UsING CLIGEN 10 GENERATE RUSLE CLIMATE INPUTS

B. Yu

ABSTRACT. CLIGEN is a stochastic weather generator that produces continuous daily variables to drive process—based runoff
and erosion prediction models such as WEPP. To test CLIGEN’s ability to generate precipitation—related variables, which
are particularly important to runoff and erosion prediction, algorithms were developed to compute the R—factor, its monthly
distribution, and 10-year storm erosion index (EI} needed to apply the Revised Universal Soil Loss Equation (RUSLE).
Measured R—factor and 10-year storm EI for 76 sites in the U.S. were used for calibration, and 89 additional sites were used
for validation. It was found that the generated R—factor using CLIGEN is highly correlated with the measured R—factor for
the calibration sites (r> = 0.96), although the generated R—factor is systematically larger than the measured R—factor. The
predicted R—factor for validation sites has a model efficiency (E,) of 0.92 and a root mean squared error of around 600 MJ
mm ha~! h~1 year~!, or 24% of the average R—factor for the 89 sites. In addition, CLIGEN—generated precipitation data can
also be used to predict 10-year storm EI (E, = 0.75) and monthly distribution of rainfall erosivity for a wide range of climate
environments (average discrepancy = 2.6%). This represents considerable improvement over existing methods to estimate
R-factor and 10-year storm EI for locations with only monthly precipitation data, although the systematic over—estimation
of the R—factor using CLIGEN-generated climate data suggests possible inadequacies in the assumed storm patterns in

CLIGEN and WEPP.
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LIGEN is a stochastic weather generator to

produce, among other things, continuous daily

climate files to run WEPP for runoff and soil loss

predictions (Nicks et al., 1995; Flanagan and
Nearing, 1995; Laflen et al., 1991, 1997). Ten weather
variables are generated for each day of the simulation period.
The quality of the four precipitation—related variables is of
particular importance because previous studies have shown
that predicted runoff and soil loss are most sensitive to these
precipitation variables (Nearing et al., 1990; Chaves and
Nearing, 1991). Yu (2000) noted a critical coding error in
relation to storm generation in CLIGEN, modified the
algorithm to simulate the peak rainfall intensity, and tested
CLIGEN using break—point rainfall data for 14 sites in the
U.S. in terms of predicted runoff and soil loss. Subsequently,
the entire CLIGEN program was re—coded to conform to
WEPP coding conventions, with the modified algorithm for
generating peak rainfall intensity implemented and
command line options introduced (Meyer, 2001; Flanagan et
al., 2001). As a result, the program structure has been
simplified ~considerably, and code readability vastly
improved. In addition, standard normal deviates used to
generate climate variables by CLIGEN are “quality—
controlled” by testing monthly batches of normally
distributed deviates as the simulation progresses (Meyer,
2001; Flanagan et al., 2001). Meanwhile, the CLIGEN
parameter database has been expanded to include about
2600 sites in the U.S. (Flanagan et al., 2001).
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Tests of CLIGEN in terms of runoff and soil loss predicted
with WEPP, although highly relevant, were confounded by
the fact that specific soil, topography, management, and
infiltration and erodibility parameter values have to be used.
Performance of CLIGEN was thus conditional upon other
input requirements for WEPP. 1t is therefore desirable to
consider other performance indicators that rely solely on
rainfall characteristics. If CLIGEN can generate climate data
for process-based erosion prediction models such as WEPP,
then CLIGEN would logically be expected to provide climate
input for other erosion prediction models, such as the
R—factor for RUSLE (Revised Universal Soil Loss Equation,
Renard et al.,, 1997). In fact, Nicks and Gander (1994)
apparently calculated the R—factor for the USLE for the
eastern U.S. (east of the 105th meridian) and found that
“while there is not exact agreement between the contour lines
constructed using CLIGEN and those given in the USLE
handbook, the pattern is quite similar...”. However, it is not
clear how the R—factor was calculated and which sites in the
castern U.S. were used. It is the objective of this article to use
the latest corrected CLIGEN to test its ability to generate the
R-factor, its monthly distribution, and 10—year storm EI
values for RUSLE for 165 sites across the U.S. This not only
provides a further reality check on CLIGEN but, when
validated, will allow CLIGEN to be used as an appropriate
tool for generating climate data for both RUSLE and WEPP
in an integrated modeling environment such as MOSES
(Meyer et al., 2001).

