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ABSTRACT 

 

Locating sequences compatible to a protein structural fold is the well-known inverse protein-folding problem. While 

significant progress has been made, the success rate of protein design remains low. As a result, a library of designed 

sequences or profile of sequences is currently employed for guiding experimental screening or directed evolution. 

Sequence profiles can be computationally predicted by iterative mutations of a random sequence to produce energy-

optimized sequences, or by combining sequences of structurally similar fragments in a template library. The latter 

approach is computationally more efficient but yields less accurate profiles than the former because of lacking tertiary 

structural information. Here we present a method called SPIN that predicts Sequence Profiles by Integrated Neural 

network based on fragment-derived sequence profiles and structure-derived energy profiles. SPIN improves over the 

fragment-derived profile by 6.7% (from 23.6% to 30.3%) in sequence identity between predicted and wild-type 

sequences. The method also reduces the number of residues in low complex regions by 15.7% and has a significant 

better balance of hydrophilic and hydrophobic residues at protein surfaces. The accuracy of sequence profiles obtained 

is comparable to those generated from the protein design program RosettaDesign 3.5. This highly efficient method for 

predicting sequence profiles from structures will be useful as a single-body scoring term for improving scoring 

functions used in protein design and fold recognition. It also complements protein design programs in guiding 

experimental design of the sequence library for screening and directed evolution of designed sequences. The SPIN 

server is available at http://sparks-lab.org. 

 

1 INTRODUCTION  

 

Designing a protein sequence that would fold into a given structure is the well-known inverse-protein folding problem. 

Solving this problem will not only improve our fundamental understanding of the interactions responsible for protein 

folding and structure prediction but also advance our capability of designing novel proteins with existing function 

improved or with completely new functionality. 

 



Significant progress in protein design has been made in recent years with a number of designed sequences successfully 

validated experimentally in terms of their structures and their functions 1-11. These designs typically start from random 

protein sequences and iteratively optimize an energy score via mutations until the scoring function reaches a minimum. 

However, existing scoring functions for protein design are not yet accurate enough to produce high success rates 12-16. 

In fact, designed sequences usually do not contain wild-type sequences as a part of the solution 17,18. Low success rate 

of single sequence design has led to current effort in employing multiple computationally predicted sequences (or 

sequence profiles) to build a sequence library for large-scale experimental screening of desirable properties 19-23 or for 

directed evolution 14,24. Sequence or sequence profiles obtained from protein design programs require solving a NP-hard 

combinatorial optimization problem25. Thus, it is time consuming to produce sequence profiles based on multiple runs. 

 

In addition to above energy-based methods, sequence profiles can also be predicted by employing local fragment 

structures 26. In this approach, fragment structures from a target structure are compared to the fragment structures from 

a template library of known protein structures. Sequences of those template fragment structures with high structural 

similarity to target fragments are obtained to produce the sequence profile for the entire target structure by a sliding-

widow approach. Sequence profiles generated from fragment structures and/or from protein design programs have been 

found useful for enhancing the ability of recognizing structural similarity in the absence of sequence similarity (fold 

recognition) by matching a sequence profile of a query not only with the sequence profile of a template sequence but 

also the sequence profile predicted from a template structure 26-28. More recently, sequence profiles derived from 

fragment structures were employed as a single-body energy term for improving the energy function of protein design 17. 

Predicting sequence profiles by fragments only needs to perform pairwise structural alignment between short fragments 

and, thus, is computationally much more efficient than solving the combinatorial optimization problem required by an 

energy-based design. However, sequence profiles derived from short fragments are dominated by local structural 

information. That is, they are only useful for capturing the interactions responsible for local structure formation, but do 

not account for non-local interactions (interactions between structural but not sequence neighbors) that are responsible 

for the stability of tertiary structure. As a result, fragment-derived profiles are not as useful as the profiles derived from 

energy optimization for using in experimental screening or directed evolution. 

