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ABSTRACT 8 

A reliable deterioration model is essential in bridge asset management. Most deterioration 9 

modelling requires a large amount of well-distributed condition rating data along with all 10 

bridge ages in order to calculate the probability of condition rating depreciations. This means 11 

that the model can only function properly when a full-set of data is available. To overcome 12 

this shortcoming, an improved Artificial Intelligence (AI)-based model is presented herein to 13 

effectively predict long-term deterioration of bridge elements. The model has four major 14 

components: (1) categorising bridge element condition ratings; (2) using the Neural Network-15 

based Backward Prediction Model (BPM) to generate unavailable historical condition ratings 16 

for applicable bridge elements; (3) training by an Elman Neural Network (ENN) for 17 

identifying historical deterioration patterns; and (4) using the ENN to predict long-term 18 

performance. The model has been tested using bridge inspection records which demonstrate 19 

satisfactory results. This study mainly focuses on the establishment of a new methodology to 20 

address the research problems identified. A series of case studies, hence, need to follow to 21 

ensure the method is appropriately developed and validated. 22 

 23 

CE Database subject heading: Bridges; Deterioration; Long-term performance predictions; 24 

Neural Network. 25 

 26 
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1 INTRODUCTION 30 

The efficient use of maintenance funds and of budgeting for the well-being of bridges 31 

requires an effective bridge asset management technology and its application. A Bridge 32 

Management System (BMS) is nowadays essential and helps determine the complexity of 33 

decision-making for bridge maintenance, repair and rehabilitation (MR&R) strategies for 34 

bridge authorities. The most well-known commercial version of BMS software was 35 

developed in the early 1990s and has become a common tool for many bridge agencies 36 

worldwide. However in current asset management practice, there still remain some 37 

fundamental shortcomings associated with the health status of bridge elements for long-term 38 

planning of asset management strategies. A bridge element or element type refers to a group 39 

of similar structural members (e.g. beams, columns, or support bearings etc) of a bridge. 40 

Reliable long-term forecasting of bridge element performance is crucial and can be used as 41 

input information for various key functions in a BMS, i.e. cost-related and MR&R priority 42 



etc. However, the reliability of currently available long-term performance modeling is still 1 

doubtful thus requiring further development. However there exist some underlying problems 2 

with respect to the development of a deterioration model. They are elaborated below:  3 

 4 

(1) Insufficient historical condition ratings: The deterioration rate is calculated based on 5 

historical condition ratings obtained from routine bridge inspections, i.e. the structural 6 

element-level bridge inspections. Commercial BMS software has only been used for less than 7 

20 years and even those bridge agencies which implemented BMSs from an early stage, have 8 

only approximately 7 to 9 inspection records per structure. Although most bridge authorities 9 

have previously conducted inspections, these past inspection records are incompatible with 10 

what are required by a typical BMS as input. Such incompatibility is one of the causes for the 11 

deficiency of the current BMS outcomes. Because of limited bridge condition rating records, 12 

it is very difficult to use typical stochastic-based deterioration models to accurately predict 13 

future condition ratings. This limitation has been recognised and has not yet been adequately 14 

addressed (Agrawal et al. 2006; DeStefano and Grivas 1998; Madanat et al. 1997; Morcous et 15 

al. 2000). 16 

 17 

(2) Overall Condition Rating (OCR) methods: The OCR methods are used in most existing 18 

bridge management technologies. The condition rating information is collected via a 19 

quantitative bridge inspection procedure; it is then converted into OCR in a subjective 20 

manner. The conditions of bridge elements collected using the element-level bridge 21 

inspection process, are expressed quantitatively via the conventional “grading” system, i.e. 22 

the health index or the four condition states (CSs 1 to 4). The overall condition of one or 23 

more element types of a bridge is calculated with the aid of a weighted average condition 24 

state (CS) numbering system. Thus the OCR is incapable of capturing the condition status of 25 

individual structural members (i.e. individual beams, piers etc), be it at CS1 (i.e. condition as 26 

new or “excellent”), CS2 (“fair”), CS3 (“poor”) and CS4 (“very poor”). This is a key 27 

drawback because bridge collapse may occur as a result of the failure of single member(s). In 28 

view of this, each of the four CSs for individual members needs to be evaluated in order to 29 