Renard and Freimund (1994) reviewed methods to
estimate the R—factor using climate data that are readily
available, such as monthly precipitation amounts. They also
developed regression equations to estimate the R—factor from
mean annual precipitation and 10-year storm EI from the
measured R—factor for 132 sites in the U.S. Their results
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provide an important yardstick against which performance of
CLIGEN will be assessed.

The metric unit for the R—factor is MJ mm ha=! h-! year!,
and MJ mm ha-! h-! for 10~year storm EI. Throughout this
article, wherever appropriate “R—factor in SI units” instead
of “R—factor in MJ mm ha-! h-! year-1” is used for simplicity.
The same also applies to 10—year storm EI. To obtain the
R—factor in U.S. customary units of hundreds of foot tonf inch
acre-1 h-! year-1, the R—factor in SI units needs to be divided
by a factor of 17.02 (Foster et al., 1981; Renard et al., 1997).

Two different versions of CLIGEN are considered in this
article: Version 5.101 (Meyer, 2001), and Version 5.101 with
“quality—control” measures disabled. Instead of the original
random number generators used in Version 5.0 and prior
versions, subroutines ranl and gasdev from Numerical
Recipes (Press et al., 1992) were used to generate uniform
and normal random deviates for CLIGEN. Again for
simplicity, these versions are referred to as V5.101 and NR1,
respectively, in this article.

MATERIALS AND METHODS
DArta

Although CLIGEN parameter files are available for more
than 2600 sites in the U.S., parameter values for solar
radiation and storm intensity variables originated from
142 sites using the method of triangulation. For each site in
the CLIGEN database, the weighted average of parameter
values from three nearby sites was used. When a CLIGEN
site coincides with one of the original 142 sites, a weighting
factor of 1 would appear, indicating that parameter values
from other sites were not used. This weighting scheme is an
important consideration when selecting sites for the R—factor
comparison.

Mean annual rainfall, R—factor, and 10-year storm EI
values were extracted for 165 sites from the RUSLE
database. These constitute all the sites from the RUSLE
database for which CLIGEN parameter files are available,
except that Honolulu is the only site selected from 17 avail-
able sites in Hawaii. The remaining 16 sites in Hawaii were
discarded because they all had an identical 10—year storm EI
value of 160 (U.S. customary units) although the R—factor
varied from 100 to 400 (U.S. customary units) among these
sites. For each of the 165 sites, a corresponding CLIGEN
parameter file was extracted either for the site or for the
nearest site. The 165 sites were separated into two groups.
The first group contains all the sites with a weighting factor
of 1, indicating that the R—factor, 10~year storm EI, and
CLIGEN parameters values are likely to have originated
from the same data source. These sites, 76 in total, were used
for model calibration. The remaining 89 sites were used for
model validation. For the validation sites, the average
distance between the RUSLE sites and CLIGEN sites is about
21 km, with a maximum distance of about 79 km between
Scoby, Montana (RUSLE site) and Wolf Point, Montana
(CLIGEN site). Figure 1 shows the distribution of these
calibration and validation sites in the contiguous U.S. and
Hawaii.

In addition, WEPP climate input files were used to
calculate the R-factor for 14 USDA-ARS sites. These
climate files in WEPP input format were prepared using
observed precipitation data for previous WEPP validation
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Figure 1. Calibration (open circles) and validation (dots) sites in the con-
tiguous U.S. and Hawaii.

studies (Risse et al., 1995; Zhang et al., 1995a, 1995b; Liu et
al., 1997). These files have been used to evaluate CLIGEN’s
performance in terms of predicted runoff and soil loss with
WEPP (Yu, 2000). While measured R—factor values were
available from the RUSLE database for some of the 14 sites,
most of the R—factor values for these sites had to be estimated
from isoerodent maps for the U.S. (Renard et al., 1997).

