An economic evaluation of setting up physical barriers in railway stations for preventing railway injury: evidence from Hong Kong

Author
Law, C, F Yip, P

Published
2011

Journal Title
Journal of Epidemiology & Community Health

DOI
https://doi.org/10.1136/jech.2010.115188

Copyright Statement
Copyright remains with the authors 2011. The attached file is reproduced here in accordance with the copyright policy of the publisher. For information about this journal please refer to the journal’s website or contact the authors.

Downloaded from
http://hdl.handle.net/10072/61569
An economic evaluation of setting up physical barriers in railway stations for preventing railway injury: evidence from Hong Kong

C K Law,1 P S F Yip2,3

ABSTRACT

Background Setting physical barriers, for example platform screen doors (PSDs), has been proven to be effective in preventing falls onto railway tracks, but its cost-effectiveness is not known. For economic evaluation of public health interventions, the importance of including non-health factors has been noted despite a lack of empirical studies. This study aimed to investigate the effectiveness and cost-effectiveness of PSDs, which are installed in part of the Hong Kong railway system, for preventing railway injuries.

Methods Data on railway injuries from 1997 to 2007 were obtained from the railway operators. Poisson regression was used to examine the risk reduction. Two incremental cost-effectiveness ratios (ICER) were calculated to assess the cost-effectiveness based on (1) disability-adjusted life years (DALYs) only and (2) DALYs with potential fare revenue and passengers’ waiting time lost due to railway circulation collapse.

Results The PSD installation has effectively reduced railway injuries (adjusted 5-year average percentage change: −68.8%, p<0.0001) with no apparent substitution effect to the other platforms observed. To be cost-effective, the cost of gaining a healthy life year (ICER) should not exceed three times the per capita GDP (US$74 700). The PSD installation would only be cost-effective if the loss of fare revenue and passengers’ waiting time, in addition to DALY, were included (ICER: US$65 400), while the ICER based on DALY only would be US$77 900.

Conclusion The challenges of complexity for economic evaluation appear in many community-based health interventions. A more extensive perspective for exploring other outcome measurements and evaluation methods to reflect a fair and appropriate value of the intervention’s cost-effectiveness is needed.

INTRODUCTION

The railway, though a reliable and safe mode of public transport, poses risks of injuries and even fatalities by suicidal or accidental falls on the tracks at the railway platform edge interface. Such incidents often cause ripple effects by causing severe psychological trauma in the train driver and numerous bystanders who have witnessed an incident.1–9 In some circumstances, breakdowns of railway circulation for several hours are implicated, which may entail after-effects for large parts of the system.1 How to prevent falls on railway tracks has become an important public health issue.

The existing literature suggests that setting up physical barriers to restrict passengers’ access to railway tracks is a highly effective way to mitigate the risk,1–9 such as by means of platform screen doors (PSDs) along the platform edge interface in stations.2 As a social investment for public health intervention, such an installation programme requires a rigorous assessment to evaluate if all resources used can bring the highest net benefit to society.

Economic evaluation in health economics compares the costs and health consequences of alternative courses of action to inform decision-makers in an explicit, quantitative and systematic way to make judgements under the principle of ‘value for money’.10 11 Cost-effectiveness has been found to be an important issue in health topics. While there have been a considerable number of guidelines on such analyses in clinical settings, its application on public health interventions is still limited and controversial. This has been mainly attributed to lack of understanding, mistrust of methods used and investigators’ motives.10 12 13 The gap between scientific research and on-site implementation has further introduced a sense of irrelevance and illusion of such analyses.10 14–16

The WHO’s Choosing Interventions that are Cost Effective Project (WHO-CHOICE) has developed new methods to assess the cost-effectiveness of interventions.17–25 They propose that all economic assessments should be undertaken from a societal perspective to facilitate policymakers in determining the most beneficial way for the use of scarce resources.26 A list of guidelines and criteria on classification and measurement of costs, assessment of interventions’ effectiveness, formulation of cost-effectiveness, and interpretation of results and uncertainty are also proposed for enhancing comparability among different public health interventions to ensure the results are relevant for practical policy decisions.17 19 The WHO guidelines on generalised cost-effectiveness analysis have provided a more transparent, extensive and comprehensive theoretical framework with more relevance to rebuild the confidence towards the technique for improving health. In practice, however, more considerations and adaptations may be needed, especially on evaluation of health outcomes of public health interventions.27