reduce the risks of total bridge failure. A further drawback with this stepwise “grading” 30 

system is that there are only four CSs with graduation of 1/4 or 25%. Such a step is too large 31 

to be used effectively in deterioration modeling. For example, for a CS2 rating, the numerical 32 

weighting is 62.5% which is the average of 75 and 50%, whereas in reality the condition of 33 

the member can be anywhere between “as new” and “defective”. This indeterminacy 34 

seriously increases the degree of uncertainty with time in predicting long-term bridge element 35 

performance. Note also that it is too expensive to change the current inspection method, 36 

which has been used for many years and already produced massive amounts of historical 37 

condition rating records. Any change to the current inspection method will be cost ineffective 38 

and will also create data-incompatibility issues. 39 

 40 

Despite the abovementioned limitations, substantial research has been conducted to develop a 41 

reliable bridge deterioration model. Among many existing research outcomes, stochastic 42 

bridge deterioration modeling is one of the most prominent techniques. It can be classified 43 

into two types, namely state- and time-based. Some limitations in state-based modeling are: 44 

(1) initial condition ratings are independent of the historical condition ratings (a stationary 45 

process which is memory-less) and transition probabilities are constant (DeStefano and 46 

Grivas 1998); (2) lack of knowledge of the hidden nature of deterioration (Madanat et al. 47 

1995); (3) failure to account for maintenance issues; (4) only handles an ideal condition 48 



rating data distribution (Mishalani and Madanat 2002). On the other hand, time-based 1 

modeling overcomes many of the disadvantages of state-based modeling: (1) it considers the 2 

time spent in an initial condition state (DeStefano and Grivas 1998) - meaning that it 3 

overcomes the limitations of the stationary process; and (2) it provides more reliable long-4 

term prediction than the state-based model if the condition rating data is available over a long 5 

period of time (Mauch and Madanat 2001). However, the decision of which type of modeling 6 

is more appropriate for deterioration prediction is also highly dependent on the nature of the 7 

available condition ratings with time (bridge ages) (Mishalani and Madanat 2002). In other 8 

words, the stochastic approaches cannot guarantee workable modelling and/or reliable long-9 

term prediction for various situations of condition rating input. Consequently, such 10 

fundamental problems as modeling input requirements still remain which need to be 11 

overcome. 12 

 13 

To address the abovementioned problems, an Artificial Intelligence (AI)-based Backward 14 

Prediction Model (BPM) has been developed (Lee et al. 2008) to generate unavailable bridge 15 

condition ratings. The BPM also provides unknown historical bridge deterioration patterns to 16 

assist in predicting reliable long-term bridge deteriorations. In addition, an AI-based bridge 17 

deterioration modelling incorporating both BPM and Time-Delay Neural Network (TDNN) 18 

has also been proposed (Lee et al. 2008; Son et al. 2010) to improve the accuracy of long-19 

term prediction. Despite such advancement of the deterioration modelling technique, for 20 

some cases of given type of element condition ratings from a single bridge, uncertainty has 21 

been observed in long-term prediction due to frequent maintenance (reactive MR&R 22 

strategy). As a result, less meaningful deterioration trends, i.e. irregular noise patters, were 23 

identified in the TDNN training for long-term prediction.  24 

 25 

Therefore this study aims to develop an improved AI-based methodology to provide 26 

enhanced long-term prediction outcomes for reliable element level analysis. The development 27 

constitutes the following new components: adding a categorisation process and replacing the 28 

TDNN by an Elman Neural Network (ENN). Categorisation is the process of sorting and 29 

grouping in accordance with structural location, climatic zone, construction era, element type 30 

and material type. This categorisation process is added before performing the ANN process in 31 

order to observe common condition depreciation patterns from given condition data. This will 32 

in turn provide reliable neural network training outcomes.  33 

 34 

2 STRUCTURE OF THE PROPOSED DETERIORATION MODEL 35 

As previously indicated, the model has four main components: (1) Categorisation; (2) 36 