ALGORITHM

CLIGEN generates four precipitation—related variables
for each wet day (Nicks et al., 1995): precipitation amount P
(mm), storm duration D (h), time to peak as a fraction of
storm duration, t,, and the ratio of peak intensity over the
average intensity, ip. In CLIGEN, time is normalized by
storm duration, D, and rainfall intensity is normalized by the
average intensity, P/D. Therefore both t, and i, are dimen-
sionless variables, and they can be regarded as normalized
time to peak and normalized peak intensity, respectively.

A double exponential function is used to describe the
normalized intensity pattern as:

b(t—tp) 0<t<t

i.€
i(ty=4" _ P )

where b and d are parameters for the storm pattern. In

essence, rainfall intensity is assumed to rise exponentially

with time from O to t,, and then decrease exponentially from

tp to 1. Two further assumptions were made (Nicks et al,

1995):

1. Rainfall intensity at the beginning and at the end of the
storm is the same, i.e., i(0) = i(1).

2. The area under the curve defined by equation 1 from 0 to
tp is assumed to be equal to t;, so:

t
P
. b(t —t,)
tp =ip [ TP a @
0

With these assumptions, the storm pattern can be uniquely
described by:

b(t-tp) O<t<tp

G

i) ={1Pe
. bty (t-tp)/(1-
e tp(t=tp)/(1=tp) (<t<l

where b is the only parameter that satisfies:
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Nicks et al. (1995) restricted b to values less than 60 so that
Newton’s method could be used to solve for b with the
microcomputers available at the time. In fact, it is much
better to regard the product of b and t, as a new parameter B
and solve for B instead of the original parameter b because
the solution to equation 4 in terms of B is guaranteed to lie
in the range between In(ip) and ip,. The new parameter B thus
can be determined readily and efficiently for any given value
of i, using Newton—Raphson’s method within the range
specified above.

For each day when precipitation occurs and when mean air
temperature is greater than 0°C, peak 30-min intensity is
calculated as follows. If D is less than or equal to 30 min, then
Iyp = 2P (mm h-1) by definition. If D is greater than
30 minutes, maximizing the amount of rain in a given time
interval (At), then the peak intensity is:

i =§iAp—t(l—e’BAt) 5)

Re-normalization yields the 30—min peak rainfall intensity
as:

. B

2Pi ——

=_ Pl{_e 2D
I3 = B 1-¢ (6)

The unit energy equation recommended for RUSLE is given
by:

e(i)=eo(1-a e Vb) @)

where e, = 0.29 MJ ha-! mm~!, a = 0.72, and I, = 20 mm h~!
(Brown and Foster, 1987; Renard et al., 1997). The total
storm energy, E, can be derived by integrating the unit energy
over the double exponential storm pattern, which leads to:

_Ile”B .JB

ai
E =Pe, 1——pI—0 eb _ebh 8)
B Ip

where I, is peak intensity (mm h-1).

The daily storm erosion index, EI, is the product of
equation 6 and equation 8. These are accumulated for each
month, and the R—factor, by definition, is the sum of mean
monthly EI values. A program, CLG2RF, was written to
implement the algorithm described above. For any WEPP
climate input file(s), including those generated by CLIGEN,
CLG2RF calculates daily storm EI values whenever liquid
precipitation occurs, and outputs (1) mean annual precipita-
tion, (2) R—factor, (3) monthly distribution of rainfall
erosivity, and (4) 10-year storm EI. The 10-year storm EI
value is determined from an annual series of maximum storm
EI values. Each value in the annual series is assigned an
average recurrence interval using Weibull’s formula (Maid-
ment, 1993). The 10-year storm EI value can be determined
either directly or using the linear interpolation technique.
The program can handle climate data for either single or
multiple sites. In addition, users can specify a precipitation
threshold below which the storm EI values are excluded from
calculations. Yu (1999) investigated the effect of using
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different precipitation thresholds on calculated R—factor and
found that the effect can be noticeable, especially for areas
with low mean annual precipitation. For this article, all liquid
precipitation was included in R—factor calculations. This is
consistent with the method used for preparing the isoerodent
map for the western U.S. and with the recommendations for
calculating the R—factor for RUSLE (Renard et al., 1997).

