A review of the profile of endothelin axis in cancer and its management

Running head: endothelin in cancer

Soussan Irani¹, DDS, OMFP
Ali Salajegheh¹, MD, PhD
Robert Anthony Smith¹, BSc (Hons), PhD
Alfred King-Yin Lam¹, MBBS, MD, PhD, FRCPA

¹Cancer Molecular Pathology, School of Medicine and Griffith Health Institute, Griffith University, Gold Coast, Queensland, Australia

Correspondence, page proof and requests for reprints to:

Professor Alfred Lam, Head of Pathology, Griffith Medical School, Gold Coast Campus,
Gold Coast QLD 4222, Australia. a.lam@griffith.edu.au
Telephone +61 7 56780718 Fax +61 7 56780708
Abstract

The endothelins and their associated receptors are important controllers of vascular growth, inflammation and vascular tone. In cancer, they have roles in the control of numerous factors in cancer development and progression, including angiogenesis, stromal reaction, epithelial mesenchymal transitions, apoptosis, invasion, metastases and drug resistance. Also, we consider current information on the role of this signalling system in cancer and examine the state of the current cell, animal and clinical trials utilising endothelin targeted drugs for cancer management. Although targeting the endothelin axis in cell lines and xenografts show some promise in retarding cellular growth, results from limited clinical trials in prostatic cancer are less encouraging and did not offer significant survival benefit. The ability to target both cancer cells and vasculature via endothelin is an important consideration that necessitates the further refining of therapeutic strategies as we continue to explore the possibilities of the endothelin axis in cancer treatment.

Keywords: endothelin; cancer; treatment; clinical trials
1. Introduction

Endothelins (ETs) are a family of genes, composed of sequences producing three 21 amino acid proteins, including endothelin-1 (ET-1), endothelin-2 (ET-2) and endothelin-3 (ET-3) (1). Endothelins derive from precursor proteins after cleavage by a specific metalloproteinase, endothelin converting enzyme (ECE) (2). Endothelin-1 (ET-1) is the predominant isoform in the family whereas isoforms ET-2 and ET-3 are less commonly expressed (1). ET-1 is also the most common circulating form of endothelin and is produced by somatic cells, including endothelial cells, vascular smooth muscle cells as well as many epithelial tumours. Endothelins are able to work in both paracrine and autocrine fashions, by binding to specific cell surface receptors, namely endothelin receptor A (ET\(_A\)R) and endothelin receptor B (ET\(_B\)R) (3). Binding of endothelins to their receptors mediates a number of functions, including vasoconstriction, pain, inflammation and most importantly, cancer (1, 2). The genes for ET-1, ET-2, ET-3, ET\(_A\)R and ET\(_B\)R are located on chromosomes 6, 1, 20, 4 and 13 respectively (4).

Of the two surface receptors for ET-1, ET\(_A\)R has more affinity for ET-1 and ET-2 than for ET-3, whereas ET\(_B\)R has equal affinity to all three ET isoforms. ET\(_A\)R is found on vascular smooth muscle cells while ET\(_B\)R is expressed on endothelial cells, vascular smooth muscle cells, macrophages and platelets (5). Also, both receptors are distributed in the kidney, airway smooth muscle cells and pulmonary vessels (6, 7).

In cancers, there are different expression profiles of the endothelin receptors when compared with normal tissues (Table 1) with ET\(_A\)R/ET\(_B\)R expression ratios differ significantly between cancer types. Regarding the expression level of endothelin receptors, cancers are divided into three categories: (1) cancers that express predominantly ET\(_A\)R such as nasopharyngeal, thyroid, prostate, colon, pancreatic, gastric, renal and breast cancers (8-15); (2) cancers predominately expressing ET\(_B\)R such as melanoma and brain tumours(
glioblastoma and astrocytoma) (16-18) and (3) cancers which express both ET$_A$R and ET$_B$R such as oral, lung, bladder, vulvar and ovarian cancers (19-23).

