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Abstract 

Identifying the tertiary structure of a protein is a challenging task in biological science. 

Protein fold recognition is an intermediate step in identifying the tertiary structure. In 

protein fold recognition, a protein is classified into one of its folds. The recognition of a 

protein fold can be done by employing feature extraction methods to extract relevant 

information from protein sequences and then by using a classifier to accurately 

recognize novel protein sequences. In the past, several feature extraction methods have 

been developed but with limited recognition accuracy only.  

 

Protein sequences of varying lengths share the same fold and therefore they are very 

similar (in a fold) if aligned properly. To this, we develop an amino acid alignment 

method to extract important features from protein sequences by computing 

dissimilarity distances between proteins. This is done by measuring distance between 

two respective position specific scoring matrices of protein sequences which is used in a 

support vector machine framework. We demonstrated the effectiveness of the proposed 

method on several benchmark datasets. The method shows significant improvement in 

the fold recognition performance which is in the range of 4.3% to 7.6% compared to 

several other existing feature extraction methods.  

 

Introduction 

In biological sciences, deciphering the tertiary structures of proteins is considered to be 

an important and challenging task. The identification of tertiary structures provides 

information about protein functions which helps in understanding protein heterogeneity, 

protein-protein interactions and protein-peptide interactions. The computational ways 

of determining protein structures has gained considerable attention since it is normally 

very time consuming to identify protein structures by crystallography methods. Protein 

fold recognition is an intermediate step in the process of recognizing tertiary structure. 

The objective of protein fold recognition is to associate a fold to a novel protein sequence.  

 



Protein fold recognition broadly covers feature extraction and classification tasks. The 

brief description of the work conducted in the past has been depicted in the Related 

Work Section. It has been shown in the literature that feature extraction methods using 

evolutionary information performs quite well in the fold recognition process (Altschul et 

al., 1997; Dong et al., 2009; Sharma et al., 2013). In this work, we have used this 

information to build a feature extraction method for protein-protein alignment. For this, 

we extract position specific scoring matrices (PSSMs) using PSI-BLAST and build 

dissimilarity matrix between two protein sequences and conduct dynamic time warping 

to find the alignment path. Since different proteins with varying lengths share the same 

fold, features extracted from aligned homologous proteins give discriminant features for 

protein fold recognition. In order to illustrate this, we picked 7 protein sequences and 

extracted their corresponding PSSMs for comparison. Out of 7 protein sequences, 4 

protein sequences (Proteins A, B1, B2 and B3 in Figure 1) belong to a particular fold and 

the remaining 3 protein sequences (Protein C1, C2 and C3 in Figure 1) belong to 

different folds. We then used Protein A (see Figure 1) and found dissimilarity matrices 

by comparing it with all the 6 remaining protein sequences. In the first three 

dissimilarity matrices (i, ii and iii), PSSMs from protein sequences in the same fold are 

compared and the next three dissimilarity matrices (iv, v and vi), protein sequences of 

mutually different folds are compared. We can observed that in the first 3 figures (i, ii 

and iii), a diagonal path can be seen (we call an alignment path), however, in the next 3 

figures, this alignment path is not clearly observed. This alignment path (which shows 

the dissimilarity between two proteins) can be used to distinguish between proteins of 

one fold with that of another fold. This is a typical example, there could be variations 

depending upon different proteins. Nonetheless, dissimilarity distance could be used as 

a measure to observe dissimilarity between proteins. From biological perspective, 

proteins in the same fold often have amino acid subsequences that are highly conserved. 

The alignment path (i.e., the dissimilarity distance) characterizes the subsequences of 

amino acids in these conserved regions via their PSSMs. If a certain subsequence is 

conserved in a fold, then each protein in that fold would have a low dissimilarity 

distance from that conserved region. This can help in discriminating folds that do not 

have the same amio acid subsequences. The details of the proposed scheme are 

described later. The proposed scheme provides promising results (in terms of 

recognition performance) when experimented on 3 benchmark datasets: Ding and 

Dubchak (DD) (Ding and Dubchak, 2001), Taguchi and Grohima (TG) (Taguchi and 

Gromiha, 2007) and extended DD (EDD) (Dong et al., 2009). The 10-fold 

cross-validation recognition performance on DD dataset is 74.7%, on TG dataset is 



74.0% and on EDD dataset is 90.2% which is very promising when compared with other 

existing feature extraction methods.  