 



In this paper, we test the idea of using neural network (NN) to improve fragment-derived sequence profiles by 

incorporating a mean-field like non-local interaction. We found that an energy-based nonlocal feature makes a 

significant improvement in the quality of sequence profiles over that from fragment structural alignment in terms of 

sequence identity to wild-type sequences, fraction of hydrophilic residues, recovery rate of wild-type residue types, 

precision of predicted amino-acid residue types, distribution of amino-acid residue types, and fraction of low 

complexity regions. The quality of predicted sequence profiles is comparable to the profiles generated from the protein 

design program RosettaDesign 3.529 based on several measures. This NN-derived profile is complementary to existing 

energy-based techniques for identifying sequences that are compatible with a desired structural fold. It should be also 

useful as a single-body term for improving the fold-recognition scoring function or protein-design energy function as 

fragment-based profiles did17,26-28. 

2 METHODS  

 

2.1 Data sets 

To perform training and test and avoid over-training, we need three datasets: structural templates, a dataset for 

training the neural network, and a dataset for independent test. For the template library, we started from a non-

redundant protein set with resolution better than 2.0 Å, pair-wise sequence identity of less than 30% from the PISCES 

server 30 downloaded on October 17, 2008. This set contains 4803 protein chains that were further reduced to 2528 

chains after removing chains with missing residues or backbone atoms. We further cleaned the dataset by removing 

proteins (1) complexed with DNA or RNA, (2) whose sequence contain un-recognized residue types; and (3) whose 

secondary structures were not defined by DSSP 31. This leads to a total of 2282 protein chains that are employed as our 

templates for fragment structures (TL2282).  

 

For training and test sets, we started from the new non-redundant protein set with resolution better than 3.0 Å, pair-

wise sequence identity of less than 30% from the PISCES server30 on April 28, 2013. This set contains 10460 protein 

chains. We cleaned the dataset using the same criteria above and removed all chains with >30% sequence identity to the 



proteins in the template library (TL2282). This leads to a dataset of 2032 proteins. We randomly selected 500 proteins 

for independent test (TS500) and utilized the remaining proteins for training and ten-fold cross validation (TR1532).    

 

From TS500, we randomly selected 50 small proteins with sequence length between 60-200 and fraction of surface 

residue between 0.5-0.8 (TS50). This small dataset is used to compare the sequence profiles generated from our neural-

network approach with those generated from RosettaDesign, one of the most widely used programs for protein design29. 

A small dataset is used because it is computationally intensive to produce sequence profiles by designing 1000 

sequences utilizing RosettaDesign. These 50 proteins (PDB ID plus chain ID) are 1eteA, 1v7mV, 1y1lA, 3pivA, 1or4A, 

2i39A, 4gcnA, 1bvyF, 3on9A, 3vjzA, 3nbkA, 3l4rA, 3gwiA, 4dkcA, 3so6A, 3lqcA, 3gknA, 3nngA, 2j49A, 3fhkA, 

2va0A, 3hklA, 2xr6A, 3ii2A, 2cayA, 3t5gB, 3ieyB, 3aqgA, 3q4oA, 2qdlA, 3ejfA, 3gfsA, 1ahsA, 2fvvA, 2a2lA, 

3nzmA, 3e8mA, 3k7pA, 3ny7A, 2gu3A, 1pdoA, 1h4aX, 1dx5I, 1i8nA, 2cviA, 3a4rA, 1lpbA, 1mr1C, 2xcjA, and 

2xdgA. 

 

 

To remove all information from wild-type sequences in their structures, amino-acid residue types in the PDB 

structural files of all datasets were labeled as ALA (alanine). All native positions of   C! atoms were removed and 

replaced by the positions of pseudo  C! atoms based on standard 1.54 Å for the C! − C! bond length, 109.538° for the 

N − C! − C! bond angle and 109.468° for the C − N − C! − C!  dihedral  angle. All protein structures are not energy 

minimized prior to removal of original side chains to avoid possible “memory” of side chains by the energy function 

used in minimization. The latter could lead to artificially high sequence identity to wild type sequences. 