ET-1 mediates mitogenic effects in a variety of epithelial tumours via ET$_A$R (2) and in non-epithelial tumours such as melanoma by ET$_B$R (24). ET-1 is a mitogen for lymph vessel endothelial cells via ET$_B$R, so ET$_B$R blockade impairs lymphangiogenesis (25). Thus, ET$_B$R expression in cancer is associated with lymphatic invasion (26). Similarly, ET$_A$R overexpression in cancer has been shown to be associated with aggressive biological behaviour (27). This is reflected in the fact that high ET$_A$R expression is more prevalent in cancers with distant metastasis (8). The current review is to study the roles of endothelins in human cancer and the potential roles of them in cancer therapy.

2. The role of stroma in carcinogenesis related to endothelin

Cancer progression depends on the biological characteristics of the malignant cells and their interactions with benign cells and components of the surrounding stroma (28). Solid tumours are mixture of variety of cells; including cancer cells and cancer-associated cells (fibroblasts, macrophages and endothelial cells). All these cells can overexpress ET-1 and its receptors (29, 30).

Fibroblasts suppress preneoplastic epithelial proliferation (31). They are, however, the first cells that are recruited during early carcinogenesis and can be induced to secrete many factors that affect the cancer cells, which can result in increased aggressiveness (32). When they accumulate within the cancer area, they are termed cancer-associated fibroblasts (CAFs), becoming recruited by cancer signalling and have different morphological and functional features from their normal counterparts (33). CAFs have higher proliferative rates and are resistant to apoptosis (34). CAFs are made up of different cells from various sources and local stromal fibroblasts are the major source (35). Once recruited, fibroblasts may
differentiate to myofibroblasts. This process is called fibroblast to myofibroblast transdifferentiation, and is activated by several growth factors such as transforming growth factors-beta (TGF-β), platelet-derived growth factor (PDGF), and basic fibroblast growth factor (bFGF) which are produced by cancer cells (36, 37). CAFs have an essential role in head and neck squamous cell carcinoma progression (38). The presence of myofibroblasts in the tumour stroma is a negative prognostic factor as they increase invasion of cancer cells. These myofibroblasts have a contractile phenotype and increase the proliferative and migratory capacity in cancer. For example, in oral squamous cell carcinoma (OSCC), the presence of myofibroblasts in the tumour stroma is associated with higher risk of invasion and poor prognosis (39). The behaviour of CAFs is also modulated in part by endothelins (40).

In the oral cavity, fibroblasts can amplify the proliferation and migration of cancer cells stimulated by ET-1. In this process, ET-1 stimulates the release of bioactive ligands such as ADAM17 from fibroblasts which bind to epidermal growth factor receptor (EGFR) on cancer cells and then trigger an increase in COX-2 expression (40). It was shown that in head and neck squamous cell carcinomas (HNSCC), the expression of COX-2 and EGFR correlated with a poor prognosis (41). These data suggest different mitogenic peptides may contribute to HNSCC progression and this could be evidence for stromal-epithelial interaction (41, 42). EGFR was also noted to be overexpressed in HNSCC patients in another study (43). Additionally, it was shown that activation of EGFR increases cancer cell migration and invasion due to decreasing cell adhesion (44).

ET-1 stimulates oral cancer cell invasion via both of its receptors, which are expressed by oral fibroblasts (40, 45). Oral fibroblast contractile phenotype is mediated primarily by ET₃R, however ET-1 stimulates oral fibroblasts to promote invasion of oral cancer cells in a paracrine manner (39).
3. Endothelin and angiogenesis in cancer