 

Figure 1: An illustration using dissimilarity matrix of protein sequences. The pictures 

above represent similarities computed between PSSMs. Dark pixels indicate 

corresponding rows of each PSSM are very similar. Long sequences of similar PSSM 

rows manifest as dark lines in the pictures. The top 3 pictures are from proteins in the 

same fold, the bottom three all proteins are from different folds. The contrast of these 

pictures has been increased for clarity in viewing. 

 

Related work 

The development of protein fold recognition research can be broadly categorized into 

two main tasks: feature extraction and classification. For the former task, several 

feature extraction techniques have been developed using structural, physicochemical 

and evolutionary information. Dubchak et al., (1997) have proposed syntactical and 

physicochemical-based features for protein fold recognition. They used amino acids’ 

composition (AAC) as syntactical-based features and the 5 following attributes of amino 

acids for deriving physicochemical-based features namely, hydrophobicity (H), predicted 

secondary structure based on normalized frequency of 𝛼 -helix (X), polarity (P), 

polarizability (Z) and van der Waals volume (V). They used three descriptors 

(composition, transition and distribution) to compute the features. The AAC features 
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comprise of 20 features and physicochemical-based features comprise of 105 features 

(21 features for each of the attributes used). The features proposed by Dubchak et al. 

(1997) have been widely used in the field of protein fold recognition (Chinnasamy et al., 

2005; Krishnaraj and Reddy, 2008; Valavanis et al., 2010; Ding and Dubchak, 2001; 

Dehzangi et al., 2009; Kecman and Yang, 2009; Kavousi et al, 2011, Dehzangi and 

Amnuaisuk, 2011; Chmielnicki et al., 2012; Dehzangi et al., 2013a, 2013b and 2013c). 

Apart from the above mentioned 5 attributes used by Dubchak et al. (1997), features 

have also been extracted by incorporating other attributes of amino acids. Some of the 

other attributes used are: solvent accessibility (Zhang et al., 2010), flexibility 

(Najmanovich et al., 2000), bulkiness (Huang and Tian, 2006), first and second order 

entropy (Zhang et al., 2008), size of the side chain of the amino acids (Dehzangi and 

Amnuaisuk, 2011). These physicochemical attributes are selected in an arbitrary way 

and recently a systematic way of selecting physicochemical attributes was proposed by 

Sharma et al. (2013a; 2012). Ohlson et al., (2004) proposed a profile-profile alignment 

method to improve protein fold recognition. Taguchi and Gromiha (2007) proposed 

features which are based on amino acids’ occurrence; Shamim et al., (2007) have 

extracted features from the structural information of amino acid residues and amino 

acid residue pairs; Ghanty and Pal, (2009) proposed pairwise frequencies of amino acids 

separated by one residue (PF1) and pairwise frequencies of adjacent amino acid 

residues (PF2). There are 400 features each in PF1 and PF2. These pairwise frequency 

features (PF) are concatenated in the study conducted by Yang et al., (2011), thereby, 

having 800 features. Chou (2001) proposed pseudo-amino acid composition (A) based 

features to effectively represent a protein sequence. Dong et al., (2009) have shown 

autocross-covariance (ACC) transformation for protein fold recognition. Shen and Chou 

(2006), Kurgan et al., (2008) and Liu et al., (2012) have shown autocorrelation features 

for protein sequence, and Dehzangi and Amnuaisuk, (2011) derived features by 

considering more physicochemical properties. Sharma et al. (2013b) have derived 

bi-gram features using evolutionary information (PSSM). For the latter task case, 

several classifiers have been developed or used including linear discriminant analysis 

(Klein, 1986), Bayesian classifiers (Chinnasamy et al., 2005), Bayesian decision rule 

(Wang and Yuan, 2000), k-nearest neighbor (Shen and Chou, 2006; Ding and Zhang, 

2008), hidden Markov model (Bouchaffra and Tan, 2006; Deschavanne and Tuffery, 

2009), artificial neural network (Chen et al., 2007, Ying et al., 2009), support vector 

machine (SVM) (Ding and Dubchak, 2001; Shamim et al., 2007; Ghanty and Pal, 2009) 

and ensemble classifiers (Dehzangi et al., 2009, 2010; Yang et al., 2011; Dehzangi et al., 

2010, Dehzangi and Karamizadeh, 2011). Among these classifiers, SVM (or SVM-based 



for ensemble strategy) classifier exhibits quite promising results (Liu et al., 2012; 

Kurgan et al., 2008; Ghanty and Pal, 2009).  