 

2.2 Neural network 

We employed the same neural-network method developed for sequence-based continuous-value prediction of backbone 

torsion angles and residue solvent accessibility 32-34. It contains a two-hidden-layer neural network. Each of the two 

hidden layers contains 51 hidden neurons and one bias. We employed a bipolar activation function given by f (x) = 

tanh(αx), with α = 0.2. Back propagation with momentum was applied to optimize the weights. The learning rate and 

momentum were set to 0.001 and 0.4, respectively. 



2.3 Input features 

 

Local features. There are two types of local features. The first one is backbone torsion angles (φ and ψ) at a given 

sequence position. The second one is the fragment-derived sequence profile. The method for obtaining the fragment-

derived sequence profile was described in 17. Briefly, 5-residue fragments (from i to i+4; i=1, 2, …, L-4) in a target 

structure of sequence length L are structurally compared to all fragments in the same length located in the structural 

template library (TL2282). The sequences of most structurally similar fragments (in RMSD) are utilized to calculate 

probability of a residue type at each sequence position (sequence profile). For each sequence position, this profile has a 

dimension of twenty for 20 residue types.  

 

Energy-based non-local features. We introduced an energy-based non-local feature as follows. For a given sequence 

position, we built the full side-chain based on the rotamers of each amino-acid residue type, one rotamer at a time while 

assuming that the residue type at all other positions is alanine. The total interaction energies of the residue of 20 residue 

types in all rotameric states with all other alanine residues are calculated separately. We record only the lowest total 

energy in all rotameric states of each residue type at a given sequence position plus the energies of six most frequent 

rotamers (or less if a residue type has less than six rotamers). The total number of features is 114 

(=7×13+4×4+3×1+2×2) because four residue types have only three rotamers, Proline has two, and Glycine and 

Alanine have one conformation]. Here, the bbdep02 rotamer library 35 and a knowledge-based energy function based 

on the distance-scaled finite-ideal gas reference state (DFIRE) 36,37 were employed. 

 

Sliding window and normalization of input values. In addition to the features from the current position (i), we also 

include the features from two sequence neighbors (i-1 and i+1). That is, a window size of 3 is employed. We utilized 

this window size because a larger window size did not improve our prediction. The values of all input features were 

linearly transformed to [-1, 1]. The total number of input features is 136×3 (136=2+20+114). 

2.4 Output.  

The output layer contains 20 nodes with each node representing one amino-acid residue type. In other words, the neural 

network outputs 20 probability values for 20 amino acid residue types for each sequence position. We trained the neural 



network to make two types of predictions. The first one is to predict wild-type sequences where each sequence is 

represented by a 20×L matrix. That is, each sequence position has a 20-dimension vector for 20 amino-acid residue 

types. The value is 1 if a particular residue type is located at the sequence position and -1 for all other dimensions. The 

second one is to predict position-specific substitution matrix (PSSM) generated by PSIBLAST38. This prediction takes 

into account the fact that more than one sequence can have the same structure. In this case, a 20×L matrix generated 

from PSIBLAST38 is used as the target for training and prediction. 

2.5 Ten-fold cross validation and independent test.  

To examine the accuracy of prediction, we performed 10-fold cross validation on TR1532. The dataset is randomly 

divided into 10 equal parts. Nine were used for training and the remaining was for testing. This process was repeated 10 

times, once for each of the 10 parts. To prevent over-training, a random over-fit protection set with 5% of the training 

set is excluded from training and is used as a small test set for determining the stop criterion for neural-network weight 

optimization.   We did 10 fold cross-validations for five times with different random seeds. The consensus of predicted 

amino-acid types of 5 independent runs is employed to calculate the sequence identity to wild-type sequences. For 

independent test, TR1532 was employed for training and TS500 was for test only. 

2.6 Performance evaluation 

The objective function in the neural network is to minimize the difference between predicted and actual values (20-

dimension 1 and -1 vector or PSSM). The performance, on the other hand, is assessed by several different measures. 