Generating missing historical condition records by BPM for eligible structural elements; (3) 37 

training by Elman Neural Network (ENN) for identifying historical deterioration patterns of a 38 

given type of structural elements; and (4) Performing long-term prediction. The structure of 39 

the model is depicted in Figure 1. 40 

 41 

Figure 1. Flowchart for the Proposed AI-based Deterioration Model 42 

 43 

A timeframe of the proposed AI-based deterioration model is presented in Figure 2. Detailed 44 

in the figure are indications of the time periods: year of construction completion (t0); 45 

available condition ratings (tp ~ tpn); BPM inputs (t0, tp ~ tpn); BPM outputs (t1 ~ tp-1); BPM 46 



and ENN validation using BPM outputs (t1 ~ tp-1); and ENN long-term prediction (tf1 ~ tfn) 1 

using available and BPM-generated condition ratings (t0 ~ tpn).  2 

 3 

Figure 2. Timeframe of the Proposed AI-based Model 4 

2.1 Categorisation 5 

Categorisation is the first step in the model when new condition data are received. In this 6 

study, available inspection records can be classified by bridge location, climatic condition, 7 

construction era, element type and material type. However it can be further classified based 8 

on information available from the bridge agencies. The aim of this classification is to group 9 

bridge elements of similar deterioration causes, for an enhanced identification of deterioration 10 

patterns within the grouped elements. It should be noted that the reason for inclusion of 11 

bridge construction era is due to the dissimilarity of bridge deterioration rates at different 12 

bridge ages. The different deterioration rates are also caused by the qualities of construction 13 

materials and methods, which have continuously improved in the last few decades as 14 

compared to the earlier constructed bridges. Therefore for bridges of different ages, their 15 

condition depreciation patterns could be different. In order to obtain more reliable prediction 16 

outcomes, the construction era classification follows an adopted zoning technique, which has 17 

been used in the development of pavement performance (Butt et al. 1987). In this study, is the 18 

grouping is done in 20 year segments, i.e. group 1 (2001-current year), group 2 (1981-2000), 19 

group 3 (1961-1980), and group 4 (prior to 1960). The outcomes of categorisation provide 20 

more common reference with respect to condition depreciation within the grouped elements. 21 

This in turn will assist the Elman training session. 22 

 23 

2.2 Backward Prediction Model (BPM) 24 

The BPM methodology in conjunction with the Elman Neural Networks (ENNs) technique is 25 

employed in this study. In the previously developed AI-model (Lee et al. 2008), missing 26 

condition ratings can be generated by the BPM to minimise the problem of insufficient 27 

historical condition rating data. This is done because: (1) it is difficult to obtain individual 28 

historic maintenance records for older bridges for the BPM to effectively generate the 29 

missing condition data; and (2) historical condition depreciation patterns will be obtained 30 

from a group of a given type of elements – whereas in the previous AI-model, it was obtained 31 

from a single element of a bridge. Accordingly, the BPM is only applicable for the following 32 

cases in this study: (1) when maintenance, repair and rehabilitation (MR&R) activity is 33 

performed at a known time; (2) no MR&R is performed after the construction year; and (3) if 34 

condition ratings at the year of construction can be confidently assumed by a bridge asset 35 

engineer. 36 

 37 

In the case when the BPM is applicable, the missing historical condition ratings are generated 38 

(backward prediction) by the following mechanism as illustrated in Figure 3. An Artificial 39 

Neural Network (ANN) technique establishes the correlation between the existing condition 40 

rating datasets (tp ~ tpn) and the corresponding years’ non-bridge factors. The non-bridge 41 

factors, including climate and environmental condition changes, traffic volume increases and 42 

population growth, directly and indirectly influence the variation of the bridge conditions 43 

hence the deterioration rate. The correlations are then applied to generate the historical trends 44 

using the non-bridge factors from year t0 to tp (Lee et al. 2008). The missing historical 45 



condition ratings for years t1 ~ tp-1 can then be generated. Each year of the BPM outcome, i.e. 1 

generated condition ratings, includes 66 data outputs which results from the combined 2 

number of learning rates (lr: 0.0-0.5) and momentum coefficients (mc: 0.0-1.0) in the neural 3 

network configurations. The number 66 also corresponds to the total quantity of a given 4 

bridge element. A forward comparison method is utilised in the BPM methodology to 5 

validate the BPM results. It produces forward prediction for years tp ~ tpn using the BPM 6 

outcomes (years t1 ~ tp-1). The results of the forward predictions are then compared with the 7 

