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Abstract: 

Reservoir hosts of novel pathogens are often identified or suspected as such on the basis of 

serological assay results, prior to the isolation of the pathogen itself. Serological assays might 

therefore be used outside of their original, validated scope in order to infer seroprevalences in 

reservoir host populations, until such time that specific diagnostic assays can be developed. 

This is particularly the case in wildlife disease research. The absence of positive and negative 

control samples and gold standard diagnostic assays presents challenges in determining an 

appropriate threshold, or ‘cutoff’, for the assay that enables differentiation between 

seronegative and seropositive individuals. Here, multiple methods were explored to determine 

an appropriate cutoff for a multiplexed microsphere assay that is used to detect henipavirus 

antibody binding in fruit bat plasma. These methods included calculating multiples of 

‘negative’ control assay values, receiver operating characteristic curve analyses, and Bayesian 

mixture models to assess the distribution of assay outputs for classifying seropositive and 

seronegative individuals within different age classes. As for any diagnostic assay, the most 

appropriate cutoff determination method and value selected must be made according to the 

aims of the study. This study is presented as an example for others where reference samples, 

and assays that have been characterised previously, are absent. 
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HeV  Hendra virus 
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1. INTRODUCTION 

Serological assays are a valuable and widely used tool for studying infectious disease ecology 

in wildlife. However, inferences from assay results often are made based on a number of 

assumptions that may, or may not, be fully justified (for review, see Gilbert et al, Ecohealth in 

press). For example, it may be assumed that a diagnostic assay can “discriminate two 

mutually exclusive states of tested animals” (Greiner et al., 2000) (e.g. individuals are either 

‘seropositive’ or ‘seronegative’). In fact, there is likely to be considerable overlap between 

these two states due to the dynamic nature of infections and antibody responses within 

individuals and across populations. An assay cutoff therefore must be selected which 

artificially dichotomises the antibody response observed into positive and negative results and 

achieves the desired sensitivity and specificity of the assay according to the needs of the 

study. 

The complexities of interpreting serological results are compounded when the agent being 

studied is novel and unknown and, in the absence of specific diagnostic assays, existing 

assays often are used outside their original scope. This is particularly the case in wildlife 

disease research, where serological cross-reactivity to known pathogens may be detected 

within a new species or a new geographic area well in advance of detection or isolation of the 

actual pathogen(s). In some cases, it may be many years or decades before the causative agent 

is definitively isolated and characterised from the wildlife host (e.g. Hendra viruses in 

Australian bats (Halpin et al., 2000), Ebola virus in African fruit bats (Bossart et al., 2005; 

Leroy et al., 2005; Bossart et al., 2007; Li et al., 2008)). In the meantime, valuable 

information can be obtained using existing assays to which there is cross-reactivity and/or 

cross-neutralisation, providing the limitations of the assay are recognised and inferences 

based on results are made with caution (for example, Hayman et al., 2012). 

Development and validation of diagnostic assays is recommended (Jacobson, 2009), a process 

which determines “the fitness of an assay, which has been properly developed, optimised and 

standardised, for an intended purpose”. However, full validation of an assay for use with a 

novel pathogen is impossible if the pathogen is yet to be definitively identified and known 

positive and naïve control samples are unavailable. This is also the case when an existing 

assay is used with samples from alternative species (Gilbert et al., in press). In the meantime, 

attempts should be made to determine the validity and limitations of using pre-existing assays 

across the species and pathogen boundaries, including comparison against alternative assays 

which may detect antibodies in different ways (e.g. antibody binding and neutralisation 

assays) and assessing assay performance across populations and laboratories.  

An appropriate threshold, or cutoff, against which samples can be designated as ‘positive’ or 

‘negative’, must be determined by following logical and repeatable methods. Multiple 

methods are available to determine an appropriate cutoff, however the majority of these 

assume that known positive and naive reference samples are available. Gardner et al. (2010) 

reviewed statistical approaches for the evaluation of diagnostic assays in the presence and 

absence of available gold standard assays (one that assumes near-perfect classification of 
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infection status). In the presence of a gold standard assay, the approaches reviewed included 

examining diagnostic sensitivity and specificity using receiver operating characteristic (ROC) 

curves and likelihood ratio tests. In the absence of a gold standard assay, Bayesian or 

maximum likelihood latent class models were cited as powerful approaches that enable the 

sensitivity of two assays being compared to be estimated jointly, without the need to assume 

that one is ‘perfect’. However, latent-class models are not recommended for use in comparing 

assays for acute infections (Branscum et al., 2005) due to ambiguity in interpreting the latent 

class. Additionally, if the two assays are conditionally dependent (e.g. both measure similar 

biological processes), then accurate estimation of the sensitivities and specificities of the 

tests—when used in combination—require additional parameters (the covariances between 

the test outcomes) to be accounted for (Gardner et al., 2000). The latent-class model approach 

therefore still relies on one assay being sufficiently well-characterised to provide informative 

priors. Where these values are unknown, as is the case when utilising existing assays for 

novel and unknown pathogens, the relative sensitivities and specificities of the two assays are 

unidentifiable. 

