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Abstract: We show anti-crossings due to strong in-plane coupling of 
grating excited propagating plasmon modes in dielectric-metal-dielectric 
structure with 2D dielectric pattern on top. Grating coupled propagating 
plasmon modes along with their complete dispersion in the measurement 
range and all different sample orientations are calculated first. Further a 
coupled mode theory is presented for the specific geometry presented here. 
Experimentally measured anti-crossing widths are compared with those 
calculated by coupled mode theory. It is shown that the coupling strength of 
the plasmon modes and thus the anti-crossing width can be controlled by 
the orientation of the sample. 
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1. Introduction 

Strong coupling of polariton modes results in anti-crossings or avoided crossings in the 
dispersion plots and are studied in excitonic systems like exciton-photon coupling in cavities 
and exciton-exciton coupling in coupled quantum dots [1–3]. In the context of plasmons, 
coupled plasmons are studied where the coupling is between localized (particle) plasmons and 
propagating plasmons and coupling induced changes in dispersion in planar and corrugated 
structures [4–8]. In various sub-wavelength structures, these coupled localized and 
propagating plasmons are studied for basic physics as well as for different applications [9–
16]. Also, in metal-dielectric-metal or dielectric-metal-dielectric structures when the middle 
layer is thin enough, coupling between plasmons at the top and bottom interfaces results in 
splitting of the modes to symmetric (short range) and anti-symmetric (long range) plasmon 
modes [17]. The general case of surface plasmon polariton (SPP) excitation in 1-d system 
when the grating vector is not contained in the plane of incidence has also been considered 
[18]. To our knowledge, there is no report on in-plane coupled propagating plasmons. We 
have recently shown grating coupled plasmon modes in dielectric-metal-dielectric layer 
structure with 2D dielectric grating on top and conditions under which near dispersionless 
plasmon modes can be excited in such structures [19]. Such excitation geometry would allow 
the coupling of in-plane propagating plasmons. In this paper we report on strong coupling of 
in-plane propagating plasmons at the unpatterned dielectric-metal interface originating due to 
the 2D grating structure on the top in the non-conical excitation geometry. In addition, we 
show that the coupling strength and thus the anti-crossing gap (split) width can be controlled. 
We give a model based on coupled mode theory to calculate the anti-crossing width. 

2. Sample fabrication and measurement geometry 

Samples studied have dielectric-metal-dielectric layer structure with 2D air holes in dielectric 
pattern on top. On quartz substrates, 50nm Gold was deposited by sputtering followed by spin 
coating of Shipley’s S1805 photoresist on top. By interference lithography shallow 2D 
gratings of air holes in resist with depth of air holes of about 60 nm were prepared. There is 
an unpatterned resist of 400 nm thickness on the Gold layer constituting the top dielectric 
layer above the metal film. AFM and SEM images showed 2D air hole pattern is of 
rectangular lattice with periods 610 nm (ax) and 625 nm (ay) in the two orthogonal directions. 
The fill factors (air to dielectric ratio) are 0.65 and 0.7 in x and y directions, respectively. 
Figure 1 shows the schematic of the sample along with the measurement geometry and the 
SEM image. Further details about the structure are in Ref.19 and references therein. When the 
azimuthal angle is, φ = 0°, for TM polarized incident light launched in the plane 
perpendicular to the 2D pattern, the electric field component has finite component along ax 
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which excites the SPPs. Similarly, for φ = 90° the finite electric field component along ay 
excites the SPPs. Angle θ is the launch angle in the plane perpendicular to the XY-plane. 

 

Fig. 1. (a) Shown is the schematic of the sample structure with dielectric-metal-dielectric 
layers having a 2-D air hole pattern in the top dielectric. Top dielectric is S1805 photoresist. 
Launch angle θ with respect to k and the azimuthal (in-plane) angle φ are shown. Various 
parameters such as the air hole depth (d), height of top unpatterned dielectric (h) and the 
thickness of the gold layer (t) are also marked. (b) SEM image of the sample. 

3. Experimental results 

Angle resolved transmission measurements are performed with the launch angle varied from 

25° to + 25° range with 0.3° step. A 100 W halogen lamp is used as white light source (400-
1000 nm wavelength range) and the output is collimated using a combination of apertures and 
lenses to have <0.3° divergence. Transmission spectra are recorded using a fiber spectrometer 
with 0.1nm spectral resolution. 