actual BMS condition ratings (tp ~ tpn). Once validated, the BPM-generated condition data is 8 

ready for training by the Elman Neural Network.  9 

 10 

Figure 3. Mechanism of BPM (Lee et al. 2008) 11 

 12 

It is also necessary to conduct time rescaling to generate historic condition paths by OCR 13 

over bridge ages. It is for a given type of bridge element from a bridge network. The original 14 

condition path of each bridge element is distributed across the years (year of inspection) as 15 

shown in Figure 4 (a) and, as a result, it is difficult to find their common deterioration 16 

patterns. On the other hand, the distribution of condition data over bridge ages is able to 17 

provide an effortless observation for network deterioration patterns as demonstrated in Figure 18 

4 (b).  19 

 20 

Figure 4. Time Rescaling: (a) OCR over inspection years; and (b) OCR over bridge ages. 21 

 22 

2.3 Elman Neural Network (ENN) Training and Long-Term Bridge Performance 23 

(LTBP) Prediction 24 

The Elman Neural Network (ENN) has been used in various fields for time related domains 25 

and is one of the well-known recurrent neural networks (Elman, 1990). Recurrent neural 26 

networks have a feedback architecture and can be distinguished from feed-forward neural 27 

networks. A typical ENN has three layers: input, middle (hidden) and output layers. A 28 

generalised structure of the ENN for the proposed study is depicted in Figure 5.  29 

 30 

Figure 5: Structure of the ENN used in the Proposed Model 31 

 32 

A hidden layer with delayed feedback in an ENN is composed of two layers, i.e. recurrent 33 

and linear layers. ENN feedback is used to construct memory within the local feedback loop. 34 

In Figure 5, the so-called context nodes are copied from the corresponding hidden nodes and 35 

are used to store memories from previous output values of the hidden layer neurons. Thus the 36 

network can maintain preceding events, allowing it to better perform sequence-prediction. In 37 

the proposed model, a condition rating at time (t) resulted from the last condition rating at 38 

time (t-1) is looped back as an input to the neural network at time (t). The local feedback loop 39 

provides a precedent with respect to the proceeding input condition rating. This ENN 40 

function is useful in providing superior learning outcomes for such temporal, spatial and 41 

chaotic input values (Elman, 1990). Thus, an ENN is effective for sequential prediction using 42 

such non-linearly characterised bridge deterioration patterns obtained from irregularly 43 

distributed condition data over time. 44 

 45 



The proposed ENN provides only one-step ahead prediction at a time (one cycle). The result 1 

of the first one-step-ahead prediction is added onto the original ENN input (t0 ~ tpn). This 2 

indicates that the number of inputs to the ENN increases in the second cycle of the one-step-3 

ahead prediction. Iterations of the above-described process are required until prediction up to 4 

year tfn is completed. 5 

 6 

Once network performance is predicted by the ENN, the probability of transition from one 7 

state to another over multiple discrete time intervals is required to be calculated based on the 8 

performance curve (Bogdanoff 1978; Jiang 1990). This is also referred to as the condition 9 

rating transition from one CSi, to another CSj, during a one unit year period, which is 10 

denoted by pi,j. Based on the typical state-based stochastic modelling, the CS vector for any 11 

time t, Q(t), can be obtained by multiplication of the initial CS vector Q(0) and the transition 12 

probability matrix P to the power of t, which can be presented as follows:  13 

 14 
tPQtQ  )0()(  (1) 

 15 

Hence, the transition probability matrix P can be defined as: 16 
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 17 

where q(i) = 1-p(i), p(i) corresponds to pi,i and q(i) corresponds to pi,i+1. In Eqn. (2), p(1) 18 

represents the probability of bridge elements remaining in the CS1, and q(1) denotes the 19 

probability of bridge elements transferring to the next CS. Hence, the corresponding 20 

probability p(4) is assumed to be 1. Let R be a vector of condition ratings, R = [100, 70, 50, 21 

20], and R
T
 be the transpose of R, then the estimated condition ratings at age t provide the 22 

following: 23 

 24 
TRtQtE  )()(  (3) 

 25 

In this study, the transition probability is obtained by minimising the difference between the 26 

condition ratings A(t) from the predicted network performance curve by the ENN and the 27 

estimated condition ratings E(t). This non-linear objective function can be described as: 28 