PROCEDURE

CLIGEN V5.101 was used to generate climate data for a
period of 100 years for each of the 165 sites. V5.101 was then
modified to use random number generators, namely ranl and
gasdev, from Numerical Recipes (Press et al., 1992) to create
a new version called NR1. All of the “quality control”
procedures in V5.101 were disabled in NR1. Another period
of 100 years’ data was generated with NR1 for each of the
sites. For each site, a random seed for V5.101 was selected
in the range from 1 to 10,000. Larger random seeds were not
used because V5.101 first generates random numbers for a
number of times that equals the random seed specified before
the calculation proper commences. Larger random seeds
would use unnecessarily large amounts of computation time.
For NR1, random seeds were selected in the range from 1 to
2311 as allowed by ranl. The random seeds used for both
types of simulations were recorded for each site so that the
results can be readily reproduced if needed.

CLIGEN generates storms on a daily basis. Only one
storm is generated on wet days. The double exponential
storm pattern is assumed for all storms. Because of these
assumptions, hence limitations, R—factor and 10—year storm
EI produced by CLIGEN and CLG2RF are termed generated
R—factor and generated 10—year storm EI It is hypothesized
that the measured and generated erosivity values are the
same, or at least that a good relationship between the two
exists and that the relationship is consistent across all climate
regions. For calibration sites, standard linear regression
technique was used to examine the relationship between
measured and generated R—factor and 10—-year storm EI. For
validation sites, predicted R—factor or 10-year storm EI
values were simply compared with the measured values. The
coefficient of efficiency (Nash and Sutcliffe, 1970), E., was
used to quantify the model performance. The coefficient of
efficiency has lately become the standard measure for model
validation purposes and has been widely used for WEPP
validation studies (e.g., Zhang et al., 1996; Tiwari et al.,
2000; Yu et al., 2000).

Monthly or half-monthly percentage distribution of
rainfall erosivity is needed to calculate the weighted cover
factor and is also useful for identifying periods of high
erosion risk. In the RUSLE database, the half-monthly
distribution is tabulated for each of 149 zones in the U.S. Six
sites were selected to cover a wide range of precipitation
regimes: The monthly distribution for the zone in which the
selected site was located was compared with the monthly
distribution predicted by CLG2RF using CLIGEN-gener-
ated climate files. It is worth noting that no calibration is
required when comparing monthly distribution in terms of
percentage contribution to the R—factor. The mean absolute
difference in the monthly distribution of the R—factor was
used as a measure of the discrepancy between the measured
and predicted monthly distributions. This measure has been
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used to characterize the performance of daily rainfall
erosivity models (Yu and Rosewell, 1996; Yu, 1998; Yu et al.,
2001).

RESULTS
CALIBRATION

Figure 2 shows the relationship between the generated
R-factor using CLIGEN—generated climate files for WEPP
and the measured R-factor from the RUSLE database. It is
clear that the generated R—factor is systematically larger than
the measured R—factor for the calibration sites. From
figure 2, it can also be seen that the data point for Baton
Rouge, Louisiana, appears to be an outlier. In the RUSLE
database, Baton Rouge has a R—factor of 11 914 MJ mm ha-!
h-! year, the same as that for New Orleans, but much higher
than that for Mobile, Alabama, with R = 10 212 MJ mm ha-1
h-! year-!. The isoerodent map for the eastern U.S., however,
shows similar R—factor values for Baton Rouge and Mobile.
If we exclude the data point for Baton Rouge, then the
calibration equation for the R—factor becomes:

R=0576Rge,, 17 =096 )
using NR1. The calibration equation for 10—year storm EI
values:

EI=0.609EL,, 1’ =086 (10)
is shown in figure 3. Calibration results using V5.101 in
addition to those presented above are summarized in table 1
for comparison. There is no difference of any significance
between NR1 and V5.101 in terms of r2 and root mean
squared errors, although V5.101 produces slightly better
calibration results.

Spatially consistent generation of weather variables is an
important requirement for CLIGEN. Residuals from the
calibration equations given above were examined in this
context to determine whether systematic errors occur
spatially. Rank correlation between the residuals and lati-
tude, longitude, and altitude, respectively, were calculated
for the calibration sites. The average rank correlation
coefficient was 0.090, and the average t—value was 0.769,
with the number of degrees of freedom being 73 for the
calibration sites. None of the six rank correlation coefficients
was significantly different from zero (at the 5% level) for the
R-factor as well as the 10~year EI values. These results show
that CLIGEN can produce geographically consistent climate

data to compute the R—factor and 10—year storm EI across the
contiguous U.S.