Hendra (HeV) and Nipah (NiV) viruses (genus Henipavirus, family Paramyxoviridae) are 

highly pathogenic, recently emerged viruses with Chiropteran host reservoirs in Australasia 

(Wang et al., 2000). HeV and NiV soluble G (sG) proteins have been developed and used in 

highly sensitive multiplexed microsphere binding and inhibition assays on the Luminex® 

platform (Luminex, Austin, USA), allowing high-throughput multiplexing and, as with 

ELISA assays utilising the same sG proteins, allowing detection of HeV and NiV antibodies 

without the requirement of BSL4 laboratories for neutralisation assays (Bossart et al., 2005; 

2007; Li et al., 2008). While related henipa- or henipa-like viruses have been detected 

serologically or by PCR in mainland Africa (Hayman et al., 2008; Drexler et al., 2009; 

Hayman et al., 2011; Baker et al., 2012; Drexler et al., 2012; Peel et al., 2012; Weiss et al., 

2012), no associated virus has been isolated to date and therefore no specific serological 

assays have been developed. The HeV and NiV sG proteins were found to elicit highly cross-

reactive humoral immune responses to known henipaviruses, and the multiplexed assays have 

therefore been used to screen African bat serum and plasma samples for henipavirus 

antibodies (Hayman et al., 2008; Peel et al., 2012). While current assays must be used with 

caution, they have helped improve understanding of the distribution and dynamics of African 

henipaviruses (Hayman et al., 2008; Peel et al., 2012) until such time that isolates are 

obtained and specific diagnostic assays developed. 

The output values of microsphere binding assays, Median Fluorescent Intensity (MFI), 

represent intensity of antibody binding on a continuous scale. A previous study reporting 

henipavirus antibodies using HeV and NiV microsphere binding assays reported raw data 

without calculating seroprevalences (Peel et al., 2012). While this avoids the difficulties 

associated with defining a cutoff, presentation of data in this form can cause difficulties and 

the ability to simplify the data into seroprevalences has its advantages. In other African 

studies using these assays, in addition to reporting raw MFI values, three times the mean MFI 

of negative bat or pig sera was used as a threshold (i.e. cutoff) for positive reactivity for the 
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binding assay and sera with an MFI > 200 were considered positive (Hayman et al., 2008; 

2011). The same equipment, assay and calculation for cutoff has been used for serological 

studies in Australasian Pteropus spp. (Plowright et al., 2008; Breed, 2010), although the MFI 

values and cutoff values used were not reported. It is unclear whether this ‘three times 

negative’ cutoff is statistically justified, or whether it is valid to apply it across multiple 

species or across different cross-reactive viruses. 

The choice of cutoff has obvious impacts on calculated seroprevalences and therefore 

interpretation of the data. Standardised approaches, justification of the cutoff chosen, and/or 

reporting of raw data are required to allow comparisons across studies. In this study, the 

ultimate objective of determining a cutoff was to enable estimation of henipavirus 

seroprevalence in E. helvum across multiple sampling events and locations, and in some cases 

to determine the probability of an individual animal being seropositive. Here, the cutoffs for 

henipavirus microsphere binding assays for E. helvum fruit bat plasma, generated from 

multiple methods, were compared. For each of the different cutoffs generated, a fitted mixture 

model was used to assess the probability of an individual being seropositive or seronegative at 

that value. The results indicate that the choice of method used, and cutoff chosen, is context-

dependent. This study is presented as an example for other studies where reference samples, 

and assays that have been characterised previously, are absent. 

 

2. MATERIALS AND METHODS 

2.1. Sampling 

All fieldwork was undertaken under permits granted by national and local authorities, with 

ethical approval from the Zoological Society of London Ethics Committee (project reference 

WLE/0489). Plasma samples were collected from E. helvum populations in Ghana, Tanzania, 

Uganda, Malawi, Zambia, Bioko, Príncipe, São Tomé and Annobón (Appendix A). In São 

Tomé, bats were obtained in collaboration with local hunters, who hunted at roost sites during 

the day or at feeding sites at night. Elsewhere, bats were captured at the roost using mist nets 

as described previously (Peel et al., 2010). Under manual restraint, 1ml blood samples were 

collected and processed, and morphometric and demographic details were recorded as 

described previously (Peel et al., 2010; 2012). Age was assessed by morphological 

characteristics (body size and the degree of genital and nipple development) and all 

individuals were allocated into one of four age classes: Neonate (<2 months), Juvenile (J; 2 – 

<6 months), Sexually Immature (SI; 6 – <24 months) or Adult (A; ≥24 months). 

 

2.2. Serological analyses 

Virus neutralisation tests were undertaken on all Tanzanian and Annobónese samples, and a 

subset of samples from Bioko, São Tomé and Príncipe (those with MFIs >750; Table 1). 