 29 
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 30 

where, N = the number of years in one age group; U = the number of unknown probabilities; 31 

A(t) = the condition ratings of the performance curve at time t, estimated by the regression 32 

function and E(t) = estimated value of condition ratings at time t. 33 

 34 



3 MODEL DEMONSTRATION 1 

This section demonstrates the proposed model using a group of bridge element condition 2 

ratings provided by the Queensland Department of Transport and Main Roads (QTMR). The 3 

chosen bridge element is the concrete slab defined as 20C – obtained from 61 inspection 4 

records of 25 sample bridges. The construction era of these 25 bridges is between 1980-2000. 5 

All bridge elements have been inspected at a maximum of 3 with an average inspection 6 

records of 2.44 per element. The condition ratings of all the 25 slab elements are displayed in 7 

Figure 6. 8 

 9 

Figure 6. Condition paths of the concrete slab element (20C) from 25 sample bridges 10 

 11 

After categorising the available inspection records, an Overall Condition Ratings (OCR) is 12 

calculated for a given sample of condition ratings. The condition ratings are collected by 13 

Level 2 routine inspections to quantify the severity and extent of defect bridge elements. A 14 

four-CS scale is used in order of 1 to 4 (excellent to very poor), and in this study this scale 15 

represents the bridge condition ratings from 100% to 20% in a descending order. The OCR 16 

can be calculated based on the pre-defined element condition rating scale with the average 17 

weights of each Condition State (CS), as shown in Figure 7. The calculation of OCR is 18 

presented below: 19 

 20 

 OCR
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 21 

where, q1, q2, q3 and q4 are the element quantities in CSs 1, 2, 3 and 4, respectively, and w1, 22 

w2, w3 and w4 are the corresponding weightings of each CS (Thompson and Shepard 2000). 23 

 24 

It should be noted that the sample bridge information is randomly selected from a regional 25 

network within a large bridge network. The results presented in this paper thus do not intend 26 

to reflect the official view of the bridge authority from which the condition ratings are 27 

obtained.  28 

 29 

Figure 7. Condition rating scale and average weights of each Condition State (CS). 30 

 31 

After OCR calculation, the process requires that the eligibility of the BPM to generate 32 

missing condition ratings is validated. Amongst the given samples, 12 bridges (Bridge# 33 

XX47XX, XX48XX, XX76XX, XX77XX, XX78XX, XX80XX, XX81XX, XX92XX, 34 

XX131XX, XX144XX, XX145XX, XX23897XX) are found to be eligible for applying the 35 

BPM. Also collected to be used in the BPM are the non-bridge factors of the corresponding 36 

years 1980-2000 (as the construction era), which are presented in Figure 8. The non-bridge 37 

factors are the historic climatic conditions (humidity, minimum and maximum temperature, 38 

maximum differences of temperature and rainfall) obtained from the local weather stations.  39 

 40 

Figure 8. Non-bridge factors used in the BPM: (a) humidity; (b) temperatures; and (c) rainfall. 41 

 42 

The specifications for the inputs, outputs and functions of the BPM are detailed in Table 1. The 43 

input layer accepts condition ratings (t0 and tp ~ tpn) and their corresponding years’ non-bridge 44 

factors. Note that the notations for time (t) can be referred to Figure 2. The inputs used in the 45 

BPM are trained using the feed-forward back propagation algorithm. 46 



 1 

Table 1. Components of the BPM 2 

 3 

For Bridge#XX80XX as an example, BPM requires the existing condition ratings (years 2000, 4 

2003 and 2009, i.e. 3 of inspection records) together with the assumed condition rating at 5 

year of construction completion (CS1-Excellent at 1994) to generate missing condition 6 

ratings. The corresponding years’ non-bridge factors are also required by the BPM to 7 

establish the relationship with the available condition data, and subsequently the BPM is able 8 

to generate missing condition rating data (1995-1999) using the non-bridge factors of years t1 9 