The tumour microenvironment is different from that of normal tissues. An important difference is that within a cancer, most regions are hypoxic (46). In addition, blood supply in cancer has a different structure from normal vessels (47). For example, vascular channels in cancer are often lined by cancer cells, mimicking a normal vessel, a state called “mimicry”. Alternatively, vessels may be lined by cancer cells and endothelial cells, which is termed “mosaicism” (48, 49). Also, cancer blood vessels are highly permeable and prone to leaking (50). Cancers displaying vasculogenic mimicry proliferate rapidly and are more aggressive with higher risk of metastasis (51, 52). Hypoxia – inducible factor 1-α (HIF-1α) expression around the cancer cell-lined vessels is common and may show that hypoxia is involved in inducing cancer cell-lined vessel formation (53, 54). HIF-1α also regulates vascular endothelial growth factor (VEGF) which has been indicated as an enhancer for formation of cancer cell lined vessels in vitro (54). In oral cancer, HIF-1α expression level was shown to be positively correlated with the aggressiveness of the cancer (55).

ET-1 activates the hypoxia-responsive pathway by inducing stabilization of HIF-1α under normoxic conditions. Then, HIF-1α up-regulates VEGF transcription. HIF-1α and VEGF production can thus be amplified by ET-1 under normoxic or hypoxic conditions (56). In cancer cells, ET-1 can itself be up-regulated due to hypoxia. This may lead to a positive feedback system, whereby ET-1 expression stimulated hypoxic pathways which stimulate further ET-1 expression, maintaining constant vascular expansion regardless of oxygen status. This dual role may explain the link between endothelins and cancer aggression.

4. Endothelin, EMT and metastasis

Epithelial mesenchymal transition (EMT), a cancer hallmark, involves losing epithelial markers such as E-cadherin, and gaining mesenchymal markers, like N-cadherin
and vimentin (57). The blockage of signals and pathways involving in EMT development is critical for reverting EMT and the related biological effects such as drug sensitivity. The ET-1/ ETₐR axis is one of these pathways, having several roles in cancer progression and its overexpression correlates with the advanced stages (29, 57, 58). As part of this association with advanced staging, the ET-1/ ETₐR axis has also been implicated in promotion of EMT as well as cell proliferation, angiogenesis, escape from apoptosis, invasion and metastasis (30). For example, it has been shown that overexpression of ETₐR in nasopharyngeal carcinoma initiates tumour cell metastasis (8).

Low E-cadherin and high vimentin in primary head and neck squamous cell carcinoma was associated with a 100% metastasis rate compared to those primary carcinomas with incomplete EMT markers, which were associated with a metastatic rate of 44% (59). Also, ET-1 and ET-3 have been found to up-regulate N-cadherin in human melanoma cell lines, a factor which is commonly associated with loss of E-cadherin (3). The observed down-regulation of E-cadherin and associated catenin adhesion proteins in melanocytes and melanoma cells are likely connected to the same mechanisms.

In addition to their roles in vasculogenesis, both VEGF and HIF-1α are associated with EMT in some cancers. For example, this phenomenon was observed in cancer cell lines from tongue and hypopharynx (60). VEGF is also correlated with invasion depth and increased risk of metastasis to lymph nodes in patients with head and neck squamous cell carcinoma (61). Due to its role in stimulating both VEGF production and HIF-1α stabilization, this places the endothelin axis at a significant control point for advanced tumour characteristics.
5. The ET-1 axis in chemo-resistance

Drug resistance is a major therapeutic barrier in cancer management. Several lines of evidence show an association between EMT phenotypes and chemoresistance in cancer cells (30). ET-1/ET_{AR} signalling has been demonstrated as having a key role in promoting EMT through regulating the interactions of cancer and microenvironment. ET-1/ET_{AR} knockdown, for example, has been shown to revert EMT phenotype, inhibit invasive behaviour, and increase the effects of chemotherapeutic agents (62). Therefore, it is suggested that ET_{AR} mediated EMT signalling in cancer cells occurs during resistance development. In support of this hypothesis, immunohistochemical analysis of human ovarian cancer tissues showed ET_{AR} overexpression in chemoresistant cancers, suggesting ET_{AR} expression levels as a predictor of chemoresistance in cancer therapies (63). In addition, hypoxia has a critical role in acquisition of the EMT phenotype and chemoresistance onset. It is hypothesized that stimulation of the ET-1/ET_{AR} pathway may mimic a hypoxic environment via HIF-1α activation. On the other hand, ET-1 is itself targeted by HIF-1α, suggesting the presence of a feedback loop in the system. Together, these evidences suggest that the ET-1 axis contributes in signalling pathways triggering EMT, resulting in increased chemoresistance in cancer (63).