The WHO guidelines suggest measuring health changes at the individual level and summing them up to capture the societal effect.28 The assumptions behind this method, however, may not hold when it is applied to deal with the multiple effects of an intervention that involves a complex system in which any change due to the intervention is likely
to have diverse, far-reaching and non-linear effects on the overall community health.27–29

The railway is one of the most prominent means of public transport worldwide; falls onto railway tracks do not often happen but have severe impacts on not just the death, but also the railway company, the driver, passengers and witnesses of the person–train collision.1–3, 30 To measure the effectiveness of installing physical barriers (eg, PSDs) to restrict passengers’ access to railway tracks in such a complex situation, the use of traditional economic evaluation, which mainly focuses on improvement in health as the final outcome, may have a high risk of omitting other material non-health outcomes and thus underestimate the cost-effectiveness. Instead, more collective and deliberative methods that elicit societal values are needed to evaluate the economic efficiency of public preventive measures.27, 28, 31

The present study was designed to fill the gap in economic evaluation on public health preventive measures in a railway system, taking societal values into consideration. This paper specifically aims to (1) evaluate the effectiveness of installing PSDs at the underground railway for preventing suicidal and accidental falls on railway tracks from a societal perspective; (2) assess and compare the cost-effectiveness of the intervention by (a) using the traditional WHO-CHOICE approach and (b) a modified framework based on WHO-CHOICE but incorporating other related non-health outcomes.

METHODS

Study design and setting

The present study examines the effectiveness and cost-effectiveness of PSDs for preventing railway injuries in Hong Kong. Information related to falls onto railway tracks over the study period of 11 years from 1997 to 2007 was made available from the Safety Office of the Mass Transit Railway Corporation Limited (MTRCL) through the Transport and Housing Bureau of the Hong Kong Special Administrative Region government. The patronage figures, the cost and the schedule of the PSD installation programme over the period were made available from the MTRCL. Information on per capita gross domestic product (GDP) was made available from the Census and Statistics Department of Hong Kong.

Overall, the nature (ie, suicidal or accidental) and outcome (ie, fatal or non-fatal) of incidence were made available from the MTRCL’s dataset, as safety officers at stations would conduct a preliminary investigation shortly after the incidence. For cases with fatal outcome, we verified the external cause of death for each incidence with the Coroner’s Court of Hong Kong. Hong Kong has a very reliable coronial system with good quality of mortality data. Under the ICD category, all reportable deaths with external cause code as E958.0 (for cases from 1997 to 2000) and X81 (2001 and onwards) that satisfied the definition of ‘intentional self-harm by jumping or living in front of a moving object’ were classified as railway suicide.32, 33 Those coded as E805 (from 1997 to 2001) and V81.4 (2001 and onwards) were defined as accidental deaths.32, 33

Over the study period (1997–2007), the railway system of Hong Kong was managed by two different operators: the MTRCL and the Kowloon-Canton Railway Corporation (KCRC). In 2002, the MTRCL started to retrofit PSDs at all the platforms in the 30 underground stations.34 Most of the platforms of the busiest station were sealed with PSDs in 2002, and the whole installation work was completed in 2005. The incidental benefit of the installation programme has been a much safer environment that prevent falls onto railway tracks, in addition to the primary purpose of energy conservation by keeping the cool air in the stations.3 On the other hand, the eight MTRCL elevated stations and the 22 KCRC stations remained unsealed. This indirectly created a quasi-experimental setting for the present study to assess the effectiveness and cost-effectiveness of the PSDs for preventing railway injuries. The period 1997–2001 was taken as the preinstallation period and 2003–2007 as the postinstallation period, while 2002, the installation year, was excluded.