 

The extraction of relevant and informative features from protein sequences is a crucial 

step in identifying protein folds. In order to improve protein fold recognition, we focus 

on carefully developing the feature extraction method. Since SVM classifier (Vapnik, 

1995) provides high recognition accuracy, we use SVM classifier to compare the 

performance of our feature extraction method with other feature extraction methods. 

SVM classifiers are often employed with the Radial Basis Function (RBF) kernel. The 

RBF kernel (along with other common SVM kernels such as the linear and polynomial 

kernel) requires fixed length feature vectors. This has motivated many previous works 

to try and extract fixed length representations of proteins so that they can then be 

efficiently compared. In this work we define a kernel designed to work with variable 

length data. This allows us to directly compare PSSM matrices, instead of first 

transforming the matrix into a fixed length vector prior to comparison.  

 

Dataset 

In this study, three protein sequence datasets have been used: 1) DD-dataset (Ding and 

Dubchak, 2001), 2) TG-dataset (Taguchi and Gromiha, 2007) and 3) EDD-dataset (Dong 

et al., 2009). The DD-dataset that we have used consists of 311 protein sequences in the 

training set where two proteins have no more than 35% of sequence identity for aligned 

subsequence longer than 80 residues. The test set consists of 383 protein sequences 

where sequence identity is less than 40%. Both the sets belong to 27 Structural 

Classification of Proteins (SCOP) folds which represent all major structural classes: 𝛼, 

𝛽, 𝛼/𝛽, and 𝛼 + 𝛽 (Ding and Dubchak, 2001). The training set and test set have been 

merged as a single set of data in order to perform the 𝑘-fold cross-validation process. 

 

The TG-dataset consists of 1612 protein sequences belonging to 30 different folding 

types of globular proteins from SCOP. The names of the number of protein sequences in 

each of 30 folds have been described in Taguchi and Gromiha (2007). The sequence 

similarity of protein of TG datasets is no more than 25%. 

  

The EDD-dataset consists of 3418 proteins with less than 40% sequential similarity 

belonging to the 27 folds that originally used in DD-dataset. We extracted the 

EDD-dataset from SCOP in similar manner to Dong et al., (2009) in order to study our 

proposed method using a larger number of samples. 



Amino acid alignment method 

In this section, we present the proposed feature extraction method based on the 

alignment of proteins. To present the overview, a flow diagram of the proposed scheme 

has been shown in Figure 2. The model can be subdivided into the training phase and 

test phase. In the training phase a set of protein sequences is used to estimate the 

model parameters and in the test phase, the fold of a novel protein sequence is 

identified. During the training of the model, PSSM matrices of protein sequences are 

computed by using PSI-BLAST. In the pairwise analysis step, row vectors of two PSSM 

matrices are used to measure pairwise distance. By comparing all the row vectors in two 

PSSMs we get a dissimilarity matrix. This dissimilarity matrix is then used in dynamic 

time warping (DTW) stage to compute dissimilarity distance between two PSSM 

matrices of the corresponding proteins. The obtained dissimilarity distance is then used 

in the kernelization stage to compute kernel distance. A protein is compared 

progressively with all other proteins to form a kernel matrix. This kernel matrix will 

then be used to train SVM parameters. Once the model parameters are estimated then 

the system can determine the fold of a novel protein sequence.  

 

 

Figure 2: A flow-diagram of protein sequence classification using alignment method. 