One is the sequence identity between predicted sequence and the wild-type sequence, which is equal to the number of 

correctly predicted residue types divided by the total number of residues.  We also calculated precision and recovery 

rate of each residue type where precision is the fraction of correctly predicted residues for a given residue type in the 

number of predicted residues of that type. Recovery rate is the fraction of correctly predicted residues of a given residue 

type in the number of wild-type residues of that type. 

Another measure of performance is mean square error. In order to calculate the mean square error between PSSM and 

a predicted profile, the predicted profile (fragment and single-sequence NN-based approaches, or RosettaDesign) was 

transformed to a pseudo PSSM by log 𝑃!" , where 𝑃!" is the probability for given residue type i in position j. Both 

pseudo PSSM and PSSM are normalized from 0 to 1. The mean square error is obtained by calculating the difference 

between PSSM and the best linear fit of the pseudo PSSM to the PSSM. 



2.7 RosettaDesign 

RosettaDesign 3.5 was downloaded from https://www.rosettacommons.org/software/. Proteins are designed based on a 

fixed backbone structure with the command “fixbb.linuxgccrelease -s  example.pdb -resfile example.resfile -ex1  -ex2 -

nstruct 100 -database ROSETTA_DATABASE  -linmem_ig 10 -extrachi_cutoff  0 -ignore_unrecognized_res -no_opth 

false -skip_set_reasonable_fold_tree -no_his_his_paire -score:weights score12prime.wts”. 1000 sequences were 

designed by optimizing all residues simultaneously for each protein in order to obtain a sequence profile. All positions 

are set as ALLAA in example.resfile. All structures are not minimized prior to optimization for design. 

3 RESULTS 

 

3.1 Sequence prediction 

 

One way to measure the accuracy of design is to estimate the sequence identity between designed sequence and the 

original wild-type sequence. The fragment-based approach yields an average sequence identity of 23.6% for TR1532, 

which is consistent with 24% obtained by using other databases 17. For the neural-network (NN) based approach, we 

can predict the “best” sequence based on the residue type that has the highest predicted value at each sequence position. 

We found that neural-network based prediction made a 7.1% improvement from 23.6% to 30.7% over the fragment-

based approach. We can also evaluate the improvement based on top 2 predicted residue types. A correct prediction is 

made if one of the top 2 predictions matches to the wild-type sequence. The improvement is 8% from 36.3% by the 

fragment-based approach to 44.3% by the neural-network-based approach. For the independent test (TS500), the 

improvement is essentially identical at 7.1% (23.6% to 30.7%) for top 1 and 7.7% (36.1% to 43.8%) for top 2 

matching, respectively. 

 

To examine the relative importance of different features, we evaluated different combinations of three features 

employed here. Because we would like to compare against the fragment-based approach, we utilized the structure 

fragment profile as a base feature and added torsion angles or the energy-based profile for comparison.  We found that 

adding the energy-based profile improves the sequence identity to wild-type sequences by 6% while adding the dihedral 



angles adds 1.4% only. In addition, using the energy-based profile alone can yield an average sequence identity of 26% 

to wild type sequences which is 2% higher than the fragment-based profile. These results highlight the importance of 

nonlocal interaction energy function in neural-network learning. 

 

Figure 1 compares average sequence identities as a function of protein lengths (number of amino acid residues). The 

bins for protein lengths are [0-100), [100-200), and etc. The last bin contains all proteins with greater than 700 amino 

acid residues for TR1532 and greater than 600 residues for TS500. The figure reveals a consistent improvement of the 

neural-network based prediction over the fragment-based prediction for different sizes of proteins. Moreover, the result 

from the independent test is nearly indistinguishable from the ten-fold cross validation, highlighting the robustness of 

our training method. 