Effectiveness

Measures at both individual and societal levels were adopted for studying the effectiveness of PSDs in preventing railway injuries: (1) the number of suicidal and accidental falls, (2) disability-adjusted life years (DALYs), (3) the overall passenger-time and (4) the fare revenue saved after PSD installation. Population health effects due to the installation of PSDs for the prevention of suicidal and accidental falls were separately assessed using Poisson regression models implemented in SAS GENMOD software (see online appendix 1 for details).

The potentially avertable disease burden for suicidal and accidental falls on railway tracks at the PSD-sealed platforms was quantified using the DALY. DALY is a time-based, composite measure of health status. It is the sum of the years of life lost (YLL) due to premature mortality and also the years lost due to disability (YLD).35–37 To calculate the YLL, we multiplied the number of deaths at each age by the corresponding global standard life expectancy. For estimating the non-fatal health outcome (ie, YLD), it was calculated from an incidence perspective, in which the incidence, average duration of disability and associated disability weights were multiplied according to the severity conditions reported from the MTRCL. Details of DALY estimation for each severity condition can be found in appendix 2 (online).

The consequence of every incident at the railway platform edge interface should not simply be a matter of health changes at the individual level. From a broader socio-economic perspective, the subsequent loss arisen from breakdowns of railway circulation due to railway injuries must be taken into account. Therefore, in addition to quantifying the health effects of PSDs in terms of number of incidents and DALY, we also estimated the overall passenger time, by multiplying the total years saved from service disruption by the passenger volume over the period, and the fare revenue that has been saved due to service disruption at formerly MTRCL net after the installation of PSD.

Costs

Two billion Hong Kong dollars (US$256.4 million) was spent for the PSD installation programme, according to MTRCL.38 To provide a reliable estimate to allocate the amount of costs incurred over the whole installation period from 2002 to 2005, we used the percentage of completion method, in which the expenses can be attributed to the proportion of work completed.39 All the costs were converted from Hong Kong dollars (US$ 1=HK$ 7.8) and expressed in 2002 US dollars.

Cost-effectiveness

To evaluate whether the installation of PSDs is economically efficient from a societal perspective; we estimated the incremental cost-effectiveness ratio (ICER) for the intervention by two approaches. First, we followed the recommendations of WHO-CHOICE for generalised CEA, if applicable. The guidelines propose that all economic assessments should be undertaken from a societal perspective, which facilitates policy to get...
the most beneficial way for the use of scarce resources available to a society.26

In the WHO-CHOICE approach, we used the avertable DALYs as the only outcome measure for the intervention’s effectiveness. As the WHO-CHOICE guidelines have no specific information on the useful life of PSD, we followed the MTRCL’s accounting policy on Plant and Equipment that assumed a useful life of 25 years for PSDs.40 All future costs and avertable life years were discounted continuously at an annual rate of 3%.11 41

On the basis of the WHO-CHOICE guidelines, we proposed a modified framework for calculating the ICER by incorporating other non-health-related effects. In this approach, the programme’s effectiveness is synthesised by three separate components: (1) the avertable DALYs from railway injuries; (2) the avertable passenger’s waiting time due to the breakdown of railway circulation; and (3) the corresponding financial savings from the loss of fare revenue. The ICER equals the net installation cost for the railway operator (subtracting the discounted installation cost by the discounted financial savings from the loss of fare revenue) divided by the total discounted life years gained from both the potential victims and the passenger time. Mathematically, the formula for ICER can be written as follows:

\[
\text{ICER} = \frac{\text{discounted installation cost} - \text{discounted savings from fare revenue}}{\text{discounted DALYs averted} + \text{discounted passenger time}}
\]

For the classification and evaluation of cost-effectiveness, we followed the recommendation proposed by Murray and colleagues42 43 on the basis of the WHO’s Commission on Macroeconomics and Health. They define interventions that save a healthy life year at a cost below the state’s GDP per head as very cost-effective; those averting at a cost between one and three times the per capita GDP are cost-effective, and the rest are not cost effective.43

RESULTS

Risk reduction at the platform edge interface after the PSD installation

Over the 11-year period from 1997 to 2007, a total of 397 incidents of railway injury were identified and reported in Hong Kong, yielding a toll of 402 casualties (154 suicidal and 248 accidental). Overall, the case death rate of suicidal injuries was far higher at 50% than that of accidental injuries at 0.8% (two out of 248). Also, among those incidents with non-fatal outcomes, those who fell by accident usually had a less severe condition. Only 33% (N=82) had a serious condition, while the same figure for non-fatal suicidal injuries was higher at 67.5% (N=52) over the period.