VALIDATION

Calibration equations 9 and 10 were used to predict the
R—factor and 10-year storm EI using CLIGEN-generated
climate files for the 89 validation sites. Validation of the
relationship between the measured and CLIGEN—generated
R—factor, 10—year storm EI is presented in table 1 and figures
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Figure 2. Relationship between R—factor generated with NR1 and mea-
sured R-factor from RUSLE database for 76 calibration sites.
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Figure 3. Relationship between 10-year storm EI generated with NR1
and the measured value from RUSLE database for 76 calibration sites.

Table 1. Calibration and validation results for R-factor and 10-year storm EI using CLIGEN and CLG2RF in comparison with those using mean
annual rainfall: n = sample size, bias = the ratio of measured to generated values, E. = model efficiency (Nash and Sutcliffe, 1970),
RMSE = root mean squared error, and SEE = standard error of estimation (Renard and Freimund, 1994).

Nonlinear regression

Calibration Validation (Renard and Freimund, 1994)
SEE RMSE SEE
n bias 12 (metric units) n Ec (metric units) n 2 (metric units)

R—factor 132 0.81 1075
NR1l2] 75 0.576 0.96 455 89 0.92 604
v5.1010al 75 0586  0.96 447 89 0.92 599

10-year storm EI 132 0.63 565
NR1 76 0.609  0.86 366 89 0.75 422
V5.101 76 0.680  0.87 347 89 0.74 425

(2] Excluding Baton Rouge, Louisiana.
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4 and 5. It can be seen from table 1 that validation results are
not as good as calibration results in terms of root mean
squared errors. It can also be seen that for validation sites,
NR1 performed slightly better than V5.101 with respect to
10-year storm El, and V5.101 performed slightly better than
NR1 with respect to R—factor. The difference between the
two random number generation schemes is small and
insignificant again in terms of model efficiency and root
mean squared errors. Figure 4 shows good agreement
between measured and predicted R—factor for validation
sites, although the predicted R—factor tends to be larger than
the measured R—factor for regions of low R—factor, a pattern
not clearly evident for calibration sites (fig. 2). For 10-year
storm EI, the measured EI values tend to assame a few
discrete values. For example, 9 of the 89 sites have an EI
value of 1362 MJ mm ha-! h-! (80 U.S. customary units) and
6 sites have an EI value of 3404 MJ mm ha-! h-1 (200 U.S.
customary units). This strongly suggests that the original EI
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Figure 4. Comparison of predicted R-factor and measured R—factor from
RUSLE database for 89 validation sites.
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Figure 5. Comparison of predicted 10—year storm EI and measured val-
ues from RUSLE database for 89 validation sites.
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values in the RUSLE database lack precision and they may
have been estimated or interpolated in a crude manner. It
opens to question what model efficiency and root mean
squared error would be, had better EI data been available for
validation purposes.

The validation results (table 1) show considerable im-
provement over the non-linear regression technique used to
estimate the R—factor (Renard and Freimund, 1994). It is
worth noting that data from all 132 sites were used to develop
the regression equation, and there was no independent test of
the regression equation developed. In this study, the R—factor
values for validation sites were not used to develop
calibration equation 9. The root mean squared error using
CLIGEN and CLG2RF is much smaller than the standard
error of estimation using the regression technique, taking into
account that the two measures of model error are essentially
the same, differing only in terms of the number of degrees of
freedom. Now that CLIGEN parameter files are readily
available, there is essentially no additional cost in using
CLIGEN and CLG2RF instead of the monthly precipitation
data and regression equations as far as predicting the
R—factor is concerned.