 

Because it is more difficult to design regions exposed to water, it is useful to examine how sequence identity will 

change for proteins with different fractions of surface residues. A residue is defined as on surface if its solvent 

accessible surface is greater than or equal to 20% of its reference value. All proteins were divided into 12 bins 

according to fractions of surface residues ([0.35-0.4), [0.4, 0.45), [0.45, 0.5), [0.5, 0.55), [0.55, 0.6), [0.6, 0.65), [0.65, 

0.7), [0.7, 0.75),[0.75-0.8), [0.8-0.85), [0.85-0.9) ,[0.9,1]).  Because the dataset TS500 does not have enough data to 

form the bin [0.9,1], we combined those proteins to the bin [0.85-0. 9). We started from a fraction of 0.35 because all 

proteins contain at least 35% surface residues.  Figure 2 displays the average sequence identity as a function of the 

fraction of surface residues in a protein. Consistent with other methods 17,18, sequence identities between predicted and 

actual sequences are lower for proteins with higher fraction of surface residues. Again, there is a consistent 

improvement of 2-10% by the neural-network-based method over the fragment-based method regardless the value of 

the fraction of the surface residues. We further observed the consistency between the ten-fold cross validation and the 

independent test. 

 

We calculated the recovery rate and precision for each residue type. As shown in Figure 3A, the NN-based approach 

improves over the fragment-based approach in 15 out of 20 residue types for both precision and recovery rate. We 

noted that glycine (G) and proline (P) are the most accurately predicted residue types because of their unique backbone 

conformations. Recovery rates for R (Arg), H (His), Q (Glu), C (Cys), M (Met), and W (Trp) for both approaches are 



very low. This behavior is likely due to low occurrence of residue types such as W, M, C, and H in wild-type 

sequences. Figure 3B compares the occurrence of 20 amino acid residue types in wild-type sequences with those in 

predicted sequences. We calculated the Kullback–Leibler divergence of residue distribution between NN approach and 

wild-type and that between fragment-based approach and wild-type sequences. The former is 0.18 and the latter is 0.31. 

That is, the NN approach yields a distribution much closer to that of wild-type sequences than the fragment-based 

approach except for residue E (Glu) where the NN approach over-predicts it. We found that the NN approach over-

predicts E because it often mis-predicts R and Q as E. 27.8% Q residues were predicted as E, 13.6% as K and 11% as 

L.  20.8% of R residues were predicted as E, 15.3% as K and 12.2% as L.  The confusion between R and Q (both 

under-predict) with E and K (both over-predict) are likely due to the fact that all of them are hydrophilic residues with 

relatively long side-chains. 

  

Table I further examines sequence identity in different secondary structure and in surface regions (only independent 

test results shown as they are essentially same as ten-fold cross validation). Interestingly, coil regions in protein 

backbones have the highest identity (30% by fragment and 35% by neural network), compared to 26% in helical or 

25% in sheet regions. This is largely because of high occurrence of Gly and Pro in coil regions. These two residue types 

were most accurately predicted because of their unique backbone conformations. The most significant improvement of 

the NN approach over the fragment-based approach is in the core region (10.5% increase in sequence identity). Table I 

also shows the fraction of hydrophilic residues. It is clear that the NN approach has a significantly better balance of 

hydrophilic-hydrophobic residues on the surface of proteins in particular (34% by the fragment-based approach, 60% 

by the NN approach and 65% in wild-type sequences). However, there is no improvement in the core of proteins which 

have 10% less hydrophilic residues in predicted sequences than in wild-type sequences. Here hydrophilic residues refer 

to D, E, H, K, N, Q, R, S, T, and Y. 

 

Low complexity region (e.g. multiple repeats of same residue type such as VVV) is often associated with intrinsically 

disordered regions of proteins. We have employed the program SEG39 to locate low complexity regions in predicted 

sequences. As Table I shows, the fraction of residues in low complexity regions is as high as 50.8% per protein by the 

fragment-based approach for the test set TS500. The NN approach cuts it to 34.5%, although it is still significantly 

higher than 3% in wild-type sequences.  



 

3.2 PSSM Prediction 

So far, we have trained our NN to predict a single sequence despite the fact that there are more than one sequence that 

could be fitted for a single structure. Thus, it is of interest to know if training a NN to predict sequence profile directly, 

rather than a single sequence, would lead to an improved result. To do this, we use the Position Specific Substitute 

Matrix (PSSM) generated from PSIBLAST38 for training and testing the NN approach. The PSSM is normalized to -1 

to 1. We define a PSSM consensus sequence based on the most frequent residue from PSSM at each sequence position.    