Samples exhibiting virus neutralising at dilutions of ≥ 1:10 to either HeV or NiV were 

considered positive, which is equivalent to (Hayman et al., 2008; Breed, 2010; Halpin et al., 
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2011), or more conservative than (Plowright et al., 2008) other studies performed previously 

in the same laboratory. The neutralisation tests were conducted in a BSL-4 laboratory. 

In addition to neutralisation tests, all samples were screened for antibodies against 

henipavirus soluble glycoproteins (HeV sG and NiV sG) using the Luminex® multiplexed 

microsphere binding assay as described previously (Bossart et al., 2007; Hayman et al., 2008) 

(Table 1). Briefly, recombinant HeV and NiV glycoproteins were conjugated to internally 

coloured and distinguishable microspheres, allowing multiplexing. Antibody binding to each 

microsphere was detected after conjugation of bound antibodies with biotinylated Protein A 

and fluorescent streptavidin-R-phycoerythrin. Positive and negative controls included in each 

assay were from wild Pteropus spp. fruit bats previously found to have extreme positive or 

negative values in microsphere and neutralisation assays. Binding results are given as the MFI 

value of ≥100 microspheres for each virus type. 

To assess inter-laboratory variation, a subset of samples (n=122 from Tanzania) were run in 

two different laboratories: firstly using a QIAGEN LiquiChip machine (QIAGEN, 

Manchester, UK) in laboratory A, and secondly, on a Bio-Plex Protein Array System 

integrated with Bio-Plex Manager Software (v 3.0) (Bio-Rad Laboratories, Hercules , USA), 

in laboratory B. The laboratory A assays were run first, and the operator at laboratory B was 

blinded to these results. Where there was sufficient plasma remaining, repeat analyses were 

performed on the machine at laboratory A after major components of this machine were 

replaced during servicing.  

Microsphere binding assay MFIs were consistently higher against NiV sG than HeV sG, and 

only NiV binding results are presented here. The correlation of NiV sG binding MFI values 

between laboratories and after machine servicing was assessed using linear regression using 

the R statistical package (R Development Core Team, 2012).  

 

2.3. Statistical analyses 

Frequency distributions of MFI values were negatively skewed, therefore they were log-

transformed (ln) to reduce the skewness prior to further analyses. Four methods were explored 

to identify an optimal ln(MFI) value to use as a positive/negative cutoff for the NiV binding 

assay and to enable the estimation of seroprevalences. 

Firstly, receiver operating characteristic (ROC) curve analyses were performed using 

microsphere binding assay MFI values and virus neutralisation test results to derive optimal 

cutoffs (with the virus neutralisation test considered the reference test; Gardner and Greiner, 

2006). Analyses were performed using the pROC library (Robin et al., 2011) in R. Secondly, 

a cutoff was calculated based on three times the mean MFI of negative control bat sera, as 

described previously (Hayman et al., 2008). Thirdly, frequency distributions of ln(MFI) 

values were plotted to attempt differentiation between ‘seropositive’ and ‘seronegative’ 

populations. Bimodal ln(MFI) frequency distributions were observed, suggesting that it may 
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be that ln(MFI) values for seronegative and seropositive animals could be identified using 

separate (distinct) probability distributions.  

Finally, a mixture model approach was taken to assess this bimodality in a more sophisticated 

manner (for similar approaches in different systems, see, for example, Greiner et al., 1994; 

Baughman et al., 2006; Nielsen et al., 2007; Pai et al., 2008). In this approach, if X is a 

random variable corresponding to ln(MFI), then the distribution of X in a population,  ( )  

can be modelled as a mixture of the distributions of X for seronegative animals,   ( ), and 

seropositive animals,   ( ), weighted by the proportions of seropositive and seronegative 

individuals in the population. Therefore, 

 ( )     ( )  (   )  ( ), 

where       is the proportion of seronegative animals in the population. Given 

distributional forms for   ( ) and   ( ), which are dependent on parameters    and    

respectively, it is possible to produce estimates for the proportion of seronegative animals, p, 

(and therefore also the seroprevalence,    ), as well as the unknown distributional 

parameters, using samples from a single population (or age class). It is possible to improve 

inference on    and    by utilising samples from multiple populations (or age classes), under 

the assumption that   ( ) and   ( ) do not vary between populations (and so differences in 

the shapes of the observed distributions between populations are explained solely by changes 

in p). The underlying assumption taken here that the ln(MFI) distributions are the same in 

each age group is based on the expectation that while the level of circulating antibodies will 

vary according to an individual’s infection history and immune response, and the proportion 

of antibody-positive individuals within each age class may vary according to an age-

dependent likelihood of exposure and antibody waning, the actual detection of antibodies 

when they are present is independent of age class. In applying this model to other studies, the 

assumptions made here must be carefully considered on a case-by-case basis.  