Let 𝑃 and 𝑄 be the matrices representing PSSM (log probabilities) of two protein 

sequences of length 𝐿1 and 𝐿2, respectively. PSSM matrix can be interpreted as the 

relative probability of substitution of amino acids. The matrix 𝑃 will have 𝐿1 rows and 

20 columns and the matrix 𝑄  will have 𝐿2  rows and 20 columns. Let 𝑝𝑖  (for 𝑖 =

1,2, … 𝐿1) and 𝑞𝑗  (for 𝑗 = 1,2, … , 𝐿2) be the row vectors of 𝑃 and 𝑄, respectively. The 

dissimilarity cosine distance between 𝑝𝑖 and 𝑞𝑗 can be given as 

 

𝑑(𝑝𝑖 , 𝑞𝑗) = 1 −
𝑝𝑖𝑞𝑗

T

√𝑝𝑖𝑝𝑖
T𝑞𝑗𝑞𝑗

T
, for 𝑖 = 1,2 … , 𝐿1 and 𝑗 = 1,2, … , 𝐿2   (1) 

 

Calculating distance 𝑑 for all 𝐿1 rows and 𝐿2 rows would give a 𝐿1 × 𝐿2 dissimilarity 

matrix 𝑆. We then employ dynamic time warping to find the minimum cost path 

through the dissimilarity matrix 𝑆. This would give cumulative dissimilarity matrix 𝐷. 

The matrix 𝐷 defines the total cost of alignment between (𝑝1, 𝑞1) and (𝑝𝑖 , 𝑞𝑗). Lower 

cost implies a better alignment, which indicates that the proteins are more similar. The 

computation of cumulative dissimilarity matrix 𝐷 can be done in the following way 

 

𝐷𝑖,𝑗 = min(𝐷𝑖−1,𝑗 , 𝐷𝑖,𝑗−1, 𝐷𝑖−1,𝑗−1) + 𝑆𝑖,𝑗, for 𝑖 = 1,2, … , 𝐿1 and 𝑗 = 1,2, … , 𝐿2 (2) 

 

where 𝐷𝑖,𝑗 = [] (empty set) for 𝑖 ≤ 0 and/or 𝑗 ≤ 0 and 𝑆𝑖,𝑗 = 𝑑(𝑝𝑖 , 𝑞𝑗). 

 

We define the distance between two PSSM matrices 𝑃 and 𝑄, as 𝐷𝑑𝑡𝑤(𝑃, 𝑄). This can 

be expressed as 𝐷𝑑𝑡𝑤(𝑃, 𝑄) = 𝐷𝐿1,𝐿2
. The distance 𝐷𝑑𝑡𝑤 represents dissimilarity between 

the aligned proteins. The kernel distance between PSSM matrices 𝑃 and 𝑄, can be 

represented as 𝐾(𝑃, 𝑄) , where 𝛾  is a kernel parameter (chosen by performing 

cross-validation on the training set). The kernel function 𝐾(𝑃, 𝑄)  is defined by 

exp(−𝐷𝑑𝑡𝑤(𝑃, 𝑄)2/𝛾2). We then compute the kernel distance between all the pairs of 

proteins in the training set. This gives a kernel matrix 𝐾  having 𝑛  rows and 𝑛 

columns, where 𝑛 is the number of training samples. The kernel matrix 𝐾 is then 

further processed through the SVM classifier for parameter estimation and 

classification. 

 

Support vector machine as a classifier 

In this paper we used SVM (Vapnik, 1995) as a classifier. SVM is considered to be the 

state-of-the-art machine learning and pattern classification algorithm. It has been 

extensively applied in classification and regression tasks. SVM aims to find maximum 



margin hyper-plane (MMH) to minimize classification error. In SVM a function called 

the kernel 𝐾 is used to project the data from input space to a new feature space, and if 

this projection is non-linear it allows non-linear decision boundaries (Bishop, 2006). 

This function 𝐾  is usually considered as RBF kernel, polynomial kernel or linear 

kernel. These kernels require fixed length feature vectors. Since the protein sequences 

are of varying lengths, we can’t use these kernels. However, in this work we have 

defined a kernel function that can cater for this varying length (of proteins) problem 

without limiting the proteins to a fixed length vector. This would provide SVM more 

relevant and useful information for protein fold recognition. 