 

Table II compares sequence identities between consensus sequences from PSSM and predicted consensus sequences 

by the fragment-based approach, the NN trained by single sequence and the NN trained by PSSM. Interestingly, the NN 

trained by PSSM is similar to the NN trained by a single sequence when judged by the sequence identity to the PSSM 

consensus sequence (26.6% versus 26.1% for TR1532 and 26.3% versus 26.7% for TS500 for top 1). Improvement on 

the mean square error (MSE) is greater because the NN trained by PSSM was directly optimized for MSE. The 

difference in conserved regions between NN (single sequence) and NN (PSSM) is also small. For example, the 

sequence identity to the consensus sequence in the conserved regions (PSSM≥7) is 31.8% by single-sequence trained 

NN (single sequence) and 32.4% by PSSM-trained NN. 

 

We compared the fractions of hydrophilic residues in PSSM consensus sequences and in wild-type sequences and 

found that they are quite similar (28.4% in PSSM consensus sequence versus 27.9% in wild-type sequence in protein 

core and 61.3% in PSSM consensus sequence versus 64.3% in wild-type sequences in protein surface). However, the 

PSSM trained NN predicts significantly more hydrophilic residues (5%) on protein surface and 3% more in protein core 

than the single-sequence trained NN. It is unclear why using PSSM for training neural networks would significantly 

increase the number of hydrophilic residues on the surface of proteins. 

3.3 Comparison to profiles generated by RosettaDesign  

 

We compared to RosettaDesign29 for 50 proteins due to costly computational requirement by using RosettaDesign for 

producing sequence profiles.  As shown in Table III, RosettaDesign deviates more from wild-type PSSM than NN-



based approaches do. Its sequence identity to wild-type sequence (based on the average sequence identity from 1000 

designed sequences) is similar to the NN-based approach. Interestingly, RosettaDesign employs significantly more 

hydrophilic residues in core than wild-type sequences while fragment-based and NN-based approaches consistently 

under-predict hydrophilic residues in the core. RosettaDesign, however, has similar number of residues in low 

complexity regions as wild-type sequences, as it was optimized for. 

4   Discussion 

In this paper, we employed neural networks for predicting sequences associated with a given protein structure. We 

found that a local fragment-derived sequence profile can be significantly improved by integrating with an energy-based 

nonlocal feature through neural networks. Together with backbone torsion angles, the neural-network based method 

SPIN makes 7% improvement over fragment-derived sequence profiles in sequence identity to wild-type sequences. 

The accuracy of sequence profiles from SPIN is comparable to RosettaDesign in term of sequence identity to wild-type 

sequences and sequence variation. The MSE between predicted and actual PSSM given by single-sequence trained 

SPIN is 0.198, compared to 0.223 by RosettaDesign for a dataset of 50 proteins. SPIN and RosettaDesign also yield 

similar sequence identities to wild-type sequences (~30%). 

 

The average 30% sequence identity for 50 proteins achieved by RosettaDesign is significantly lower than 37.0% 

reported by Leaver-Fay et al40 despite the same scoring function and procedures were employed. A close examination 

found that this discrepancy is caused by structural relaxation prior to sequence design. Structural relaxation of crystal 

structures by RosettaDesign prior to design inevitably introduces the bias toward wild-type sequences and lead to a 

higher sequence identity. We found that for the 50 proteins, relaxation prior to design yielded an average sequence 

identity of 35.6%. Here, we reported the results from RosettaDesign without pre-relaxation to be consistent with the 

structures employed for SPIN. 

 

SPIN can be considered as a mean-field like approach. This is because nonlocal interaction energy is calculated by 

assuming that all neighboring residues except the residue of interest are alanine. We used alanine because it is the 

smallest amino acid residue except glycine. Using a residue with a small side chain is necessary to avoid steric clashes. 