Here the number of components in the mixture model is fixed to two, representing 

seropositive and seronegative animals. It would also be possible to allow the number of 

components of the mixture model to vary, and be estimated as part of the model fitting 

process (for example, Böhning et al., 1992; Greiner et al., 1994; for maximum likelihood 

approaches to this problem, and Richardson and Green, 1997 for a Bayesian approach). This 

could be useful to distinguish multiple peaks in the data, however here the number of 

components was fixed to two for four main reasons: i) biologically it is of interest to classify 

the data into two groups: seropositive and seronegative; ii) qualitatively the data support the 

assumption of a two-component mixture, and the fitted plots look reasonable; iii) it is 

straightforward to derive estimates for the optimal cut-off to determine seroprevalence based 

on two groups (Böhning et al., 1992; Greiner et al., 1994); and iv) the probabilities of 

classification into seropositive and seronegative groups can be explored for a range of 

different cut-offs, providing a useful means of comparison between choices. 

For n samples, across S populations, such that          , the likelihood can be written 

as: 
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   } 

   . 

A Bayesian framework was adopted and models were fitted using Markov chain Monte Carlo 

(MCMC) (for example, Gilks et al., 1996) in the freely-available WinBUGS software (Lunn 

et al., 2000) using the R2WinBUGS package (Greiner et al., 2000; Sturtz et al., 2005). The 

underlying ln(MFI) distributions were modelled as normal distributions. Full details of the 

models used in this manuscript, along with associated WinBUGS code are given in Appendix 

B. 

It is possible to derive a measurement for the probability of an individual (with a specific 

ln(MFI) value) belonging to either of the two groups by comparing the weighted probability 

density functions between the two mixture components. For example, the probability that an 

individual with a ln(MFI) value of   belongs to the seronegative group, is given by: 

 

   ( )  
   ( )

   ( ) (   )  ( )
. [Equation 1] 

 

The probability that an individual belongs to the seropositive group is   ( )      ( ). 
 

If this model is fitted to the data, then a direct estimate of the seroprevalence in the population 

can be obtained as    . To estimate the seroprevalence in other datasets, it is desirable to 

determine an appropriate cutoff,   , such that individuals are classified as seronegative if they 

have ln(MFI) values    , and seropositive if they have ln(MFI) values    . The 

seroprevalence can then be estimated as    , where   is the number of seropositive 

individuals in a sample of size  , according to the cutoff. One option is to choose a cutoff,   , 

such that 

 

    (  )  (   )  (  ). [Equation 2] 

 

However, as noted in various papers (Titterington et al., 1985; for example, Böhning et al., 

1992; Greiner et al., 1994), this can produce a biased estimate of the seroprevalence, which is 

exacerbated when the variances of the two component normal distributions are different. An 

alternative cutoff, which addresses this bias, is to choose a value of    which satisfies the 

following equation: 

 

   ∫   ( )  
 

  
 (   ) ∫   ( )  

  

  
, [Equation 3] 

 

(Titterington et al., 1985; Böhning et al., 1992; Greiner et al., 1994). Using the mixture model 

approach also enabled calculation of the probability of belonging to either component of the 

mixture for a range of different ln(MFI) values. This enabled comparison of the predictive 

capacity of the model (at the individual level) using cutoffs obtained from each of the 

competing methods. Since the model is fitted in a Bayesian framework, 95% credible 

intervals for these quantities can also be calculated. 

 

3. RESULTS 

3.1. Serological Assays 
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A good fit was observed between MFI values from microsphere binding assays run in two 

different laboratories (R
2
 = 0.84) and on one machine before and after machine servicing (R

2
 

= 0.88). For simplicity, only binding results from laboratory A prior to servicing are presented 

here (as these provided the largest data set).  

Overall, 60/442 samples were positive at ≥1:10 dilution using the virus neutralisation tests. 

The minimum NiV sG MFI at which neutralisation was observed was 501, and 100% of 

samples with a NiV sG MFI > 9300 neutralised either HeV or NiV. A high degree of overlap 

in the distribution of MFI values between neutralising and non-neutralising samples was 

observed (Appendix C), yet the proportion of samples that were neutralising increased with 

increasing MFI (Figure 1).  

3.2. Receiver Operator Characteristic curve analyses 

For the purpose of the ROC curve analyses, the virus neutralisation test was considered a 

reference test. Analyses performed on the results of unbiased sample sets tested by both 

microsphere binding assay and virus neutralisation tests (334 individual samples from 

Tanzania and Annobón) identified two potential cutoff values (Figure 2). Firstly, a NiV sG 

cutoff was selected such that specificity and sensitivity assume maximum values (79% and 

93%, respectively; MFI = 1172). The specificity of virus neutralisation tests using HeV (from 

Australia) and NiV (from Malaysia), however, is likely compromised when testing the 

neutralising capability of antibodies from Africa, therefore, a second cutoff was also selected 

so as to give maximum specificity (61%) while maintaining 100% sensitivity (MFI = 501).  