Figure 2 shows the measured dispersion for three different angles φ. The data is 
normalized with that measured in sample with unpatterned top dielectric so that the dielectric 
loaded SPPs and/or waveguide modes are normalized to unity and thus do not contribute to 
the data presented here. It may, any case, be noted that the slab waveguide modes for this 
particular structure are expected at 526 nm (1,0), 460 nm (1,1), and 530 nm (0,1) while the 
(1,2) and (0,2) modes are out of range of the experimental wavelength range. 

In addition to the propagating plasmons and the waveguide modes, hybrid photonic-
plasmonic modes are also reported in structures with unpatterned dielectric layer or patterned 
dielectrics (photonic crystals) on metal layers [20, 21]. For the pattern under consideration, 
there are no photonic bandgap regions in the wavelength range of interest. Like in our recent 
report, we calculated all possible grating coupled propagating plasmon modes and their 
dispersion for all measured azimuthal angles [19]. Good match between the measured and 
calculated dispersion of all measured modes including pure grating modes can be seen in Fig. 
2. It may be noted that Fig. 2 shows the SPP dispersion in grey scale plot thus the white 
regions show dips in the transmission spectra corresponding to plasmon excitation. Dashed 
lines are the fits based on a model that calculates the grating allowed propagating plasmon 
modes at the three layer structure [19]. Different SPP modes are labeled by (m,n)x. Use of 
thin metal layer results in coupling of SPP modes at the top and bottom interfaces resulting in 
symmetric and antisymmetric modes. Thus, modes with subscript “A” are anti-symmetric and 
those with “S” are symmetric modes. Modes with subscript “d” are Rayleigh anomalies [19]. 
While for φ ~0° and φ ~90° orientations (not shown) we see the flat dispersion modes, for all 
azimuthal angles we see the clear anti-crossing signatures. In Fig. 2 anti-crossings are marked 
by circles with the zoomed in region shown on the right hand side. In the following we give a 
model to calculate the anti-crossing width and its dependence on the azimuthal angle. 
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Fig. 2. Measured surface plasmon dispersion for different azimuthal angles is shown as grey 
scale plots. (a) φ = 15°, (c) φ = 30° (e) φ = 45°. (b), (d) and (f) show zoomed in region with 
arrows pointing to the anti-crossing site. Contours in lighter shade are the plasmon absorption 
related transmission dips in the spectra. Dashed lines are calculated grating coupled plasmon 
mode dispersions. Different modes are labeled. Anti-crossing sites have been marked by 
circles. 

4. Coupled mode theory for calculating anti-crossing width 

Coupled mode theory is well known for the orthogonal set of waveguide modes, gratings and 
other systems [22, 23]. Briefly, when one of the modes locally modifies the dielectric 
constant then this perturbation induces coupling between different orthogonal modes. In such 
a picture for the slab waveguide geometry (infinite in x- and y-directions and finite in z-
direction) for modes propagating along x-direction, the in-plane and out-of-plane coupling 
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constants are well known. For 1-D metal grating structure, such a model has been applied 
recently [24]. We apply the coupled mode theory to the three layer structure with 2D pattern 
on top by the following procedure. We first calculate the field expressions for the plasmon 
(surface) modes possible in a 3-level structure and get the expressions for coupling constants 
for non-collinearly coupled modes. In the 2nd step, we consider the effect of 2D dielectric 
pattern on top by introducing the relevant k components. By this, we consider only the grating 
coupled plasmon modes and their coupling. 

In the first step, we consider the 3-level structure and the relevant expressions for the TM 
polarization components (E

x
, H

y
, and E

z
) and calculate the coupling constants. For a three 

layer system with a thin metal film sandwiched between dielectric materials, solutions to 
Maxwell’s equations with appropriate boundary conditions at the interfaces for TM polarized 
wave are well known [25]. In the three regions, (in the top dielectric, in the metal and in the 
bottom dielectric), expressions for the three relevant field components (H

y
, E

z
 and E

x
) are in 3 

unknown constants. We simplify these equations and write them in terms of a single constant 
which is solved for by using the power normalization relation, 

 
* *1

( ) cos
4

t t t tE H E H dydz           (1) 

where the integration extends into all the three layers along z-axis and φ is the azimuthal 

angle with respect to the x-axis. In this case, when      
ik xE r A x E y,z e 

     is the total 

field summed over all modes, where Aβ governs the evolution of the field. When two of the 
TM modes are coupled, the in-plane and normal to plane coupling constants are given similar 
to the overlap integrals [26]. 

