Immunity, immunopathology, and human vaccine development against sexually transmitted Chlamydia trachomatis

Jose Rey-Ladino1,2, Allen GP Ross3, and Allan W Cripps3,*

1Department of Microbiology and Immunology; School of Medicine; Alfaisal University; Riyadh, Saudi Arabia; 2Department of Infection and Immunity; King Faisal Specialist Hospital and Research Center; Riyadh; Saudi Arabia; 3School of Medicine; Griffith Health Institute; Griffith Health; Griffith University; Southport, Queensland, Australia

Keywords: Chlamydia trachomatis, immunity, dendritic cells, pathology, vaccine

This review examines the immunity, immunopathology, and contemporary problems of vaccine development against sexually transmitted Chlamydia trachomatis. Despite improved surveillance and treatment initiatives, the incidence of C. trachomatis infection has increased dramatically over the past 30 years in both the developed and developing world. Studies in animal models have shown that protective immunity to C. trachomatis is largely mediated by Th1 T cells producing IFN-γ which is needed to prevent dissemination of infection. Similar protection appears to develop in humans but in contrast to mice, immunity in humans may take years to develop. Animal studies and evidence from human infection indicate that immunity to C. trachomatis is accompanied by significant pathology in the upper genital tract. Although no credible evidence is currently available to indicate that autoimmunity plays a role, nevertheless, this underscores the necessity to design vaccines strictly based on chlamydial-specific antigens and to avoid those displaying even minimal sequence homologies with host molecules. Current advances in C. trachomatis vaccine development as well as alternatives for designing new vaccines for this disease are discussed. A novel approach for chlamydial vaccine development, based on targeting endogenous dendritic cells, is described.

Introduction

Chlamydia trachomatis is the most common sexually transmitted bacterial infection in the world with more than 92 million new cases reported per annum and with more than two-thirds of these occurring in developing countries.1,2 Pelvic inflammatory disease (PID), ectopic pregnancy, and infertility are the major adverse clinical outcomes of public health importance.3,4

Chlamydia control programs aimed at reducing the incidence, prevalence and morbidity of disease have been implemented in many developed countries. These programs involve the screening and detection of infected individuals, antimicrobial treatment and partner notification. Over the past 30 y the incidence of sexually transmitted chlamydia has dramatically increased in various countries including the USA,5,6 Canada,7 Sweden,8 Norway, and Finland.9 In addition, the World Health Organization (WHO) has identified high levels of transmission in Sub Saharan Africa and South East Asia.2 Whether this increase correlates with a net increase in chlamydia disease or whether it is the result of more wide-spread screening and improved diagnosis is controversial. It is clear however, that the highest rates of chlamydia world-wide occur among young adults, particularly women aged 15–24 y old from lower socio-economic backgrounds.10

Sexually transmitted C. trachomatis infects the endocervical epithelia of women and the urethral epithelia in men.5 Infection remains subclinical in a large proportion of infected individuals (70–90% of women; 30–50% of men) who can still transmit infection. Among untreated women, C. trachomatis can ascend along the endometrial epithelium to the fallopian tubes where it can establish persistent infection causing pelvic inflammatory disease (PID) (Fig. 1). Symptoms of PID range from none to severe abdominal pain, fever, dyspareunia, prolonged menstruation, and inter-menstrual bleeding.

Studies in humans and animal models have identified some correlates of anti-chlamydial immunity. However, recent studies have also demonstrated that immune responses to chlamydial infection can be a significant source of pathology and disease. Vaccine development will need to ensure that immunisation does not cause exacerbation of inflammatory mechanisms which may lead to further tissue and organ damage.11-15

A safe and reliable vaccine is considered to be the best approach to reduce global prevalence of C. trachomatis infection. While considerable progress has been made in recent years, an efficacious C. trachomatis vaccine remains elusive. Identification of correlates of immunity studies in both animal models and human studies, and clarification of protective immune mechanisms to infection, have impaired progress. The discovery of a number of new C. trachomatis and C. muridarum vaccine candidate antigens (Table 1) are encouraging and has inspired renewed efforts to design a human vaccine. However, suitable adjuvants that help stimulate T cell-
mediated immunity against intracellular bacteria are lacking. Likewise, a vaccine delivery system to induce and sustain the immune response to C. trachomatis is needed. Research in cancer immunotherapy and experimental vaccines for intracellular infections provides valuable insight for the design of a new vaccine against C. trachomatis infection. Vaccines that target endogenous immune cells, such as dendritic cells (DCs), have shown a significant enhancement of T-cell immunity in cancer.16 This review examines various aspects of chlamydia immunity and immunopathology in the context of current vaccine development and explores the possibility of utilizing a DC targeting approach to design new C. trachomatis vaccines.