3.3. Three times the mean MFI of negative controls 

Samples from two Australian Pteropus spp. fruit bats were used as negative controls across 

multiple assays, and had mean MFI values of 14 (from 6 independent assay runs) and 92 

(from 9 independent assay runs). Cutoffs calculated as three times the mean MFI of these 

samples were therefore 43 and 277, respectively. If all results for both negative bat sera were 

considered together, three times the mean MFI gave a cutoff of 184. 

3.4. Frequency distributions of microsphere binding assay MFI values 

Frequency distributions were plotted for natural log transformed NiV sG binding MFI values 

(Figure 3). Clear bimodal peaks were observed in juvenile and adult bats and, as described in 

section 2.3, were assumed to represent mixed distributions of ln(MFI) values for 

‘seronegative’ and ‘seropositive’ bats (left and right peaks, respectively). The neonate 

distribution also appeared to be bimodal, but with a more prominent ‘positive’ than ‘negative’ 

peak. While the distribution was less clear for sexually immature bats, there was a suggestion 

of a more prominent ‘negative’ peak, which, interpreted together with other sub-adult age 

classes, suggested a transition from more ‘positive’ to more ‘negative’ with age (i.e. from left 

to right in the top row of Figure 3). 

Although results gave an indication of the expected distribution of ‘negative’ and ‘positive’ 

ln(MFI) values, there was a reasonable degree of overlap between the tails of the two 

distributions in all age groups. It is worth noting that although the magnitude of the peaks 
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differ between the different age-groups, their mean locations are at similar ln(MFI) values. 

This is consistent with the idea proposed earlier that the underlying distributions of ln(MFI) 

values for seronegative and seropositive bats should be the same regardless of age, but that 

the underlying proportions of seropositive and seronegative bats within each age group may 

differ. 

3.5. Mixture model analyses 

In the absence of true positive and negative controls for plasma samples containing antibodies 

to African henipaviruses (required to establish expected ranges and standard deviations of 

ln(MFI) distributions), a mixture model approach was applied. Table 2 provides posterior 

mean estimates and 95% credible intervals (CI) for the parameters of the fitted model, 

generated from 1,000 posterior samples. The seroprevalences are stratified by age-class, as 

well as for the population as a whole. Model convergence was assessed by visual inspection 

of the trace plots and the Gelman-Rubin  values; autocorrelation was assessed by 

examining the effective sample size of the chains; and for each chain the Monte Carlo error 

for the posterior mean was less than 5% of the posterior standard deviation. It was concluded 

that these samples were sufficient to make robust inference from, and as such it was not 

necessary to run the chain for longer. 

The fitted mixture distributions are shown in Figure 3. Table 3 provides the age-specific 

estimates for the optimal cutoff based on the criterion described in section 2.3, as well as an 

estimate for the cutoff after combining information on the demography across the whole 

population.  

Results supported the observation in section 3.4 that the proportion of seropositive animals 

decreases with age in sub-adult classes (posterior means (and 95% credible intervals) for 

neonate, juvenile and sexually immature seroprevalences of 0.84 (0.7-0.94), 0.65 (0.56-0.74) 

and 0.38 (0.3-0.47), respectively). To assess the assumption that   ( ) and   ( ) do not vary 

between age classes, the results from a mixture model fitted to all age groups simultaneously 

were compared to those obtained from fitting the mixture model to each age group separately. 

Fitting to each age group separately results in a trade-off between the estimates of the 

parameters of the underlying ln(MFI) distributions and the mixing proportions   . Analyses 

with the neonate age class failed to converge (likely due to small sample size), but on the 

whole the results were comparable to the analyses with age groups fitted simultaneously 

(Appendices D and E). Appendix F shows that fitting the model to each age group 

independently reduced the variance of the negative distribution (  ) within each age group, 

but increased the variance of the positive distribution (  ). While the mean of the positive 

distribution (  ) was consistent for adults and juveniles when they were fitted separately 

compared to fitting across all samples (ln(MFI) = 6.6–6.7), a shift to the left was observed in 

the sexually immature age class (ln(MFI) = 5.4), with non-overlapping CIs. The mean of the 

negative distribution  (  ) was decreased for sexually immature individuals and juveniles, yet 

the CIs were overlapping across all estimates. Finally, the proportions of seronegative 

R̂
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individuals (p) decreased dramatically in the sexually immature age class when the age group 

was fitted separately, but was consistent for adults and juveniles. 

 

4. DISCUSSION 

Here, in the absence of a validated gold standard serological assay to determine the serostatus 

of an individual against a particular pathogen, the application of established serological assays 

across non-target host-species and viruses was assessed. Firstly, henipavirus neutralising and 

binding assay results were compared, and indicated that E. helvum plasma samples were 

increasingly more likely to be capable of neutralising HeV and NiV as NiV sG binding MFI 

values increased, but very high MFI values were required before 100% concordance was 

observed between microsphere binding and neutralisation assays. This may be accounted for 

by the different binding mechanisms employed in each assay, particularly to a heterologous 

virus.  