In the 2nd step, we extend the model to the present structure of a three layer system with a 
2-D shallow grating on top by considering a periodic perturbative correction to the dielectric 
constant in the x-y plane. The periodic function can be Fourier expanded as, 

 yx
inK yimK x

mnmn
Δε(x,y) Δε e e


  (2) 

where Kx = 2π/ax and Ky = 2π/ay with ax and ay being the periodicities in the x and y 
directions, respectively. On substituting this in the field propagation equation, it reduces to, 

 
i(k mK k )xmn β x αα

αβ βmn

dA (x)
i K A (x)e

dx

  

   (3) 

where the transverse and the in-plane coupling constants for two interacting modes, α and β, 
are given by, 

 

 

y

y

inK ymn,t Z* z0
TMα α mn β

inK ymn,xy x* x0
αβ α mn β α β

ωε
K E Δε e E dydz

4
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
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
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
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 (4) 

where φα and φβ are the angles made by the propagation vector of each of the waves with the 
x-axis and E

x
 is the electric field component along the propagation direction of each mode. 

The total coupling constant is the sum of the transverse and in-plane coupling constants. Next 
we calculate the specific k values allowed by the sample and excitation geometry to find the 
coupling between coplanar SPP modes. For the three layer system with appropriate boundary 
conditions when we invoke continuity of the field and its derivative at each interface, we get 
the SPP dispersion relation given by [25], 

 1 1 2 3 3 2
1 2 2

2 3 1 1 2 3

( )
tan h( )

( )

k k k
k t

k k k

  

  


 


 (5) 
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where 2 2 2

0j jk k k   , j = 1, 2, 3. The k values in this are obtained from Eq. (6) below which 

gives the possible momenta allowed by the top 2D dielectric pattern. 

 2 2

0 0

2 2
( sin cos ) ( sin sin )in plane

x y

m n
k k k

a a

 
         (6) 

The first term in the square root is the kx component and the second term is the ky 
component. For given structure (that is, ax and ay) and the measurement geometry (θ, φ), we 
find the kin-plane values satisfying both Eq. (5) and Eq. (6) simultaneously. We calculate the 
coupling constant between two such resonant modes A1(x) and A2(x) given by, 

 

β αi(k k mKx)x

α

-i(k k mKx)x

β

A1(x) A (x)e

A2(x) A (x)e  

 

 




 (7) 

We solve simultaneously the coupled differential equations (given by Eq. (7)) for these 
two modes in order to get the splitting due to the coupling. For perfect phase matching i.e. 
when kα = kβ + mKx, splitting comes out to be Δ = 2Kαβ in the kx component. It may be seen 
from Eq. (4) that the azimuthal angle φ gives control on the coupling strength. 

In Fig. 2, we can observe anti-crossing feature between different modes and that the 
splitting related to the anti-crossing changes with φ. It has been shown earlier that the 
splitting in the energy and momentum could occur due to conservative and dissipative 
coupling, respectively [24]. 

As an example, we consider the case of interaction of (0,2) and (1,1) plasmon modes and 
how the interaction strength changes with φ. The theoretical values of the splitting have been 
calculated using Eqs. (4)-(7) which are compared with the measured values in Table 1 as a 
function of φ. 

Table 1. Comparison of measured and calculated split gap for various azimuthal angles. 

Angle φ 
(degrees) 

Experimental K-splitting Δ ± 

0.002 (µm1) 
Calculated K-splitting 

Δ(µm1) 

15 0.043 0.047 
30 0.149 0.156 
45 0.128 0.133 
60 0.048 0.054 

5. Conclusion 

In summary, we have shown the anti-crossing of grating (2D patterned top dielectric) coupled 
propagating plasmon modes at unpatterned dielectric-metal-dielectric structure due to in-
plane coupling. Coupled mode theory for in-plane propagating plasmons, with the sample and 
measurement geometry considered, shows that the coupling strength and thus the anti-
crossing width are azimuthal angle dependent. A good match with the measured and 
calculated split gap width for in-plane coupled plasmon modes for different azimuthal angles 
shows that the in-plane coupling strength can be controlled by the azimuthal angle. 
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