6. Endothelin and Cancer Therapeutics

Since endothelin mediated pathways contribute to cancer growth and progression, angiogenesis and metastasis in a variety of cancers, they are thus possible targets for cancer therapeutics. Several drugs are available, derived from both cancer research and the targeting of the endothelin axis for treatment of cardiovascular disease. The ET axis can be targeted by several approaches in cancer, such as endothelin-converting enzyme inhibition and antagonism of ET_{A} and ET_{B} receptors (58). Due to endothelin based effects on bone growth,
ET$_A$R antagonists have been suggested for the treatment of metastatic tumours in bone (64). Endothelin receptor antagonists can reduce angiogenesis by inhibiting endothelial cell mitogenesis. They might also have anti-apoptotic effects for endothelial cells by preventing the production of matrix metalloproteinases from macrophages (65). In normal cells, ET$_B$R regulates ET-1/ET$_A$R axis activities via mechanisms like increasing the production of nitric oxide, promoting ET-1 clearance, triggering apoptosis and blocking cell growth, but the same antagonistic effects are not proved to occur in tumour cells (66). In some cancers, such as breast cancer, ET$_B$R initiates invasion but in other cancers like prostate cancer, ET$_B$R absence results in ET-1 increasing due to reduced endothelin clearance (67, 68). Endothelin-converting enzyme is another potential therapeutic target, since it is required for the generation of active ET-1 peptides but a significant consideration for the use of this approach is that different isoforms of ECE-1 might have opposing effects (69).

The effects of endothelin antagonists in human cancer cell lines have been tested in multiple studies, and a summary of these can be seen in Table 2. The most commonly used antagonist in such studies is atrasentan. Atrasentan (ABT-627) is an orally bioavailable non-peptide, small molecule competitive ET inhibitor acting via decreasing the binding affinity of ET$_A$R for ET-1 (81). Atrasentan inhibited cell proliferation and increased apoptosis in nasopharyngeal cancer cell lines (8). In addition, atrasentan was shown to reduce cell invasion in breast cancer cell lines (70). In ovarian cell lines, atrasentan was found to increase apoptosis and inhibit cell proliferation and VEGF expression (71). Furthermore, it was found to lead to cell death in prostatic cancer (73).

The second most widely used ET inhibitor used in oncology trials is zibotentan (ZD4054), an orally bioavailable ET$_A$R antagonist (63, 74). It is the only ET antagonist which targets ET$_A$R without decreasing ET$_B$R expression level. Zibotentan has been found to inhibit cell proliferation and tumour growth in human ovarian carcinoma cell lines (7), but
not in breast cancer cell lines (75). In addition, zibotentan was found to revert the EMT phenotype, inhibit invasiveness and restore drug sensitivity in ovarian cancer cells (30). It reduces angiogenesis and also can reduce ET-1-induced epidermal growth factor receptor (EGFR) transactivation (76). Zibotentan combined with the anti-mitotic chemotherapy agents paclitaxel or docetaxel enhances apoptosis compared with either agent alone (77).

BQ123 is an ETαR antagonist and BQ788 is selective ETβR antagonist, which are often used in combination. Combination therapy with BQ123 and BQ788 were demonstrated to suppress growth of oral squamous cell carcinoma and oesophageal squamous cell carcinoma (78). In addition, these drugs in combination blocked the conversion of matrix metalloproteinases to active forms resulting in inhibition of cell invasiveness (79). On its own, BQ123 was found to inhibit the proliferation of colorectal and lung cancer cell lines (80, 81).