Immunity to C. trachomatis

The last two decades have seen significant progress in the understanding of immunity to C. trachomatis genital infection. It is now known that mice or guinea pigs can resist reinfection 30–60 d after primary infection, but these animals can be reinfected after 75 d, although the severity of disease is reduced.17,18 However, the dynamics of susceptibility and host resistance to C. trachomatis infection in humans, as compared with animal models, differ substantially. Epidemiological studies, for example, show that under natural conditions T-cell immunity develops slowly perhaps reflecting the silent nature of C. trachomatis infection.19

Chlamydia-Specific T cell Immunity

In both mice and guinea pigs, immunity to C. trachomatis is characterized by the development of antigen specific T-cells and antibodies. Antibodies are detectable within 10–14 d after infection. In mice, antibodies produced are long-lasting and can be detected in serum 300 d after infection.18,20 The presence of chlamydia-specific antibodies, however, does not correlate with resolution of infection in humans and, in fact, seem to be more correlated with increased morbidity.21,22 Nevertheless, studies in mice have shown that anti-chlamydia antibodies are more important in the control of re-infection rather than primary infection.23,24 Specifically, B-cell deficient mice with no detectable antibody responses successfully resolved genital infection with C. muridarum.23 However, mice depleted of both CD4+ T cells and CD8+ T cells, expressing normal anti-chlamydia antibody responses, successfully resisted reinfection.24 Studies in mice consistently show that development of immunity to genital C. muridarum depends on chlamydia-specific CD4+ T cells and that production of IFN-γ by these cells is required to inhibit chlamydia growth. Gene knockout studies in mice have shown that mice lacking CD4+ T cells or lacking IFN-γ are impaired to control infection,25,26 but immunity can be restored by adoptive transfer of CD4+ Th1 cells.27 A more recent report showed that CD4+ T cells are necessary and
<table>
<thead>
<tr>
<th>Protein</th>
<th>Molecular Weight1</th>
<th>Localization within Chlamydia1</th>
<th>Immunization (adjuvants)</th>
<th>Protection levels</th>
<th>Type of T cell response or source of recognizing T cells</th>
<th>Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>CT043</td>
<td>18.4</td>
<td>Membrane</td>
<td>DNA/Protein boost (lung infectin model)</td>
<td>2.6-log bacterial reduction in lungs</td>
<td>Th1 type responses</td>
<td>76</td>
</tr>
<tr>
<td>ArtJ</td>
<td>28.6</td>
<td>periplasm/type II transporter</td>
<td>ND</td>
<td>ND</td>
<td>Neutralizing antibodies in vitro</td>
<td>77</td>
</tr>
<tr>
<td>CrpA</td>
<td>15</td>
<td>Inclusion membrane</td>
<td>Vaccinia virus</td>
<td>Partial protection</td>
<td>CD8 T cells expanded</td>
<td>85</td>
</tr>
<tr>
<td>CPAF</td>
<td>65</td>
<td>Chlamydial Protease</td>
<td>CPAF plus IL-12</td>
<td>Significant reduction of bacteria in vagina</td>
<td>Antibodies and IFN-γ</td>
<td>78</td>
</tr>
<tr>
<td>Tarp</td>
<td>119</td>
<td>Type III secretion system protein</td>
<td>CpG and IFA</td>
<td>~60% reduction of IFUs in vagina</td>
<td>Th1 type response</td>
<td>79</td>
</tr>
<tr>
<td>PmpG</td>
<td>107</td>
<td>Membrane</td>
<td>Peptide or protein pulsed DCs</td>
<td>~50% reduction of IFUs in vagina</td>
<td>CD4+T cells producing IFN-γ</td>
<td>75</td>
</tr>
<tr>
<td>PmpE</td>
<td>104</td>
<td>Membrane</td>
<td>Peptide or protein pulsed DCs</td>
<td>~50% reduction of IFUs in vagina</td>
<td>CD4+T cells producing IFN-γ</td>
<td>75</td>
</tr>
<tr>
<td>RplF</td>
<td>19.8</td>
<td>Ribosome</td>
<td>Peptide or protein pulsed DCs</td>
<td>~50% reduction of IFUs in vagina</td>
<td>CD4+T cells producing IFN-γ</td>
<td>75</td>
</tr>
<tr>
<td>PmpD</td>
<td>160</td>
<td>Membrane</td>
<td>ND</td>
<td>ND</td>
<td>Recognized by human CD4+T cells clones</td>
<td>84</td>
</tr>
<tr>
<td>MOMP</td>
<td>40</td>
<td>Membrane</td>
<td>Freund’s adjuvant, CpG-containing ODNs, OspA, VCGs.</td>
<td>Up to 70% reduction of IFUs in vagina</td>
<td>TH1-like with IFN-γ production or TH1/TH2 mix.</td>
<td>81, 82, 83, 93</td>
</tr>
<tr>
<td>NrdB</td>
<td>42.7</td>
<td>ND</td>
<td>Cholera toxin + CpG</td>
<td>Partial protection</td>
<td>CD4+T cells</td>
<td>74</td>
</tr>
</tbody>
</table>