As shown in table 1, the total number of casualties at the formerly MTRCL net is reduced by 66.8% from 202 before the installation programme (1997–2001) to 67 after the programme (2003–2007). In contrast, the corresponding figures at the formerly KCRC net have been maintained at a fairly stable level of 25 over the entire study period. When separately analysed by nature and outcome of the incidence before and after the installation programme, we observed that the number of fatal suicidal falls has dropped the most at 78.9% from 38 to 8. The number of accidental falls has been reduced by 67.9% (from 131 to 42), while the number of non-fatal suicidal falls has also been reduced at 48.4%.

Poisson regression analyses confirmed that the presence of PSDs has effectively reduced the risk at the platform edge interface of the formerly MTRCL net with an adjusted 5-year average percentage change (APC) of −68.8% (p<0.0001) (see table 2). Meanwhile, the change did not appear to affect the risk to other unsealed railway platforms, as the corresponding figure at the formerly KCRC net did not show a significant rise (p=0.5688). Finally, within the formerly MTRCL net, it is worth noting that the overall risk reduction was not proportionately distributed according to the nature and outcome of the incidence. Overall, the risk of fatal suicidal falls was reduced the most with a 5-year APC of −80.6% (p<0.0001), which was followed by accidental falls at −69.5% (p<0.0001). Finally, the risk of non-fatal suicidal fall also recorded a significant reduction with APC of −52.6% (p=0.0126), even though it changed the least when compared with the other two categories.

Table 1: Number of suicidal and accidental fall on railway tracks in Hong Kong by outcome and railway network, pre- and postinstallation period*

<table>
<thead>
<tr>
<th>Type</th>
<th>Outcome</th>
<th>Condition</th>
<th>Mass Transit Railway Corporation Limited</th>
<th>Kowloon-Canton Railway Corporation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Preinstallation</td>
<td>Postinstallation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Suicidal</td>
<td>Fatal</td>
<td>None apparent</td>
<td>38</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Minor</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Serious</td>
<td>27</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Non-fatal</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Overall</td>
<td>71</td>
<td>25</td>
<td>24</td>
</tr>
<tr>
<td>Accidental</td>
<td>Fatal</td>
<td>None apparent</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Minor</td>
<td>57</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Serious</td>
<td>41</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>Overall</td>
<td>131</td>
<td>42</td>
<td>22</td>
</tr>
<tr>
<td>Both</td>
<td>Fatal</td>
<td>None apparent</td>
<td>33</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Non-fatal</td>
<td>164</td>
<td>59</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>Overall</td>
<td>202</td>
<td>67</td>
<td>46</td>
</tr>
</tbody>
</table>

*The preinstallation period refers to 1997–2001, and the postinstallation period refers to 2003–2007.† Subject to reporting delay, one case of a fatal suicidal fall on the railway at formerly Mass Transit Railway net was reported from the Coroner’s Court of Hong Kong after the publication date of Law et al.2"
Both Overall MTRCL/C0 reduced time of service disruption contributed to 76.7% of the total averted DALYs and 64% of the PSDs mainly go to the prevention of fatal suicidal falls, which at the macroeconomic level, the presence of PSD has significantly shortened the period of service disruption by 69.5% from 1168 to 287 years, which implies a total of 881 healthy life years averted after the PSD installation. Also, at 75% from 1168 to 287 years, which implies a total of 881 years.