Bosentan is an endothelin receptor antagonist, which inhibits ET-1 action through a combination of interference with both ETα and ETβ receptors (82). It has been found to induce cell death in human melanoma cell line (83).

These ET inhibitors have been shown to work on cancers in several animal xenograft models, the results of which are summarised in Table 3. In ovarian cancer, treatment with ET-1 antagonists such as atrasentan or zibotentan could inhibit 65% and 69% of the cancers in animals (7, 72). Mai et al. showed a 58% decrease in nasopharyngeal cancer volume by treating with Atrasentan (8). Also, Asham et al. noted a significant reduction in large bowel cancer load after treatment with the ET system antagonist, BQ123 (84). In breast cancer, Smollich et al. showed that zibotentan significantly decreased tumour volume (75). In addition, Rosano et al. had done an experience on complete inhibition of the proliferation of Kaposi’s sarcoma by using A-182086, an ETα/β receptor antagonist (79).
In some cancers, the combination of one endothelin receptor antagonist with an anticancer drug has shown good results as a useful therapeutic strategy. For example, ET$_B$R antagonism can improve the efficacy of paclitaxel on breast cancer in rats (7). In *in vitro* studies, using ET$_A$R antagonists such as zibotentan combining with paclitaxel or the DNA crosslinking chemotherapy agent cisplatinum showed an increase in antitumor activity in ovarian cancer (77, 85). ET-1 may modulate the resistance pathways during treatment with cytotoxic therapies via several mechanisms, though it is likely to be that abrogation of hypoxia is the main factor that can be blocked by ET$_A$R (86).

Despite the promising results in cell lines and animal studies, clinical trials results were disappointing. The bulk of clinical trials to date have taken place in prostate cancer. The 2 largest studies were based on 809 and 312 patients using atrasentan and zibotentan respectively (87, 88). In these studies, the treatment with endothelin antagonists showed no improvement in prognosis of patients with prostatic adenocarcinomas. A clinical trial was also performed in which bosentan was used to treat metastatic melanoma. The result of this trial was also disappointing, with only 6 of the 32 patients with the disease being stabilized by the treatment (89). Thus, more clinical trials may be needed for assessing the usefulness of the endothelin based treatments.

Endothelin receptors antagonists used in these trials have been noted to have some side effects. For example, liver toxicity was observed in 2-18% of the patients treated with bosentan (90). The most common side effects with atrasentan therapy were headache, rhinitis, and peripheral oedema (91).

7. Endothelins and bone formation

ET-1 stimulates new bone formation which can be blocked by ET$_A$R antagonists, but not ET$_B$R antagonists (92). In the late stage of prostate cancer and breast cancer, osteoblastic
activity is stimulated by factors secreted by cancer cells resulting in osteoblastic metastases, leading to the development of drugs targeting this process (93). A study on prostate cancer cell lines showed that the presence of both ET-1 and an anti-ET-1 antibody blocked osteoclastic bone resorption (94). Osteoblasts have a high affinity for ET_AR and ET-1 (95, 96). In animal studies, selective ET_AR antagonist treatment decreased new bone formation (97, 98). Additionally, atrasentan prolonged the time to the progression threshold levels of bone alkaline phosphatase; a biomarker of disease progression, by nearly twice compared with placebo in prostate cancer patients (505 days versus 254 days), though it did not reduce overall risk of progression (88).

8. Correlations with vascular endothelial growth factor

The current anti-angogenesis therapy focus on the action of vascular endothelial growth factor (VEGF). The prognostic and regulatory roles of VEGF have been extensively studied (99-103). In fact, VEGF was shown to collaborate with ET-1 and ET_AR in cancer angiogenesis (104-106). Combination therapies targeting both VEGF and endothelins may be a potent control of angiogenesis.