 

In order to find a decision boundary between two folds, SVM attempts to maximize the 

margin between the folds, and choose linear separations in a feature space. The 

classification of some known point in input space 𝐱𝑖 is 𝑦𝑖 which is defined to be either 

−1 or +1. If 𝐱′ is a point in input space with unknown classification then 

 

𝑦′ = sign(∑ 𝛼𝑖𝑦𝑖𝐾(𝐱𝑖 , 𝐱′) + 𝑏𝑛
𝑖=1 )      (3) 

 

where 𝑦′ is the predicted class of point 𝐱′. The function 𝐾() is the kernel; 𝑛 is the 

number of support vectors; 𝛼𝑖 are adjustable weights and 𝑏 is a bias. We use libsvm 

(Chang and Lin, 2011) for training and testing with our kernel function.  

 

An illustration of alignment method using a toy problem 

In order to illustrate the alignment method, let us consider a toy example of two protein 

sequences 𝑃 = 𝑉𝐴𝑅𝐴  and 𝑄 = 𝑉𝑉𝐴𝑅𝐴  of corresponding length 𝐿1 = 4  and 𝐿2 = 5 , 

respectively. Note that we assume that the toy proteins are made of 3 amino acids 𝐴, 𝑅 

and 𝑉. Table 1a and Table 1b show the PSSM of these proteins.  

 

Table 1a: PSSM of the protein 𝑃 

Amino acids 𝐴 𝑅 𝑉 

𝑉 1 5 6 
𝐴 4 6 -3 
𝑅 3 3 1 
𝐴 5 3 -1 

 

 

 

 

 



Table 1b: PSSM of the protein 𝑄 

Amino acids 𝐴 𝑅 𝑉 

𝑉 2 3 2 
𝑉 5 2 -3 
𝐴 5 4 6 
𝑅 0 4 1 
𝐴 2 0 -1 

 

Let 𝑝𝑖 (for 𝑖 = 1, … ,4) and 𝑞𝑗 (for 𝑗 = 1, … ,5) are the row vectors of PSSMs of 𝑃 and 𝑄, 

respectively. To compute the dissimilarity distance between row 1 of Table 1a (𝑝1 =

[1,5,6]) and row 1 of Table 1b (𝑞1 = [2,3,2]), we employ equation 1 as follows: 

𝑑(𝑝1, 𝑞1) = 1 −
𝑝1𝑞1

T

√𝑝1𝑝1
T𝑞1𝑞1

T

 

𝑑(𝑝1, 𝑞1) = 1 − 0.8933 = 0.1067 (since 𝑝1𝑞1
T = 29; 𝑝1𝑝1

T = 62 and 𝑞1𝑞1
T = 17) 

 

In a similar way, dissimilarity distance can be computed between all the rows of Table 

1a and Table 1b. This would give similarity matrix 𝑆 as follows: 

 

𝑆 = [

0.1067 1.0618
0.3789 0.1484

   
0.1171 0.1991
0.6206 0.3479

   
1.2272
0.3701

0.0541 0.3301
0.3031 0.0677

   
0.1372 0.2767
0.4029 0.5490

   
0.4870
0.1685

] 

 

Dissimilarity matrix 𝑆 is used in computing cumulative dissimilarity matrix 𝐷 using 

dynamic programming (equation 2) to find the minimum cost path (alignment path) as 

follows: 

 

 𝐷11 = min(𝐷01 , 𝐷10, 𝐷00) + 𝑆11 

     = 𝑆11 = 0.1067 (since 𝐷01, 𝐷10 and 𝐷00 do not exist and considered as empty) 

 

In a similar way, we can compute 𝐷21 = 𝐷11 + 𝑆21 = 0.4856; 𝐷12 = 𝐷11 + 𝑆12 = 1.1685 

and 𝐷22 = min(𝐷12, 𝐷21, 𝐷11) + 𝑆22 = 0.1067 + 0.1484 = 0.2552. The computed matrix 𝐷 

is given as follows: 

 

𝐷 = [

0.1067 1.1685
0.4856 0.2551

   
1.2856 1.4847
0.8757 1.2236

   
2.7119
1.5937

0.5397 0.5852
0.8428 0.6074

   
0.3923 0.6690
0.7952 0.9413

   
1.1560
0.8375

] 

 



By using matrix 𝐷, the distance between two proteins can be computed which is simply 

given by 𝐷𝑑𝑡𝑤(𝑃, 𝑄) = 𝐷(4,5) = 0.8375 . Suppose the kernel parameter 𝛾 = 10 

(evaluated by doing cross-validation on the training set) then kernel distance would be 

