports Online

DOI
https://doi.org/10.1107/S160053680400100X

Copyright Statement
Copyright remains with the authors 2004. For information about this journal please refer to the journal's website. All articles published in Acta Crystallographica Section E are open access and distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. See http://creativecommons.org/licenses/by/2.0/uk/legalcode

Downloaded from
http://hdl.handle.net/10072/5761

Link to published version
http://journals.iucr.org/e/journalhomepage.html
The title compound, C₄H₂Cl₂N₄O₂, is a key intermediate in the synthesis of a purine scaffold, as nucleophilic substitution of the chlorides allows access to a diverse array of potentially biologically active compounds. The molecules exhibit an intramolecular N—H⋅⋅⋅O hydrogen bond between the ortho amino and nitro substituents. Pairs of molecules associate across a crystallographic centre of symmetry through N—H⋅⋅⋅N intermolecular hydrogen bonding between the ortho amino group and the ring N atom.

Comment

The title compound, (I), is a key intermediate in the synthesis of a purine scaffold, as nucleophilic substitution of the chlorides allows convenient access to a diverse array of potentially biologically active compounds (Dille & Christensen, 1953). We synthesized (I) as part of a project involving combinatorial library production on solid phase resins, as it can be attached to the resin via a carbamate linkage. This allows three points of combinatorial variation, as a nitro reduction followed by a one-pot cyclization cleavage step gives the substituted purine product.

The crystal structure of (I) contains one independent molecule in the asymmetric unit, the structure of which is shown in Fig. 1. The molecules exhibit a characteristic intramolecular N—H⋅⋅⋅O hydrogen bond between the ortho amino and nitro groups [H41⋅⋅⋅O51 = 2.08, N4⋅⋅⋅O51 = 2.670 (5) Å and N4—H41⋅⋅⋅O51 = 126°] (cf. Glidewell et al., 2003; Linden et al., 1994; Larson et al., 1988). Pairs of molecules associate across a
centre of symmetry through classical $R_2^2(8)$ (Bernstein et al., 1995) N–H···N hydrogen bonding interactions between the ortho amino group and the ring N atom [H42–N3′ = 2.23, N4–N3′ = 3.084 (4) Å and N4–H42···N3′ = 172°; symmetry code: (i) $\frac{1}{2} - x, \frac{1}{2} + y, 1 - z$] (Fig. 2). A similar dimeric hydrogen-bonding pattern has been reported for the structure of the related compound 4-amino-2,6-dimethoxy-5-nitropyrimidine, (II) (Glidewell et al., 2003). In this latter structure, the two molecules of the dimer are crystallographically independent and disposed about a pseudo-centre of symmetry. The nitro group in (II) was found to be coplanar with the pyrimidine ring. In (I), however, the nitro group is significantly twisted out of the plane of the pyrimidine ring, with an O51–N5–C5–C4 torsion angle of $-25.1 (4)^\circ$. This conformational change is most likely a consequence of steric repulsion effects between O52 and the ortho chloride, Cl6. It is interesting to note that the difference of ca 0.03 Å observed between the two N–O bond lengths in both molecules of (II), with the longer bonds involved in the intramolecular N–H···O hydrogen bonding, is not observed in the structure of (I) with bond lengths of 1.208 (4) and 1.206 (4) Å.

Experimental

N,N-Dimethylaniline (DMA; 15.4 ml, 0.120 mol) was added dropwise to a boiling suspension of 4-amino-2,6-di-hydroxy-5-nitropyrimidine (10.0 g, 0.058 mol) in POCl$_3$ (64.2 ml). A pale blue mixture was formed initially and this changed to an intense deep blue on further addition. The mixture was then refluxed for 2.5 h and allowed to cool to room temperature. The reaction mixture was carefully poured on to 600 g of ice with vigorous stirring, resulting in the formation of a black precipitate. The precipitate was filtered off and extracted with ether (200 ml x 3). The filtrate was also extracted with ether (300 ml x 4). The extracts were combined and reduced under vacuum to allow easier treatment with activated carbon. The resultant golden yellow solution was then washed with NaHCO$_3$ (300 ml x 5) and dried with MgSO$_4$. The remaining ether was then removed and the resultant precipitate taken up in a minimum amount of hot toluene and left at 268 K overnight to give yellow crystals of the complex suitable for X-ray diffraction studies (m.p. 422–426 K). Analysis found: C 22.98, H 0.97, N 27.06%; calculated for C$_4$H$_2$Cl$_2$N$_4$O$_2$: C 22.99, H 0.96, N 28.81%.

Data collection

Rigaku AFC-7R diffractometer

Absorption correction: none

2123 measured reflections

1766 independent reflections

1290 reflections with $I > 2\sigma(I)

$R_{int} = 0.046$

Refinement

Refinement on F^2

$R(F^2) = 0.047$

$wR(F^2) = 0.144$

$S = 1.04$

1766 reflections

110 parameters

H-atom parameters constrained

$w = 1/[\sigma^2(F_0^2) + 2.5264P^2]$

where $P = (P_{max}^2 + 2P_{min}^2)/3$

$\Delta\sigma/\sigma_{max} < 0.001$

$\Delta\rho_{max} = 0.57 \epsilon \text{Å}^{-3}$

$\Delta\rho_{min} = -0.40 \epsilon \text{Å}^{-3}$

Extinction correction: SHELXL97

Extinction coefficient: 0.0046 (10)

Table 1

Selected geometric parameters (Å, °).

<table>
<thead>
<tr>
<th></th>
<th>C2–C2</th>
<th>C6–C6</th>
<th>O51–N5</th>
<th>O52–N5</th>
<th>N1–C2</th>
<th>N1–C6</th>
<th>N3–C2</th>
<th>N3–C4</th>
<th>N4–C4</th>
<th>N5–C5</th>
<th>N5–C6</th>
<th>C5–C6</th>
</tr>
</thead>
<tbody>
<tr>
<td>D_1</td>
<td>1.816</td>
<td></td>
</tr>
<tr>
<td>Mo Kα radiation</td>
<td></td>
</tr>
<tr>
<td>θ</td>
<td>12.6–17.0°</td>
<td></td>
</tr>
<tr>
<td>μ</td>
<td>0.81 mm$^{-1}$</td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>295 K</td>
<td></td>
</tr>
<tr>
<td>Prism</td>
<td>yellow</td>
<td></td>
</tr>
<tr>
<td>$0.30 \times 0.30 \times 0.25$ mm</td>
<td></td>
</tr>
</tbody>
</table>

Crystal data

C$_4$H$_2$Cl$_2$N$_4$O$_2$

$M_r = 209.00$

Monoclinic, $C2/c$

$a = 17.667(3)$ Å

$b = 6.708(2)$ Å

$c = 14.425(3)$ Å

$\beta = 116.608(15)^\circ$

$V = 1528.5 (6)$ Å3

$Z = 8$

Objectives

The authors thank Griffith University for financial assistance.
References