9. Conclusion

In conclusion, while the ET system has plays an important role in the control of angiogenesis, it is not the only pathway that is involved in the control of angiogenesis. As demonstrated by the modest results of clinical trials to date, additional strategies may be needed to properly utilise this target for cancer treatment. Moreover, endothelin receptor antagonists may have different effects on different cells, depending on the interaction between the stroma and tumour cells in cancer progression, along with the potential action of cancer stem cells. The mechanism of action in the clinical settings may be different from in
xenograft models. In xenograft model, due to shortened duration of cancer development, it is possible that interactions between cancer cells and stroma and cancer stem cells may not occur. This might explain the better endothelin antagonist effect on cell lines and xenografts than in clinical trials. The association between ET-1/ET\textsubscript{A}R axis in both cancer progression and resistance to chemotherapy or radiotherapy, improves our understanding of the pathway and the mechanisms of drug resistance associated with it could be useful in cancer therapy. The combination of ET\textsubscript{A}R antagonists with anti-cancer drugs has been shown to be relatively effective and can prevent EMT-related signalling. This allows both cancer cells and vasculature to be targeted. This is an important consideration, as both are involved in cancer progression. The ability of cancer cells to find alternative growth signalling pathways, also needs to be considered. Further refining of combined therapeutic strategies is necessary as we continue to explore the possibilities of the endothelin axis in cancer treatment.

Acknowledgements

The authors would like acknowledgment all the staff and students in the Cancer Molecular Pathology Team in Griffith University in the support.

Conflict of interest

There is no conflict of interest in submitting this manuscript.

Role of the funding source

The authors would like to acknowledge the funding from Griffith University in supporting the first author in her studentship.

Vitae

Soussan Irani is an oral pathologist and a PhD student.

Ali Salajegheh is a lecturer in pathology and has a research interest in angiogenesis.

Robert Anthony Smith is a post-doctoral research fellow and laboratory manager. He has published more than 30 peer-reviewed articles in cancer research.

Alfred King-Yin Lam is Chair Professor and Head of Pathology who have published approximately 250 peer-reviewed articles in cancer research.
Table 1: Summary of ET receptors expression levels in different cancers.

<table>
<thead>
<tr>
<th>Cancer type (Reference)</th>
<th>$\text{ET}_A\text{R expression}$</th>
<th>$\text{ET}_B\text{R expression}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nasopharyngeal cancer (8)</td>
<td>increased</td>
<td>decreased</td>
</tr>
<tr>
<td>Thyroid cancer (9)</td>
<td>increased</td>
<td>decreased</td>
</tr>
<tr>
<td>Prostate cancer (10)</td>
<td>increased</td>
<td>decreased</td>
</tr>
<tr>
<td>Colon cancer (11)</td>
<td>increased</td>
<td>decreased</td>
</tr>
<tr>
<td>Pancreatic cancer (12)</td>
<td>increased</td>
<td>decreased</td>
</tr>
<tr>
<td>Gastric cancer (13)</td>
<td>increased</td>
<td>decreased</td>
</tr>
<tr>
<td>Renal cancer (14)</td>
<td>increased</td>
<td>decreased</td>
</tr>
<tr>
<td>Breast cancer (15)</td>
<td>increased</td>
<td>decreased</td>
</tr>
<tr>
<td>Melanoma (16)</td>
<td>decreased</td>
<td>increased</td>
</tr>
<tr>
<td>Glioblastoma (17)</td>
<td>decreased</td>
<td>increased</td>
</tr>
<tr>
<td>Astrocytoma (18)</td>
<td>decreased</td>
<td>increased</td>
</tr>
<tr>
<td>Oral cancer (19)</td>
<td>increased</td>
<td>increased</td>
</tr>
<tr>
<td>Lung cancer (20)</td>
<td>increased</td>
<td>increased</td>
</tr>
<tr>
<td>Bladder cancer (21)</td>
<td>increased</td>
<td>increased</td>
</tr>
<tr>
<td>Vulvar cancer (22)</td>
<td>increased</td>
<td>increased</td>
</tr>
<tr>
<td>Ovarian cancer (23)</td>
<td>increased</td>
<td>increased</td>
</tr>
</tbody>
</table>
Table 2 Results of different types of ET antagonists in human cancer cell lines