𝐾(𝑃, 𝑄) = exp(−𝐷𝑑𝑡𝑤(𝑃, 𝑄)2/𝛾2) = exp(−0.83752/10^2) = 0.9930. If 𝐾(𝑃, 𝑄) = 1 then it 

translates that proteins 𝑃 and 𝑄 are very similar to each other. Further, if there are 𝑛 

training data then it will give 𝑛 × 𝑛 kernel matrix 𝐾 which will be processed through 

SVM classifier for its parameter estimation. 

 

Results and discussions 

We carried out experiments on 3 benchmark datasets: DD, TG and EDD, to show the 

effectiveness of our proposed feature extraction method. We employ SVM classifier from 

libsvm (Chang and Lin, 2011) to find the accuracy of protein fold recognition where the 

accuracy is defined as the percentage of correctly recognized proteins to all the proteins 

of the test set. The SVM classifier is widely used in classification task. It finds 

maximum margin hyper-plane to minimize classification error. For the SVM classifier, 

kernel 𝐾 is used. The kernel and SVM parameters, gamma and 𝐶, are optimized using 

grid search. In statistical prediction, the following three procedures are often used to 

examine a predictor for its effectiveness in practical application: independent dataset 

test, subsampling test, and jackknife test. However, of the three test procedures, the 

jackknife test is deemed the least arbitrary that can always yield a unique result for a 

given benchmark dataset as elaborated in Chou and Shen (2010). However, to reduce 

the computational time, we adopted the 𝑘-fold cross-validation in this study as done by 

many investigators with SVM as the prediction engine. We use datasets to perform 

𝑘-fold cross-validation for 𝑘 = 5,6,7,8,9 and 10. For statistical stability we performed 

50 times 𝑘-fold cross-validation in this paper.   

 

The proposed feature extraction method has been compared with several other feature 

extraction methods and the results have been shown in Tables 2, 3 and 4. The following 

feature sets are considered for the experiment: PF1, PF2 (Ghanty and Pal, 2009), PF 

(Yang et al., 2011), Occurrence (O) (Taguchi and Gromiha, 2007), AAC, AAC+HXPZV 

(Ding and Dubchak, 2001), ACC (Dong et al., 2009), mono-gram and bi-gram (Sharma et 

al., 2013b). We have also updated the protein sequences to get the consensus sequence 

by using their corresponding PSSMs; i.e., each amino acid of a protein sequence is 

replaced by the amino acid that has the highest probability in PSSM. After this 

updating procedure, we have used the same feature extraction techniques (PF1, PF2, PF, 

O, AAC and AAC+HXPZV) again to obtain the recognition performance. In Tables 2-4, 



we have placed the results for PSSM updated protein sequences (or the consensus 

sequence) in the columns 2-7 of the row of PSSM + 𝐹𝐸𝐴𝑇, where 𝐹𝐸𝐴𝑇 is any feature 

extraction technique. The highest recognition accuracy of a particular 𝑘 -fold 

cross-validation is mentioned in bold face. It can be observed from Table 2 (on DD 

dataset) that the highest accuracy of protein fold recognition is 74.7% which is obtained 

by alignment method (when 𝑘 = 9 and 𝑘 = 10) followed by bi-gram method which is 

74.1% (when 𝑘 = 10). Besides the enhancement achieved compared to bi-gram and 

mono-gram methods that we have recently proposed in our previous study, we achieved 

an improvement of 7% prediction accuracy compared to ACC method (which has been 

proposed by Dong et al., (2009) and remained unbeaten ever since). In general, the 

protein fold prediction accuracy by alignment method is around 0.6% to 29% higher 

than other methods.  

 

Table 2: Recognition accuracy by k -fold cross validation procedure for various feature 
extraction techniques using SVM classifier on DD-dataset. 