Frequency distributions of natural log-transformed MFI values displayed bimodal peaks, yet 

there was some overlap between the tails of ‘positive’ and ‘negative’ distributions. This likely 

reflects a natural population comprising individuals with diverse ages, immunocompetence, 

and pathogen exposure history. Individual bat antibody levels are expected to be dynamic, 

reflecting factors such as time since last exposure and the total number of exposures over an 

individual’s life span. Indeed, the proportion of individuals within the ‘negative’ and 

‘positive’ ln(MFI) frequency distributions varied according to age class. Larger ‘positive’ 

distributions were seen in adults and neonates (consistent with natural infection, and transfer 

of maternal antibodies, respectively). A transition to a more negative distribution was 

observed as age increased from neonates to sexually immature bats, at a time when 

maternally-derived antibodies are expected to wane and result in the individual becoming 

susceptible to natural infection.  

To dichotomise an individual’s assay results into ‘seropositive’ and ‘seronegative’ groups, 

they must be classified according to pre-determined criteria. Therefore, secondly, a specific 

aim of this study was to determine an appropriate cutoff for henipavirus binding assays in 

order to differentiate between seropositive and seronegative E. helvum fruit bats. Despite the 

inherent limitations and difficulties in defining a single ‘cutoff’, this facilitates the calculation 

of seroprevalences and is routinely used for all serological assays.  

In previous E. helvum studies (Halpin et al., 2000; Hayman et al., 2008; 2011), a cutoff based 

on three times the mean negative bat MFI was used and equated to an MFI of 200. In the 

current study, ‘negative’ bat samples had highly variable mean MFI readings, highlighting a 

potential difficulty with using this method across multiple studies and laboratories, and 

characterisation of controls to allow standardisation across laboratories is required. 

Additionally, it is important to note that no negative controls are available for E. helvum, as is 

often the case in wildlife studies (Gilbert et al., in press) and the control samples used in this 

and previous studies were from wild Australian Pteropus spp bats with an unknown infection 

history, but which were designated as negative based on results from multiple Hendra virus 
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microsphere and neutralisation assays. Applying a cutoff based on MFI values from these 

samples from wild-caught bats to different bat genera and to different cross-reactive viruses is 

problematic.  

An alternative approach, where results from a novel assay are compared with a ‘gold 

standard’ assay such as a virus neutralisation test using Receiver Operator Characteristic 

(ROC) curve analyses, usually allows the calculation of a threshold that determines the 

sensitivity and specificity of the screening assay. While HeV and NiV neutralisation assays 

have been identified as ‘gold standard’ assays for HeV and NiV, respectively (Daniels et al., 

2001; Leroy et al., 2005), due to the likely novel nature of the African henipavirus(es), these 

assays cannot be considered a gold standard for African bat serology. Additionally, it is 

recognised that the specificity of HeV and NiV neutralisation assays is low, with significant 

cross-reactivity between them (Bossart et al., 2007; for example, Hayman et al., 2012). A 

standard approach of selecting a cutoff from the ROC curve so that specificity and sensitivity 

assume maximum values is therefore inappropriate in this situation. However, a benefit of 

ROC curve analyses, is that a cutoff can be selected based on this knowledge and according to 

the specificity and sensitivity required for the testing purpose (Jacobson, 2009; Gardner et al., 

2010). Here, an alternative cutoff was considered to be one that would maximise maximum 

specificity while maintaining 100% sensitivity in the ROC curve analyses, giving a cutoff 

MFI of 501.  

The mixture model approach has the advantage of assessing the microsphere binding assay 

output in its own right, on a population level, without the need to compare it to an alternative 

assay with unknown sensitivity and specificity. The bimodal distributions observed in the 

frequency distributions could be quantitatively assessed in terms of the shape of the 

distributions and the proportions of individuals within each distribution in a given population. 

In the absence of prior information on the shapes of the underlying distributions, this 

approach depends on the distributions for groups being identifiable from the observed data 

(such as in the adult and juvenile classes). Under certain assumptions this identifiability can 

be improved by combining information from different populations. Similar results were 

observed whether the model was fitted individually or to age groups separately. An exception 

was the positive distribution of the sexually immature individuals, which was shifted to the 

left. This illustrates the trade-off between p and the distributional parameters, and highlights 

the potential improvements in identifiability that can be gained by fitting multiple populations 

together in one model (provided that the underlying assumptions are valid). Given the 

expectation that a significant proportion of maternally-derived antibody waning is occurring 

in the sexually mature age class, and that the other age classes are largely unchanged, it was 

considered that fitting the model to the entire dataset is reasonable, and that using information 

from all four age-groups provides a more valuable estimate for the seropositivity cutoff.  

This decision must be based on the aims of the study, however. If the aim of the study is to 

estimate population-wide seroprevalences (with the purpose of understanding the proportion 

of immune and susceptible individuals present within the population) for predicting disease 

dynamics, then a cutoff estimated across all age classes is likely to be most useful. If, 
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however, the aim is to investigate antibody dynamics within a particular age class (for 

example, including waning antibodies), then fitting separately to the age group under 

consideration may be more likely to provide accurate results. 