<table>
<thead>
<tr>
<th>Type of cell line (Reference)</th>
<th>Antagonist</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nasopharyngeal carcinoma (8)</td>
<td>Atrasentan</td>
<td>growth inhibition by 38% and cell death</td>
</tr>
<tr>
<td>Breast adenocarcinoma (70)</td>
<td>Atrasentan</td>
<td>reduced cell invasion by 28%</td>
</tr>
<tr>
<td>Ovarian adenocarcinoma (71)</td>
<td>Atrasentan</td>
<td>significant increased apoptosis (15-17%)</td>
</tr>
<tr>
<td>Prostate adenocarcinoma (73)</td>
<td>Atrasentan</td>
<td>tumour cell death (18% - 60%)</td>
</tr>
<tr>
<td>Ovarian adenocarcinoma (7)</td>
<td>Zibotentan</td>
<td>significant increased apoptosis (13-39%)</td>
</tr>
<tr>
<td>Colorectal adenocarcinoma (80)</td>
<td>BQ123</td>
<td>decreased cell proliferation</td>
</tr>
<tr>
<td>Lung adenocarcinoma (81)</td>
<td>BQ123</td>
<td>decreased cell proliferation</td>
</tr>
<tr>
<td>Oral squamous cell carcinoma (19)</td>
<td>BQ123 and BQ788</td>
<td>decreased cell proliferation</td>
</tr>
<tr>
<td>Oral squamous cell carcinoma (78)</td>
<td>BQ123 and BQ788</td>
<td>suppression of cell growth</td>
</tr>
<tr>
<td>Oesophageal squamous cell carcinoma (78)</td>
<td>BQ123 and BQ788</td>
<td>suppression of cell growth</td>
</tr>
<tr>
<td>Kaposi’s sarcoma (79)</td>
<td>BQ123 and BQ788</td>
<td>blocking the conversion of MMPs to active form</td>
</tr>
<tr>
<td>Melanoma (83)</td>
<td>Bosentan</td>
<td>induced cell death</td>
</tr>
</tbody>
</table>
Table 3: The effects of endothelin system antagonists on xenograft models

<table>
<thead>
<tr>
<th>Type of cancer cell line</th>
<th>antagonist</th>
<th>Effects in the animals with cancer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kaposi’s sarcoma (79)</td>
<td>A-182086</td>
<td>Complete inhibition of cell growth</td>
</tr>
<tr>
<td>Ovarian carcinoma (72)</td>
<td>Atrasentan</td>
<td>65% inhibition of tumour growth</td>
</tr>
<tr>
<td>Nasopharyngeal carcinoma (8)</td>
<td>Atrasentan</td>
<td>58% decrease in tumour volume</td>
</tr>
<tr>
<td>Ovarian carcinoma (7)</td>
<td>Zibotentan</td>
<td>69% inhibition of tumour growth</td>
</tr>
<tr>
<td>Breast carcinoma (75)</td>
<td>Zibotentan</td>
<td>decreased tumour volume</td>
</tr>
<tr>
<td>Colon carcinoma (84)</td>
<td>BQ123</td>
<td>significant reduction in tumour load</td>
</tr>
</tbody>
</table>
References

100. Yu XM, Lo CY, Lam AK, Lang BH, Leung P, Luk JM. The potential clinical relevance of serum vascular endothelial growth factor (VEGF) and VEGF-C in recurrent papillary thyroid carcinoma. Surgery. 2008;144: 934-40;

