
Author
Wang, Yun, Zhao, Huijun

Published
2014

Journal Title
Physical Chemistry Chemical Physics

DOI
https://doi.org/10.1039/c4cp00595c

Copyright Statement
Copyright 2014 Royal Society of Chemistry. This is the author-manuscript version of this paper. Reproduced in accordance with the copyright policy of the publisher. Please refer to the journal website for access to the definitive, published version.

Downloaded from
http://hdl.handle.net/10072/64833
Reply to “Comments on Density functional theory analysis of structural and electronic properties of orthorhombic perovskite CH$_3$NH$_3$PbI$_3$” by J. Even et al.

Yun Wang, and Huijun Zhao,

Perovskite CH$_3$NH$_3$PbI$_3$ materials were theoretically investigated using density functional theory (DFT) since they are an important component in novel perovskite-based solar cells. One of the challenges is to accurately describe their electronic structures. As stated in our original paper, the accidental agreement of band gap energies between the traditional DFT calculations and the experimental measurement is “fortuitous”. The disadvantage of traditional DFT can be partially solved by the recent progress made by Even et al. with the consideration of spin-orbital coupling and many-body self-energy corrections. However, the C-N bonding mechanisms in CH$_3$NH$_3$ cations cannot be deduced from the Bader charge analysis.

We appreciate Even’s comments on our recent work entitled “Density functional theory analysis of structural and electronic properties of orthorhombic perovskite CH$_3$NH$_3$PbI$_3$”. We would also like to thank the editor of Physical Chemistry Chemical Physics for giving us an opportunity to present our views.

Even et al. made three key points in their comments. One is related to the effects of spin-orbital coupling (SOC) and many-body self-energy corrections. Due to the cancellation between these effects in the calculations, the bandgap energies obtained from our calculations were very close to the experimental values, which could be misinterpreted by a non-DFT-expert. To avoid such effect, we have stated in our original paper that “Previous DFT studies demonstrate that the bandgap energies of solid-state semiconductors are seriously underestimated by using pure DFT functionals. In some cases, the deviation is about 30%. This is because good band gaps are not normally to be expected from functionals of the types tested here, which do not have hybrid characters. This successful match is likely to be fortuitous, which is also observed in other Pb-based materials.” We hope such a statement could provide non-DFT-experts a waning regarding the problems associated with DFT calculations. While we are currently working on the accurate electronic structures of Pb-based perovskite materials using the methods beyond traditional DFT, we are glad to know that the considerations of the effects of SOC and many-body GW self-energy correction by Even et al. have improved the calculation accuracy. Their results are a great supplement to ours. We believe that the recent progress made by Even et al. will stimulate further theoretical studies on the precise understanding of electronic structures of Pb-based materials.

Another key point raised is why we did not focus on the tetragonal phase as it is more important for the practical applications. The reasons we focused on the orthorhombic phase in this study is from a theoretical perspective. Firstly, the temperature for traditional DFT calculations is 0K. At low temperature, the orthorhombic phase of perovskite CH$_3$NH$_3$PbI$_3$ is more stable from the XRD experiments. The studies on the orthorhombic perovskite CH$_3$NH$_3$PbI$_3$ enable us to do meaningful comparison between the theoretical and experimental data. Secondly, the structural change from orthorhombic phase to tetragonal or cubic phase at high temperature are experimentally demonstrated to relate to the fast dynamic movement of CH$_3$NH$_3$ cations within the Pb-I framework. As a result, the rationalization of atomic structures of tetragonal perovskite CH$_3$NH$_3$PbI$_3$ materials is currently difficult using traditional DFT calculations because the locations of CH$_3$NH$_3$ cations in this phase are thermally disordered. Therefore, we targeted the orthorhombic phase in this study, as suggested in the title.

The third key point raised is about the Bader charge analysis. According to Bader’s theory, the atoms are separated from each other at the place where the charge density reaches a minimum between atoms. After the atoms are divided, the charge distribution can be analysed. Based on its definition, Bader charge analysis method cannot be used to give direct evidence for the bonding mechanisms between atoms. The suggestion made by Even et al. to analyse the structural properties of CH$_3$NH$_3$PbI$_3$ crystals to understand the bonding mechanisms is helpful. Based on our optimized structures, the C-N bond
length in orthorhombic CH$_3$NH$_3$PbI$_3$ crystals is 1.49 Å, which is close to that in CH$_3$NH$_2$ molecules (1.47 Å). Thus, there is no C-N bonding break in CH$_3$NH$_3^+$ cations. The atomic structures of CH$_3$NH$_3^+$ cations can be found in Fig 1 in our original paper, which show that the CH$_3$ moiety is still tetrahedral and not planar. The optimized structure of orthorhombic perovskite CH$_3$NH$_3$PbI$_3$ materials is given in the supplementary information.

Notes and references

a Centre for Clean Environment and Energy, and Griffith School of Environment, Griffith University, Gold Coast, QLD 4222, Australia; E-mail: h.zhao@griffith.edu.au

b Key Laboratory of Materials Physics, Hefei Key Laboratory of Nanomaterials and Nanotechnology, Institutes of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, China