~ tp-1. An identical process can be applied to the other bridge elements in order to generate 10 

their missing condition data. The generated condition data are added to the existing condition 11 

rating data sets, as shown in Figure 9, to provide more meaningful distribution of the 12 

condition data over time. This in turn will provide more reliable and reasonable condition 13 

depreciation patterns for the given bridge element type.  14 

 15 

Figure 9. The condition data distribution over time for the concrete slab element from 25 16 

bridges 17 

 18 

4 RESULTS OF LONG-TERM PREDICTION AND DISCUSSION 19 

The existing and generated condition data sets are ready to be used as ENN input values to 20 

predict long-term network performance of a given bridge element type. The result of the first 21 

one-step-ahead prediction (i.e. t30) is added on to the original ENN input (t1 - t29) for 22 

performing the prediction at time (t31). In this study, iterations of this one-step-ahead 23 

prediction process are continued for 25 cycles without considering the maintenance effects. 24 

The outcomes of long-term network performance of the chosen element type 20C are 25 

presented in Figure 10 (a). The total number of long-term prediction by ENN is 10. Prior to 26 

the acceptance of these outcomes, the predicted condition ratings are required to undergo a 27 

filtering process for further improvement of long-term prediction quality. The filtering 28 

process follows a simple criterion, i.e. Condition Rating (year n-1) ≥ Condition Rating (year n). In 29 

other words, the condition rating should not be improved if no MR&R, i.e. preservation, is 30 

undertaken. This is true because bridge deterioration may progress continuously, gradually 31 

and slowly (Mauch and Madanat 2001). In view of this, Long-term prediction (LTP) 2 as 32 

presented in Figure 10 (a) is removed from the long-term performance predictions. This is 33 

because the prediction result of LTP 2 at bridge age 54 (OCR=75.544) has increased by 0.054% 34 

as compared to that of the preceding year (i.e. age 53 with OCR=75.490).  35 

 36 

Figure 10. Long-term network performance prediction for element type 20C – “Do Nothing” 37 

maintenance effect: (a) All prediction results from ENN; and (b) Selected long-term 38 

performance outcomes. 39 

 40 

Upon completion of filtering, the selected long-term performance results are presented in 41 

Figure 10 (b). Long-term performance curves are required to be selected to calculate the 42 

transition probability at the network level to the element level. In this study, the worst case 43 

scenario, i.e. LTP 7, is selected. The selected long-term prediction by ENN together with the 44 

estimated value of condition ratings at each year, as presented in Figure 11, are used to 45 

calculate the transition probability at the element level. 46 

 47 



Figure 11. Long-term network performance for element type 20C – “Do Nothing” 1 

maintenance effect 2 

 3 

In order to predict the performance of individual bridge elements, the transition probability is 4 

calculated using Equations (1) - (4). Figure 12 presents the transition probabilities of each age 5 

group for element type 20C in a matrix form. The values in each group age represent the 6 

probability of the element quantities remained in the current condition state. For example, for 7 

bridge element type 20C with age group (20-25), 93.2% of the element quantities remain in 8 

CS1 during a one year interval.  9 

 10 

Figure 12. Transition probability matrix for element type 20C 11 

 12 

The advantage of this study in determining the transition probabilities lies in the use of the 13 

long-term network performance curves predicted by the ENN (t1 ~ tpn, tf1 ~ tfn), whereas 14 

typical state-based stochastic modelling can only provide the transition probability for years 15 

(t1 ~ tpn). Thus, the typical approach usually assumes a probability in-between tf1 ~ tfn, which 16 

is the same as the probabilities of last age group within t1 ~ tpn (Butt et al. 1987). This 17 

assumption inevitably ignores the nonlinear behaviour of the bridge deterioration process. 18 

This indeed is a common shortcoming of the existing state-based stochastic deterioration 19 

modelling.  20 

 21 

It is worthwhile mentioning that the accuracy of the transition probability depends on the 22 

closeness of A(t) and E(t). The Chi-square goodness of fit test can often be used to validate 23 

the accuracy of the transition probability. The Chi-square method is given below: 24 

 25 
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 26 

where, χ2= a Chi-square distribution with k-1 degrees of freedom, Ei = value of the condition 27 

rating in year i predicted by state-based stochastic modeling, Ai = value of condition rating in 28 

year i predicted by network performance curve, and k = number of prediction years. Upon 29 

establishment of the transition probability matrices and an initial state vector defined from the 30 

given condition ratings for each bridge element, the bridge condition ratings can be predicted 31 

by using Equations (1) and (3). 32 

 33 

Table 2 presents the degrees of freedom, the critical χ2 values at the significance level α = 34 