We do not utilize glycine because lacking a side chain makes it different from most residue types by allowing a much 



more flexible backbone conformation. Moreover, alanine has only one conformation. Thus, there is no need for 

optimizing its rotameric state. In addition, alanine is the second most widely employed amino acid residues in proteins 

(8.1%, only 1% behind 9.5% for leucine). The abundance level in protein structures is important for minimizing the 

error caused by approximating all other positions as alanine. It should be mentioned that using alanine for the energy-

based nonlocal profile brings over-predicted alanine (19%) by fragment-based profile to a population (7%) similar to 

the actual population (8%).  

 

The comparable accuracy between SPIN and RosettaDesign suggests that there is room for further improving an 

energy-based approach. In fact, thirty percent sequence identity to wild-type sequence reached by this neural-network 

method and the difficulty to improve much beyond 30% for protein design by energy optimization 17,18 suggests a 

common bottleneck facing protein design. This 30% sequence identity is in a so-called twilight zone41 where two 

protein sequences may or may not have the same structure 17. That is, going beyond 30% is necessary to significantly 

improve the success rate of protein design. Typical energy functions for protein design contain, at minimum, single-

body profiles and two-body pairwise interaction terms. In contrast, SPIN relied on single body energetic terms only.  

Thus, SPIN raises the bar for protein design programs that are based on more sophisticated energetic terms. On the 

other hand, the results of SPIN can be effectively employed as a single-body energy term to improve an energy function 

for design. In our previous work, we found that incorporation of the fragment-derived profile into the RosettaDesign 

energy function 42 can increase the sequence identity by 4-8% 17. Using this newly improved profile (7% higher 

sequence identity over the fragment-based approach) as an energy term may further improve the ability of recovering 

wild-type sequences. 

 

Another potential application of this structure-derived profile is fold recognition. Several studies have found that 

sequence profiles from protein design significantly improve the ability of recognizing structural similarity in the 

absence of sequence similarity 26-28. This is particularly important for recognizing new structure folds that do not have 

wild-type sequence information but are generated from multiple loop permutations 43. Application to fold recognition is 

feasible because SPIN is computationally efficient. It takes only 343 processor seconds to predict one sequence profile 

from structures, compared to 833×1000 processor seconds by RosettaDesign for predicting 1000 sequences by Intel(R) 

Xeon(R) CPU E5-2670 0 @ 2.60ghz.  



 

There is a recent trend to overcome low success rate of design by using a library of protein sequences designed by a 

design program. The library is then utilized for large-scale experimental screening of desirable properties 19-23 or for 

directed evolution 14,24. SPIN provides a complementary approach to protein design programs for building a library of 

sequences that are compatible to a given structure with similar accuracy at a much lower computational cost. 

 

One way to further improve SPIN is to improve its energy-based features. The nonlocal energy profile was obtained by 

employing a DFIRE-based statistical energy function.  We employed this energy function because it has been found 

useful in protein structure and binding prediction and other applications 44. Other coarse-grained statistical potentials 

(backbone only) 45 can also be employed here. Obviously, DFIRE or any other statistical energy functions were not 

optimized for this purpose. One might expect that our method can be further improved if a knowledge-based potential 

is optimized for single-residue-type recovery when the rest proteins are approximated as occupied by alanine residues. 

 

One surprising finding is that using PSSM to train neural networks does not lead to any visible improvement over the 

single-sequence based training. Essentially the same sequence identity to PSSM consensus sequences is observed 

despite that the single-sequence method was not trained for predicting PSSM at all. In fact, we found that the top two 

amino acid residue types predicted by single-sequence-trained NN are essentially the same as the top two amino acid 

residue types by the PSSM-trained NN (87.5% in agreement). This suggests that a neural network is capable of 

capturing the profile encoded in a given protein structure regardless if it was trained or not trained by a profile. In other 

words, the structure of a protein has a dominated effect on the evolution of sequences. 
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Table	
  	