Feature sets 𝑘 = 5 𝑘 = 6 𝑘 = 7 𝑘 = 8 𝑘 = 9 𝑘 = 10 

PF1 (Ghanty and Pal, 2009) 48.6 49.1 49.5 50.1 50.5 50.6 

PF2 (Ghanty and Pal, 2009) 46.3 47.0 47.5 47.7 47.9 48.2 

PF (Yang et al., 2011) 51.2 52.2 52.6 52.9 53.4 53.4 

O (Taguchi and Gromihan, 2007) 49.7 50.4 50.8 50.8 51.1 51.0 

AAC (Ding and Duchak, 2001) 43.6 43.9 44.2 44.8 44.6 45.1 

AAC+HXPZV+ (Ding and Dubchak, 2001) 45.1 46.2 46.5 46.8 46.9 47.2 

ACC (Dong et al., 2009) 65.7 66.6 66.8 67.5 67.7 68.0 

PSSM+PF1  62.5 63.2 63.7 64.2 64.5 64.6 

PSSM+PF2  62.7 63.3 64.1 64.2 64.6 64.7 

PSSM+PF  65.5 66.2 66.5 66.9 67.1 67.5 

PSSM+O  62.5 62.1 62.5 62.9 63.4 63.5 

PSSM+AAC 57.5 58.1 58.4 58.7 59.1 59.2 

PSSM+AAC+HXPZV 55.9 56.9 57.1 57.7 58.0 58.2 

Mono-gram (Sharma et al., 2013b) 67.7 68.4 68.6 69.1 69.4 69.6 

Bi-gram (Sharma et al., 2013b) 72.6 73.1 73.7 73.7 74.1 74.1 

Alignment method (this paper) 72.6 73.5 73.8 74.2 74.7 74.7 

 

Table 3 shows accuracy on TG dataset. It can be observed from the table that the 

highest accuracy of protein fold recognition is by alignment method. For the first time, 

we have enhanced the prediction accuracy to over 70% when the sequential similarity is 

less than 25%. We report 74.0% (when 𝑘 = 10) prediction accuracy for TG benchmark 

followed by bi-gram method which is 68.1% (Sharma et al., 2013b). In general, the 

accuracy is around 5.9% to 40.5% higher than other feature extraction methods. 

 

 

 



Table 3: Recognition accuracy (in percentage) by 𝑘-fold cross validation procedure for 
various feature extraction techniques using SVM classifier on TG dataset. 

Feature sets 𝑘 = 5 𝑘 = 6 𝑘 = 7 𝑘 = 8 𝑘 = 9 𝑘 = 10 

PF1 (Ghanty and Pal, 2009) 38.1 38.4 38.6 38.7 38.8 38.8 

PF2(Ghanty and Pal, 2009) 38.0 38.4 38.5 38.6 38.7 38.8 

PF (Yang et al., 2011) 42.3 42.6 42.7 43.0 43.0 43.1 

O (Taguchi and Gromihan, 2007) 35.8 36.1 36.2 36.1 36.3 36.3 

AAC (Ding and Duchak, 2001) 31.5 31.5 31.7 31.8 31.9 32.0 

AAC+HXPZV (Ding and Duchak, 2001) 35.7 36.0 36.1 36.2 36.3 36.3 

ACC (Dong et al., 2009) 64.9 65.4 65.9 66.2 66.4 66.4 

PSSM+PF1  51.1 51.5 52.0 52.3 52.4 52.7 

PSSM+PF2  50.2 50.4 50.7 50.8 51.0 51.1 

PSSM+PF  57.2 57.8 58.0 58.3 58.5 58.8 

PSSM+O  46.0 46.3 46.5 46.5 46.7 46.7 

PSSM+AAC  43.2 43.5 43.6 43.8 43.8 44.0 

PSSM+AAC+HXPZV  45.6 45.9 46.0 46.2 46.3 46.6 

Mono-gram (Sharma et al., 2013b) 49.3 49.5 49.7 49.9 50.0 50.1 

Bi-gram (Sharma et al., 2013b) 67.1 67.5 67.6 67.8 68.1 68.1 

Alignment method (this paper) 72.0 72.7 73.0 73.5 73.6 74.0 

 

Next, Table 4 depicts protein fold recognition accuracy on EDD dataset. It can be seen 

from the table that the highest accuracy is again obtained by alignment method. For the 

first time, we have enhanced the protein fold prediction accuracy to over 90% when the 

sequential similarity rate is less than 40%. We report 90.2% (when 𝑘 = 10) prediction 

accuracy for the EDD benchmark followed by ACC which is 85.9% (Dong et al., 2009). In 

general, the protein fold prediction enhancement achieved by alignment method 

compared to previously reported results for the EDD benchmark is from 4.3% to 49.2%.   