0.05 and those obtained from the long-term performance curve using the ENN. The 35 

comparisons show that the estimated χ2 values for bridge element 20C are much smaller than 36 

those at the significance level α = 0.05. This suggests that the generated transition 37 

probabilities are acceptable for predicting long-term bridge performance.  38 

 39 

Table 2. Comparison of the χ2 values at significance level α = 0.05 40 

 41 

Once the transition probabilities are confirmed, the long-term bridge element prediction can 42 

be simply performed using Equations (1) and (3). The outcome of Equation (1) indicates the 43 

percentage of element quantities, whereas the outcome of Equation (3) represents the OCR 44 

values. As illustrated in Figure 13, bridge element 20C-Bridge #XX94XX is chosen as an 45 



example to demonstrate long-term bridge element performance prediction. The figure 1 

presents the future condition ratings of the bridge element by element quantities and OCRs. 2 

The long-term prediction is based on the latest inspection record as an initial condition state 3 

vector, by which the element condition ratings for the future 25 years are predicted. It is 4 

evidenced in the figure that the predicted condition ratings gradually decrease as the bridge 5 

age increases. This suggests that the transition probabilities correctly reflect the network 6 

bridge deterioration pattern.  7 

 8 

Figure 13. Example of long-term performance for bridge element type 20C 9 

(Bridge#XX131XX) – “Do Nothing” maintenance effect 10 

 11 

5 CONCLUSION 12 

The previously developed AI-based bridge deterioration modelling technique incorporating 13 

the Backward Prediction Model (BPM) has been refined to improve accuracy of long-term 14 

prediction of individual bridge elements. This AI-based model has incorporated a Time-15 

Delay Neural Network (TDNN), which has a strong ability to detect patterns from dynamic 16 

data. Nevertheless, in some cases, it provides irregular noise pattern(s) or illogical pattern(s) 17 

leading to poor training results. This has been found to be impractical from the perspective of 18 

bridge asset management practice and there are a number of issues associated with this 19 

approach. These issues are: (1) it is difficult to acquire a confident level of condition ratings 20 

at the year of construction completion (t0) and at the year after maintenance work completion 21 

(in between t1 ~ tp-1); and (2) there is change in condition states in some of the available 22 

condition data (tp ~ tpn). In order to address the above-mentioned issues, this study presents a 23 

new and enhanced AI-based methodology aiming to improve the reliability of long-term 24 

prediction outcomes. The enhancement is reflected by a categorisation process in conjunction 25 

with an Elman Neural Network (ENN) technique in the deterioration prediction model. The 26 

new model helps to minimise the deficiency of historic condition transitions in individual 27 

elements and to provide meaningful condition depreciation patterns for time-series prediction 28 

of a given type of network bridge elements.  29 

 30 

A series of case studies will be carried out in the next stage of study to further confirm the 31 

methodology presented in dealing with various situations with respect to the condition rating 32 

data availability and their various distributions. Further work should also consider the 33 

maintenance effects in predicting long-term bridge element performance. Nevertheless, the 34 

outcome of the present study is useful to bridge authorities, which may experience difficulties 35 

in using the existing deterioration modelling techniques. 36 

 37 
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Table 1. Components of the BPM 1 

Training Algorithm Back Propagation Algorithm 

Transfer Function Log-sigmoid Function 

Inputs Climates (5 factors), Condition ratings (4 

sets): assumed condition rating (t0) and 

available condition ratings (tp~tpn). 

Total number of input neurons 6@each year 

Hidden layers 2  

Output Bridge condition ratings (t1 ~ tp-1) 

Total number of output neurons 1@each year 

Scale of learning rate (lr) 0.0 – 0.5 in 0.1 steps (5 cases) 

Scale of Momentum coefficient (mc) 0.0 – 1.0 in 0.1 steps (11 cases) 

Total number of cases generated 66 (combination of lr and mc)@each year 

 2 

  3 



Table 2. Comparison of the χ2 values at significance level α = 0.05 1 

Bridge 

Element  

Element 

name 

Construction 

era 

Degrees of 

freedom 
χ2critical 

(α=0.05) 