Renard and Freimund (1994) found that mean annual
precipitation is a poor predictor of the 10-year storm EI for
132 sites in the U.S. They then developed a relationship
between the R—factor and 10-year storm EI for these sites
with 12 = 0.90 and standard error of estimation of 297 SI units.
To use the relationship to predict 10~year storm EI presumes
that the R—factor is known a priori. Therefore, the standard
error of estimation is not strictly comparable to the validation
results reported in this article. For comparison purposes, the
power functional form used by Renard and Freimund (1994)
was fitted to the measured R—factor and 10-year storm EI for
the 89 validation sites. The identical approach was then
applied to the R—factor and 10-year storm EI predicted by
NR1 and V5.101, respectively, using calibration equations
presented above and in table 1. Figure 6 shows the power
functions fitted to the measured and predicted 10—storm EI.
It can be seen that the predicted relationship between
R—factor and 10—year storm EI, especially that using NR1, is
quite similar to the observed relationship between the two
variables for the 89 validation sites.

Predicted monthly distribution of the R—factor is shown in
figure 7 for six sites. Also shown in figure 7 is the measured
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Figure 6. Comparison of observed and CLIGEN-generated relationship
between R—factor and 10—year storm EI for 89 validation sites.
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monthly distribution for the zone in which the selected sites
are located. These sites were selected to represent different
rainfall regimes in North America (Trewartha, 1981).
Table 2 summarizes the rainfall regime and mean absolute
difference between measured and predicted monthly dis-
tribution. It is clear from figure 7 that the predicted monthly
distribution using CLIGEN and CLG2RF captures the
seasonal distribution of erosivity for a wide range of
precipitation regimes. The discrepancy between measured
and predicted monthly distribution averages 2.6% for the six
sites. It is also worth noting that Renard and Freimund (1994)
did not attempt to estimate the monthly distributions from
annual or monthly precipitation. Yu et al. (2001) argued that,
as a minimum, daily rainfall data would be néeded to
adequately estimate the monthly distribution of erosivity.
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14 USDA-ARS SITES
R—factor values for the 14 USDA-ARS sites used in Yu
(2000) were related to the R—factor calculated with CLG2RF
and observed precipitation data prepared in WEPP climate
input format. Figure 8 shows a scatter plot for these 14 sites
and the line of best fit through the origin. The regression
equation for these 14 sites based on observed precipitation
data is:
r? =091

R =0.581RwEPP. 11

with a standard error of estimation of 582 SI units. It is clear
that the relationship is not as good as the calibration equation
for the 76 sites described above (see also table 1). The large
variations among the 14 sites are likely to be a reflection of
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Figure 7. Measured (solid squares) and predicted (open circles) monthly distribution of rainfall erosivity for selected sites in the U.S.
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Table 2. A comparison of the monthly distribution of erosivity for
selected sites with different rainfall regimes. Identification
of rainfall regime was based on Trewartha (1981).

Discrepancy

Site Rainfall Regime (%)
Buffalo, New York Eastern Maritime 1.9
Flagstaff, Arizona Intermontane Transitional 2.9
Honolulu, Hawaii Tropical Oceanic 3.8
Jacksonville, Florida Sub-tropical Oceanic 2.1
Morris, Minnesota Interior (Complex) 2.7
San Diego, California Mediterranean 24

the natural climate variability, because these WEPP climate
files prepared using observed precipitation data- have an
average record length of only about 10 years (Yu, 2000). The
average record length is considerably shorter than the
100-year simulation period used for all calibration and
validation sites. However, the relationship between the
R-factor using observed precipitation data in WEPP input
format and the measured R—factor for the 14 sites is
remarkably similar to the calibration equation for the 76 sites
(fig. 8).

The nearly identical relationship between the measured
R—factor and that calculated using observed climate data for
WEPP has two important implications. First, this shows that
CLIGEN is able to produce P, D, t,, and ip values that are
statistically similar to those based on observed climate data
in terms of generated R—factor. Thus, the conclusions by Yu
(2000) were corroborated without having to rely on runoff
and soil loss parameters and a particular modeling frame-
work. Second, the consistent relationship between measured
and generated R—factors shows that the discrepancy between
the two is not a result of CLIGEN per se but of the way storm
patterns are represented in CLIGEN and WEPP. In particular,
the assumptions of a single storm on wet days and all storms
having a double exponential distribution are likely to be the
main causes for the discrepancy.

DISCUSSION
This article shows that CLIGEN is able to generate the
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Figure 8. Relationship between measured R-factor and that calculated
using observed precipitation data in WEPP input format for 14 USDA-
ARS sites. The same data set was used in a previous attempt to evaluate
CLIGEN’s performance in terms of predicted runoff and soil loss (Yu,
2000). The dashed line shows the calibration equation for the 76 sites pre-
sented in figure 2.