In summary, the potential MFI cutoffs identified using various methods were: 43, 184 and 

277 (three times the mean negative bat MFI), 82 (mixture model analyses), 501 (maximising 

sensitivity in ROC curve analyses) and 1172 (jointly maximising sensitivity and specificity in 

ROC curve analyses). Clearly there is a large range of potential or ‘optimal’ cutoff values 

depending on the choice of method used to generate the cutoff, which should depend on the 

aims of the specific study. One way in which these can be compared is to use the results from 

the fitted mixture model to assess the probability of belonging to the seronegative or 

seropositive groups, for each of the different cutoffs (see Figure 4 and Table 4).  

For an assay producing a continuous response, there will likely always be some overlap 

between these two distributions (though if the effect size is large enough and the variability 

small enough, this could be negligible in some cases). Theoretical results (Titterington et al., 

1985; Böhning et al., 1992; Greiner et al., 1994) suggest that for a mixture of two normal 

distributions, it is possible to generate a cutoff that provides an unbiased estimate of 

seroprevalence at the population level (based on the fitted mixture model using Equation 3). If 

this cutoff (in this case, ln(MFI) = 82)  is used to generate a probability of belonging to the 

seronegative group using Equation 1, then the probability that an individual with this ln(MFI) 

value belongs to the seronegative group is 0.6 (95% CI: 0.33–0.8). The fact that this value is 

close to 0.5 makes intuitive sense because this threshold is an adjusted measure based around 

the point of inflexion of the cumulative distribution functions—hence the largest predictive 

uncertainty is expected to be around this point (note that if a threshold based on Equation 2 is 

used then this value would be exactly 0.5). That there is a large degree of variability at this 

point (and therefore the potential for a high potential for misclassification at the individual 

level at this point) is reflective of the fact that there is considerable overlap between the two 

component distributions. A benefit to the mixture model approach, not explicitly exploited 

here, is that since the model is fitted in a Bayesian framework, 95% credible intervals for the 

cutoff can be calculated and then utilised. 

If the assumptions underlying the mixture model are to be believed (i.e. that the two 

component distributions reflect seropositives and seronegatives), and the optimal cutoff 

selected by this method is 82, then it can be seen that most of the other methods tend (with the 

exception of the value of 43) to produce higher cutoff values that are therefore likely to trade 

a reduced sensitivity (at the individual level) for an improved specificity when classifying 

individuals. Consequently, they minimise false positive misclassification at an individual 

level. However, if these higher cutoff values are used to estimate seroprevalence at the 

population level, then they will most likely underestimate the true seroprevalence. The choice 

of the most appropriate cutoff is therefore highly context dependent. Ideally, work of this 

nature, where seroprevalence to a cross-reacting pathogen is being assessed, should be 

supplemented by specific serological studies that can follow isolation of a more local isolate; 

this does not yet exist in the situation considered in this work. More detailed quantitative 
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analysis of cross-reactivity to a range of related pathogens can be very informative in this 

context, as demonstrated for bat lyssaviruses (Horton et al., 2010).  

There is a strong justification for using unbiased mixture model approaches to estimation of 

seroprevalence and in detailed studies of infection dynamics within reservoir host species. 

However, in other situations, such as where the possibility of confirmed infection spillover 

between different species is being evaluated, a higher cutoff value, where individual results 

can be confirmed by ancillary tests (such as serum neutralisation tests) may be easier to 

justify to public health and related authorities. In this situation, using the higher value of MFI 

501 may be appropriate. 

 

5. CONCLUSION 

While considering the artificial nature of a strict cutoff given the dynamic nature of antibody 

levels within populations, this study addressed issues commonly encountered in serological 

surveys in wildlife, including unknown cross-reactivity between circulating and assay viruses, 

interpretation of results in the absence of a well characterised, gold standard assay and 

determining an appropriate positive/negative cutoff point for substitute serological assays.  

Seroprevalences will vary according to the baseline sensitivity of the assay used (for example, 

neutralising assays versus binding assays), in addition to the cutoff selected within each assay 

protocol. Results here suggest that cutoffs selected using more ‘traditional’ methods such as 

ROC curve analyses may be producing biased underestimates of seroprevalence, if the 

assumptions regarding the use of a two-component mixture model to capture the underlying 

distributions of ln(MFI) values in seronegative and seropositive individuals is considered 

reasonable. Full reporting of test methodology and results are therefore critical to allow 

comparisons with other studies, including a description of precise protocols or modifications 

employed, cutoffs, controls and uncertainty intervals for antibody prevalence estimates. While 

MFI values were strongly correlated across laboratories and machines in this study, the 

absolute MFI values varied. As with any assay, the cutoff is subject to measurement bias in 

the particular instrument or environment under which the assay is performed, only here it is 

more obvious since the results are given on a continuous scale rather than as a dilution series. 