 

Table 4: Recognition accuracy (in percentage) by 𝑘-fold cross validation procedure for 
various feature extraction techniques using SVM classifier on EDD dataset. 

Feature sets 𝑘 = 5 𝑘 = 6 𝑘 = 7 𝑘 = 8 𝑘 = 9 𝑘 = 10 

PF1 (Ghanty and Pal, 2009) 50.2 50.5 50.5 50.7 50.8 50.8 

PF2 (Ghanty and Pal, 2009) 49.3 49.5 49.7 49.8 49.8 49.9 

PF (Yang et al., 2011) 54.7 55.0 55.2 55.4 55.5 55.6 

O (Taguchi and Gromihan, 2007) 46.4 46.6 46.6 46.7 46.7 46.9 

AAC (Ding and Duchak, 2001) 40.3 40.6 40.7 40.7 40.9 40.9 

AAC+HXPZV (Ding and Duchak, 2001) 40.2 40.4 40.6 40.7 40.9 40.9 

ACC (Dong et al., 2009) 84.9 85.2 85.4 85.6 85.8 85.9 

PSSM+PF1  74.1 74.5 74.7 75.0 75.1 75.2 

PSSM+PF2  73.7 74.1 74.5 74.6 74.7 74.9 

PSSM+PF 78.2 78.6 78.8 79.0 79.1 79.3 

PSSM+O 67.6 68.0 68.1 68.3 68.3 68.5 

PSSM+AAC 60.9 61.3 61.5 61.6 61.7 61.9 

PSSM+AAC+HXPZV 66.7 67.2 67.4 67.7 67.8 67.9 

Mono-gram (Sharma et al., 2013b) 62.7 63.0 63.3 63.3 63.4 63.6 

Bi-gram (Sharma et al., 2013b) 83.6 84.0 84.1 84.3 84.3 84.5 

Alignment method (this paper) 89.4 89.7 89.9 90.0 90.1 90.2 

 

In order to study the statistical significance of the prediction accuracy enhancement 



reported in this study, we conduct the paired t-test on our achieved results compared to 

the highest results reported in the literature. Associated probability value achieved for 

the paired t-test is 𝑝 = 0.03 which confirms the statistical significance of our reported 

enhancement in this study compared to the state-of-the-art results found in the 

literature for protein fold recognition.  

 

Figure 3: Precision, sensitivity and specificity of all feature sets on DD dataset. 

 

Figure 4: Precision, sensitivity and specificity of all feature sets on EDD dataset. 



 
Figure 5: Precision, sensitivity and specificity of all feature sets on TG dataset. 

 

Furthermore, we have conducted precision, sensitivity and specificity analysis of all the 

features used in this paper over 3 datasets. Figure 3, depicts the analysis on DD dataset, 

Figure 4 on EDD dataset and Figure 5 on TG dataset. It can be observed from Figures 

3-5 that specificity is high for all the feature sets. However, precision and sensitivity 

varies. For all the datasets, precision and sensitivity are quite promising for alignment 

method.  

 

Since it is very useful to have accessible codes for developing practically more useful 

models, we have provided Matlab based code for our method. <Link will be provided 

upon acceptance of this paper> 

 

Conclusion 

In this work, we developed feature extraction method using amino acid alignment 

scheme. The technique used PSSM log probabilities of protein sequences, to determine 

the distance between two proteins. This method has been compared with several other 

existing feature extraction methods and very promising results have been obtained. It 

was noted that the proposed method outperformed existing methods for three commonly 

used benchmarks. We have reported 74.6% prediction accuracy on DD benchmark. For 

the first time, we have also achieved to over 70% and 90% prediction accuracies for 

protein fold recognition when the sequential similar rates are less than 25% and 40%, 

respectively. We observed 74.0% and 90.2% prediction accuracies for TG and EDD 



benchmarks, respectively. These reported results are over 5.9% and 4.3% better than 

the best results reported for these two benchmark datasets.  
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