Vol. 45(4): 993-1001

required climate inputs for RUSLE, so long as calibration
equations are used to adjust the generated R—factor and
10-year storm EI values. This, however, should not over-
shadow the fact that the R—factor generated by CLIGEN
based on daily EI values is systematically higher than the
measured R—factor. While no detailed investigation has yet
been undertaken into the cause of these large generated
R-factor values, it is quite likely that the over—estimation
occurs because of accumulation of rain into a single storm on
wet days and the assumption of a double exponential storm
pattern for all storms. Brown and Foster (1987) used a single
exponential function to represent re—ordered intensity data
for 54 storms in the U.S. to simplify calculations of storm
energy and peak 30-min intensity. Their results showed that
on average, estimated I3 was about 35% greater than the
measured I3g values. Their results also suggested that storm
energy was slightly over—estimated (3.5% to 4.7% for the top
half the data range for storm energy). They ascribed the
over—estimation of I3g to multiple peaks of similar magnitude
within a single storm. Although their results are not strictly
comparable to what is reported in this article, becausec Brown
and Foster (1987) used a single rather than double exponen-
tial function and used the energy equation for the USLE to
calculate the storm energy, there is sufficient evidence to
suggest that the bias in the generated R—factor is systematic
rather than accidental. Thorough testing is called for to
determine whether daily P, D, tp, and i, are adequate to
represent actual storm patterns, not only in the context of
reproducing daily storm energy and daily I3, but also in the
broader context of runoff and soil loss prediction using
WEPP.

The issue of random number generators also requires
further comments. While there is no significant difference
between V5.101 and NR1 in terms of predicted R—factor and
10-year storm EI for the 165 sites tested, it is important to
note that the random number generator used in CLIGEN
Version 5.0 and prior versions is inadequate when subjected
to rigorous statistical tests. Test results using DIEHARD
developed by Marsaglia (1985, 2001) showed that the
random number generator used in CLIGEN 5.0 and prior
versions failed most of the tests. Ranl from Numerical
Recipes, by comparison, is able to pass all the tests except
those involving the 32nd bit of the integer, as would be
expected. It is therefore imperative to improve or replace the
random number generators in CLIGEN Version 5.0 and prior
versions.

I would argue for the use of ranl in conjunction with
gasdev in CLIGEN for the following reasons. First, these
routines are readily available from a well-known source, and
presumably these generators have been widely and critically
examined. Second, ran1 would not fail to pass any statistical
tests, except when the number of generated uniform deviates
begins to exceed 108 (Press et al., 1992). Even for extremely
wet areas where it rains every other day, CLIGEN would still
require, on average, no more than 12 uniform deviates for
each day of simulation. This implies that ranl is quite
adequate, unless the years of simulation start to approach
23,000. Superior generators with very long periods are
available to replace ran1 if and when required (Marsaglia and
Zaman, 1994; Press et al., 1996). Finally, although speed is
rarely a major issue nowadays with ever—increasing com-
putational power, NR1 is noticeably faster (by approximately
a factor of 4) than V5.101.
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CONCLUSION

CLIGEN is a useful tool for weather generation because
it is relatively simple, it generates a wide range of weather
variables, and more importantly, the required parameter
values are available for a large number of sites. This article
shows that CLIGEN not only can be used to supply simulated
climate data on a daily basis for WEPP, it can also be used as
an effective tool to generate the R—factor, its monthly
distribution, and 10-year storm EI for RUSLE at minimum
additional cost. Thus, CLIGEN is able to meet all RUSLE’s
climate input requirements. The quality of these estimates is
superior to that using the existing methods and monthly
precipitation data. When compared to observed clintate data
for 14 USDA-ARS sites, this article shows that CLIGEN is
able to preserve the storm characteristics in terms of the
generated R—factor for these sites. However, the systematic
and consistent discrepancy between measured R—factor and
the R—factor based on both CLIGEN-generated and observed
precipitation data highlighted possible inadequacies in the
assumed storm patterns in CLIGEN and WEPP.
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