Table 2 Results of age- and gender-adjusted slope coefficients from the Poisson regression model and the corresponding average percentage change of suicidal and accidental falls on railway track in Hong Kong between the pre- and postinstallation period*

<table>
<thead>
<tr>
<th>Type</th>
<th>Outcome</th>
<th>Railway system</th>
<th>β</th>
<th>Average percentage change (%)</th>
<th>p Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Suicidal</td>
<td>Fatal †</td>
<td>MTRCL</td>
<td>−1.64</td>
<td>−80.6</td>
<td><0.0001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KCRC</td>
<td>0.08</td>
<td>8.8</td>
<td>0.24</td>
</tr>
<tr>
<td>Non-fatal</td>
<td>MTRCL</td>
<td>−0.75</td>
<td>−52.6</td>
<td>0.0126</td>
<td></td>
</tr>
<tr>
<td></td>
<td>KCRC</td>
<td>0.02</td>
<td>1.5</td>
<td>0.9713</td>
<td></td>
</tr>
<tr>
<td>Overall</td>
<td>MTRCL</td>
<td>−1.12</td>
<td>−67.5</td>
<td><0.0001</td>
<td></td>
</tr>
<tr>
<td></td>
<td>KCRC</td>
<td>0.05</td>
<td>5.5</td>
<td>0.85</td>
<td></td>
</tr>
<tr>
<td>Accidental</td>
<td>Overall</td>
<td>MTRCL</td>
<td>−1.19</td>
<td>−69.5</td>
<td><0.0001</td>
</tr>
<tr>
<td></td>
<td>KCRC</td>
<td>0.18</td>
<td>19.6</td>
<td>0.5331</td>
<td></td>
</tr>
<tr>
<td>Both</td>
<td>Overall</td>
<td>MTRCL</td>
<td>−1.16</td>
<td>−68.8</td>
<td><0.0001</td>
</tr>
<tr>
<td></td>
<td>KCRC</td>
<td>0.11</td>
<td>12.1</td>
<td>0.5688</td>
<td></td>
</tr>
</tbody>
</table>

† Subject to reporting delay, one case of a fatal suicidal fall on the railway at formerly Mass Transit Railway Corporation Limited (MTRCL) net was reported from the Coroner’s Court of Hong Kong after the publication date of Law et al.²
² KCRC, Kowloon-Canton Railway Corporation.

Socio-economic consequence of PSD installation
As the absolute risk at the platform edge interface is lowered, we found an overall reduction in terms of DALYs and service disruption at the formerly MTRCL net upon the presence of PSD. As shown in table 3, the overall DALYs over the post-installation period (2003–2007) have been reduced by more than 75% from 1168 to 287 years, which implies a total of 881 healthy life years averted after the PSD installation. Also, at a macroeconomic level, the presence of PSD has significantly shortened the period of service disruption by 69.4% (or 1208 min) from 1739 to 531, which indicates a saving of 201 m.

Cost-effectiveness of setting up PSDs from a public safety perspective
Table 4 shows a summary of the cost-effectiveness analysis, which includes the overall discounted costs, effects and ICERs of setting up PSDs at different scenarios. The installation cost of PSDs amounted to US$ 257 million after adjustment of price and discounting, which is slightly smaller than the reported cost at US$ 256.4 million.

In the traditional approach, the installation of PSDs would save about 3100 DALYs, and the programme would have an ICER of US$ 77 900 per year, which is 3.15 times the per capita GDP, marginally exceeding the threshold of a cost-effective intervention at US$ 74 700 (three times the per capita GDP). The intervention only becomes cost-effective when we allow a longer expected useful life of PSDs of two additional years to 27 years, by which the amount of avertable DALYs would increase by 5.2% to 3200 years, and this would make a reduction of ICER to US$74 000 per life-year.

In contrast, in the modified approach where the savings of fare revenue and passenger waiting time are taken into account, the results are different. In addition to the avertable DALYs, we also estimated that the installation of PSDs would save about US$7.9 million for the railway operators from the loss of fare revenue and 460 life-years from passengers’ waiting time. These factors would reduce the ICER to US$65 400 per life-year, which is 2.62 times the per capita GDP. The intervention would remain cost-effective, even if the useful life of PSD were to be shortened to 21 years. Furthermore, the cost saving of energy conservation due to PSD has not been included in the calculation. The management of MTRCL claimed that the cost saving arising from setting up the PSD to keeping the cool air inside the station without losing into the tunnel is the original purpose of the measure.²⁰

DISCUSSIONS
To the best of our knowledge, this is the first evaluative study worldwide to assess the economic efficiency of setting up PSDs at the railway platform interface for public safety purposes. Following the intervention, the overall risk of both suicidal and accidental falls showed a significant reduction. In addition, our economic assessment has revealed that the installation of PSDs is cost-effective from a larger societal perspective in which the interest of the victims, the railway operators and passengers are all taken into consideration. The present study demonstrates the analysis of a complex intervention delivered at the population level using an economic evaluation framework.