χ2 from Elman 

method 

20C Deck slab 1980-2000 48 65.17 0.016 

 2 

 3 
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 2 
Figure 1. Flowchart for the Proposed AI-based Deterioration Model 3 
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 2 
Figure 2. Timeframe of the Proposed AI-based Model 3 
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Figure 3. Mechanism of BPM (Lee et al. 2008) 1 
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Figure 4. Time Rescaling: (a) OCR over inspection years; and (b) OCR over bridge ages. 1 
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 1 
Figure 5. Structure of the ENN used in the Proposed Model 2 
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 2 
Figure 6. Condition paths of the concrete slab element (20C) from 25 sample bridges 3 

  4 

0

20

40

60

80

100

0 5 10 15 20 25 30 35

O
v
e

ra
ll
 C

o
n

d
it

io
n

 R
a

ti
n

g
 (%

)

Bridge age (year)

Bridge#XX1XX Bridge#XX47XX Bridge#XX48XX

Bridge#XX54XX Bridge#XX76XX Bridge#XX77XX

Bridge#XX78XX Bridge#XX80XX Bridge#XX81XX

Bridge#XX92XX Bridge#XX121XX Bridge#XX131XX

Bridge#XX142XX Bridge#XX144XX Bridge#XX145XX

Bridge#XX146XX Bridge#XX147XX Bridge#XX8657XX

Bridge#XX8716XX Bridge#XX23519XX Bridge#XX23520XX

Bridge#XX23897XX Bridge#XX24216XX Bridge#XX24218XX

Bridge#XX32963XX



 1 

 2 
Figure 7. Condition rating scale and average weights of each Condition State (CS). 3 
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Figure 8. Non-bridge factors used in the BPM: (a) humidity; (b) temperatures; and (c) rainfall. 1 
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 1 
Figure 9. The condition data distribution over time for the concrete slab element from 25 2 

bridges 3 
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(a) 2 

 3 

 4 
(b) 5 

Figure 10. Long-term network performance prediction for element type 20C – “Do Nothing” 6 

maintenance effect: (a) All prediction results from ENN; and (b) Selected long-term 7 

performance outcomes. 8 
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 1 
Figure 11. Long-term network performance for element type 20C – “Do Nothing” 2 

maintenance effect 3 
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Transition matrix for bridge age group (1-7) Transition matrix for bridge age group (8-13) 

 1 2 3 4 

1 0.987 0.013 0 0 

2 0 0.697 0.303 0 

3 0 0 0.856 0.144 

4 0 0 0 1.000 
 

 1 2 3 4 

1 0.979 0.021 0 0 

2 0 0.925 0.075 0 

3 0 0 0.993 0.007 

4 0 0 0 1.000 
 

Transition matrix for bridge age group (14-19) Transition matrix for bridge age group (20-25) 

 1 2 3 4 

1 0.987 0.013 0 0 

2 0 0.915 0.085 0 

3 0 0 0.923 0.077 

4 0 0 0 1.000 
 

 1 2 3 4 

1 0.983 0.017 0 0 

2 0 0.915 0.085 0 

3 0 0 0.937 0.063 

4 0 0 0 1.000 
 

Transition matrix for bridge age group (26-31) Transition matrix for bridge age group (32-37) 

 1 2 3 4 

1 0.978 0.022 0 0 

2 0 0.908 0.092 0 

3 0 0 0.939 0.061 

4 0 0 0 1.000 
 

 1 2 3 4 

1 0.970 0.030 0 0 

2 0 0.900 0.100 0 

3 0 0 0.938 0.062 

4 0 0 0 1.000 
 

Transition matrix for bridge age group (38-43) Transition matrix for bridge age group (44-49) 

 1 2 3 4 

1 0.962 0.038 0 0 

2 0 0.896 0.104 0 

3 0 0 0.929 0.071 

4 0 0 0 1.000 
 

 1 2 3 4 

1 0.954 0.046 0 0 

2 0 0.885 0.115 0 

3 0 0 0.926 0.074 

4 0 0 0 1.000 
 

Figure 12. Transition probability matrix for element type 20C 1 
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 1 
Figure 13. Example of long-term performance for bridge element type 20C 2 

(Bridge#XX131XX) – “Do Nothing” maintenance effect 3 
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