Therefore, if new E. helvum samples were analysed on the same machine as used here, then 

the cutoff analyses performed here would be applicable. However, we recommend that similar 

analyses are performed for each new species of bats where the virus concerned is 

uncharacterised, or for each new machine or laboratory in which the microsphere binding 

assay is performed. If using a mixture model with data where age groups are identifiable, it is 

advisable to consider that the underlying distribution of seropositive and seronegative 

individuals may differ in some cases and, depending on the objectives of the study, fitting to a 

specific age group may be required. 
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TABLES 

 

Table 1: Sample numbers analysed using the Nipah virus (NiV) sG binding assay and Nipah 

virus and Hendra Virus (HeV) virus neutralisation tests. A= Adult, SI = Sexually immature, 

J= Juvenile. * indicates biased sample sets, where only samples with microsphere binding 

MFI>750 were tested using virus neutralisation tests. 

Country 
NiV sG binding HeV/NiV virus 

neutralization tests A SI J Neonate Total 

Annobón 42 31 0 0 73 73 

Bioko 17 4 66 18 105 49* 

Ghana 640 166 76 2 884 
 

Malawi 12 4 0 0 16 
 

Príncipe 41 20 0 0 61 21* 

São Tomé 60 15 0 22 97 39* 

Tanzania 157 88 0 0 245 222 

Uganda 6 0 0 0 6 
 

Zambia 11 0 0 0 11 
 

Total 986 328 142 42 1498 295 

 

Table 2: Posterior means and 95% credible intervals for means and variances of NiV sG 

binding assay ln(MFI) distributions for seronegative animals (   and   
 ) and seropositive 

animals (   and   
 ), as well as for the proportions of seronegative (p) and seropositive (1-p) 

animals in each age group (and the population as a whole), generated from the fitted mixture 

model, fitted to all age groups simultaneously (A=Adult, J=Juveniles, Ne=Neonates and 

SI=Sexually Immature). 

 Mean 95% C.I. 

   3.3 (3.2-3.5) 

   6.6 (6.5-6.8) 

  
  0.59 (0.43-0.79) 

  
  1.5 (1.2-1.7) 

   0.24 (0.2-0.29) 

     0.76 (0.71-0.80) 

    0.62 (0.53-0.70) 

      0.38 (0.3-0.47) 

   0.35 (0.26-0.44) 

     0.65 (0.56-0.74) 

    0.16 (0.059-0.3) 

      0.84 (0.7-0.94) 

p 0.33 (0.29-0.37) 

    0.67 (0.63-0.71) 
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Table 3: Posterior means and 95% credible intervals for the optimal cutoff based on Equation 

3, for each age-group and for the population as a whole. 

 Mean ln(MFI) 95% C.I. Mean MFI 95% C.I. 

Adults 4.3 (4.0–4.7) 74 (55–110) 

Juveniles 4.5 (4.1–4.8) 90 (60–122) 

Neonates 4.2 (3.8–4.6) 67 (45–100) 

Sexually immature 4.7 (4.3–5.1) 110 (74–164) 

Total Population 4.4 (4.1–4.8) 82 (60–122) 
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Table 4: Posterior means and 95% credible intervals for the probability of belonging to the 

seronegative group, generated from the fitted mixture model and evaluated at different 

cutoffs. 

 

MFI Mean 2.5% 97.5% 

43 0.90 0.81 0.96 

82 0.60 0.33 0.80 

184 0.08 0.01 0.23 

277 0.02 0.001 0.07 

501 0.003 0.00002 0.007 

1172 0.00003 0.00000001 0.0002 
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FIGURES 

Figure 1: Proportion of 402 E. helvum samples capable of henipavirus neutralisation at 

dilutions of ≥1:10, by a) NiV sG binding assay MFI result b) NiV sG binding assay ln(MFI) 

result. 

 

 

Figure 2: ROC curve analysis of sensitivity and specificity afforded by NiV sG binding assay 

MFIs for predicting HeV or NiV neutralisation. Two values are highlighted on the curve, with 

specificity and sensitivity in brackets. To the left is the ‘best’ value for optimal sensitivity and 

specificity, and to the right, the point that gives maximum specificity while maintaining 100% 

sensitivity. 
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Figure 3: Frequency distribution histograms of NiV sG binding assay ln(MFI) values for 

each age group (Neonate: n = 42, Juvenile (J): n = 142, Sexually Immature (SI): n = 328, 

Adult (A): n = 986). The red lines correspond to the predictive posterior means generated 

from the fitted mixture model, fitted to all age groups simultaneously. 

[intended for colour reproduction on the web and in print]  
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Figure 4: A plot of the posterior mean (and 95% credible intervals) for the relative 

probability of a given NiV sG binding assay ln(MFI) value belonging to the seronegative, 

rather than seropositive groups (generated from the fitted mixture model, fitted to all age 

groups simultaneously). The coloured lines represents the posterior mean probability of being 

seronegative at each of the cutoffs identified by the various methods. 

[intended for colour reproduction on the web and in print] 
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