The challenges of complexity appear in many public health interventions. Many broad and community-based health
Interventions often involve activities outside the formal health sector. Additional costs and benefits beyond those originally envisaged in the research protocol may be induced which would directly affect the interpretation of the results. A more extensive perspective for data collection to identify and capture signs of other non-linear changes, unintended consequences and multiplier effects has been suggested. The present study has demonstrated how to adopt a broader societal perspective evaluating the economic efficiency of a public health intervention for railway injuries by exploring other outcome measurements and evaluation methods that are valid and relevant to this particular public health intervention.

The comparison of the two approaches of cost-effectiveness analysis by ICER demonstrates the impact of missing important outcomes on evaluating the economic efficiency of public health interventions. The analysis suggests that the use of DALYs alone, as the health outcome at the individual level from a victim perspective, is not sufficient to reflect a fair and appropriate value on the intervention’s effectiveness from a societal perspective. Since everything is interconnected, nothing can be assumed constant from the consequence of intervention. Ignoring changes in other sectors would lead to an underestimation of the economic efficiency, which would adversely affect the advocacy of public health in the long run.

As shown in a previous study conducted by the authors, the presence of PSD has been proved to be effective for preventing suicides through means restriction. However, due to its huge installation cost, it has been difficult in persuading the railway operator to extend the coverage of PSD to all railway stations in Hong Kong. It is believed that the findings of the present study can contribute to a more comprehensive framework in understanding the potential social benefits from interventions, which is important for initiating other railway operators worldwide to follow.

These arguments have been asserted and recommended by the Toronto Transit Commission, which plans to begin the process of adding screen doors at select subway stations on the Yonge line beginning in 2013 and completion on the Yonge-University-Spadina line by 2015. However, as a consequence of a high installation cost of C$10 million per station, there remains no plan for the operator, which anticipates a C$1.5 billion capital shortfall by the end of the decade, to extend the coverage of PSD installation further to other stations. We expect the present study can provide some insights for every stakeholder to evaluate, if the work can bring any benefit to the society.

Several caveats of this analysis should be mentioned. First, we need to recognise that the use of a cost-effectiveness analysis is only one of the key elements for policymakers’ consideration for resource allocation. Other concerns, such as availability of funds, media influence and community acceptance, would also affect the final decision. The present study illustrates only one of these critical inputs for the decision-making process. Second, as the geographical coverages of the two railway networks were not exactly identical, it is possible that the decrease in the number of casualties in MTRCL (or no decrease in KCRC) was partly due to some unknown exogenous factors, rather than the installation of PSDs. Third, as noted, the impact of risk at the platform edge interface is generally constructed by three dimensions, which includes the loss of human lives and functioning, passenger time due to the collapse of the railway service and also the corresponding psychological trauma following the incidence. However, in the present study, we have excluded the last item because we have no reliable information for quantifying the changes in psychological well-being following an incidence. The cost could be enormous.

More importantly, the use of DALY on cost-effectiveness analysis remains a highly controversial issue, in which not everyone appreciates the ethical dimension of the metric as the sole health outcome. The main disadvantage of focusing only on the time-base measure is that such an approach diverts attention away from the health needs of older adults and could be seen as discrimination on the basis of age. In figuring out a more comprehensive estimate on the health effect from intervention, more information would be needed about the circumstances of individuals who experience ill health (eg, the support provided through public services, private incomes, family, friends and so on).

To conclude, the use of cost-effectiveness analysis allows decision-makers to target its resources on improving health and related issues more efficiently. Rather than worrying about the uncontrollable bias from the discretion nature of the railway system, public health researchers should spend more effort to recognise the nature and magnitude of these effects, and to...
REFERENCES