  I.	
  Sequence identities between predicted and wild-type sequences along with the fraction of hydrophilic residues 

(the number in parentheses) in different secondary structure, surface (residues with 20% or more solvent accessible 

surface) and core regions for the independent test set  

 

% Ha (fh
b) Sa (fh) Ca (fh) Surf (fh) Core (fh) Lcc 

    

Fragment-Based 18.1(24.9) 19.6(16.8) 29.9(37.4) 22.1 (33.5) 26.2 (17.8) 50.8 

Neural-Network 26.1(43.7) 24.5(30.2) 35.0(47.7) 26.2(60.0) 36.7(17.8) 34.5 

Wild-Type 100 (52.2) 100 (35.7) 100 (53.6) 100 (64.7) 100 (27.6) 3 

aH, S, and C denote helix, sheet and coil, respectively. bfh denotes fraction of hydrophilic residues (D, E, H, K, N, Q, R, 

S, T, and Y). cfraction of residues in low complexity regions. 

Table  II.  Performance of various methods measured according to sequence identity to wild-type sequences, consensus 

sequences from PSSM (either top 1 match or either of the top 2 match) and mean-square error (MSE) to PSSM on the 

dataset of TR1532 or TS500 (the number in parentheses). 

 

 

	
  

	
  

	
  

	
  

Method 

Top 1 (%) 

TR1532(TS500) 

Top 2 (%) 

TR1532(TS500) 

MSE 

TR1532(TS500) 

Fragment-Based 21.5 (21.5) 

 

42.7 (41.8) 

 

 

0.24(0.24) 

 

NN (Single) 
26.6 (26.3) 

 

51.7(51.7) 

 

0.21(0.21） 

 

NN (PSSM) 
26.1 (26.7) 

 

50.3(50.7) 

 

0.18(0.18) 

 



Table	
   	
   III.	
    Comparison of predicted sequence profiles with wild type sequence or profile for a dataset of randomly 

selected 50 small proteins with sequence length between 60-200 and fraction of surface residue between 0.5-0.8.	
  

 MSEa Seqid(C,S)b %lcc Fh(C,S)d 

  

Fragment-based 

 

0.230 23.4  

(24.0, 20.6) 

50.4 15.8, 34.6 

RosettaDesign 

 

0.223 30.0e 

(45.2, 23.1) 

 7.1 33.7, 65.2 

NN (Single) 

 

0.198 30.3  

(37.6, 25.5) 

28.5 18.7, 58.4 

NN (PSSM) 0.177 27.3 

(33.1 ,23.4) 

36.1 16.9, 64.5 

Wild-Type 0 100  

(100, 100) 

3.7 26.5, 66.2 

aThe mean square error between predicted and actual PSSM. bThe average sequence identity between predicted 

consensus sequence and wild-type sequence for NN methods.  The seqid for RosettaDesign is based on the average 

seqid of 1000 designed sequences.  The numbers in parentheses are sequence identities for core and surface regions of 

proteins, respectively. cThe average fraction of low complexity residues per protein. For RosettaDesign it is based on 

consensus sequence of 1000 designed sequences. dThe fraction of predicted hydrophilic residues in consensus 

sequences in core and surface of proteins, respectively. eThe average sequence identity from 1000 designed sequences. 

 

 

  



Figure 1 Average sequence identity between predicted and wild-type sequences as a function of protein length (ten-

fold cross validation on TR1532, open symbols and independent test on TS500, filled symbols) by the fragment-based 

(dashed lines) and neural-network based approaches (solid lines). 

 

Figure 2 Average sequence identity between predicted and wild-type sequences as a function of the fraction of surface 

residues (ten-fold cross validation on TR1532, open symbols and independent test on TS500, filled symbols) by the 

fragment-based (dashed lines) and the neural-network (NN) based approaches (solid lines). 

 

Figure 3 (A) Recovery rate and precision for each amino acid residue type by fragment-based and neural-network-

based approaches as labeled. (B) Frequencies of 20 types of amino acid residues by fragment-based and NN-based 

approaches are compared to those from wild-type sequences as labeled.   
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