1Molecular weight in kDa. Abbreviations: MOMP, outer membrane protein; VCGs, recombinant *Vibrio cholerae* ghost; OspA, outer surface protein A of *Borrelia burgdorferi*; IFUs, inclusion forming units; ReA, reactive arthritis; Cap1, class I accessible protein 1; CrpA, cysteine-rich protein A; PmpD, PmpG, PmpE, polymorphic membrane protein D, G, or E; RplF, ribosomal protein L6; NrdB, ribonucleoside reductase, small chain protein; CPAF, chlamydial protease-like activity factor; Tarp, type III-secreted effector protein; CrpA, cystein rich protein A; IFA, incomplete Freund’s adjuvant; ArtJ, arginine binding protein J; ND, not determined.
sufficient for protection against chlamydial reinfection in murine genital mucosa. CD4+ and CD8+ T cells accumulate in the upper genital tract of guinea pigs and macaque monkeys following C. trachomatis genital infection. Presence of both cell types correlates with resistance to reinfection. Furthermore, a study in humans showed that CD4+ and CD8+ T cells are recruited to the cervix of women with C. trachomatis infection and that these cells disappeared following antibiotic treatment. Although these studies suggest that CD4+ and CD8+ T cells may be involved in the control of C. trachomatis infection, the importance of these cell populations has been clearly defined only for CD4+ T cells in the mouse where they are essential for protection.

T-Cell Effector Mechanisms

IFN-γ produced by T cells is critical to control chlamydia genital infection. In vitro cell culture of human cells have shown that IFN-γ activates infected cells to restrict intracellular growth of C. trachomatis by inducing the tryptophan-catabolizing enzyme, indoleamine 2,3-dioxygenase (IDO). Without tryptophan, C. trachomatis cannot survive. Thus, mutant cell lines responsive to IFN-γ but deficient in IDO activity, efficiently support C. trachomatis growth. Likewise, infected cells cultured in medium with incremental levels of exogenous tryptophan indicated that chlamydial growth requires presence of this essential amino acid. C. trachomatis strains isolated from the human urogenital tract can synthesize tryptophan if provided exogenous indol. Therefore, it is possible that indol produced by the microbiota of the female genital tract (FGT) could serve as a source for indol, thus circumventing or diminishing the protective effect of IFN-γ. Additional antimicrobial mechanisms of C. trachomatis have also been documented such as the production of nitric oxide and oxygen free radicals by phagocytes, both of which inhibit the chlamydial growth following phagocytosis. In contrast to human epithelial cells, mouse epithelial cells lack IDO, and IFN-γ mediated suppression of C. trachomatis growth is thought to be due to a family of IFN-γ inducible p47 GTPases. Moreover, in mice, recent experimental evidence has demonstrated that chlamydia specific CD4+ T cell clones can inhibit the growth of C. muridarum in epithelial cells by degranulation-dependent mechanisms that appear to directly lyse chlamydial cells. Thus, although IFN-γ inhibits chlamydia growth, the specific effector mechanisms differ substantially in mice compared to in humans. This has implications for vaccine development, as results from the mouse model may not be directly extrapolated to humans and a vaccine developed in mice may require further testing in non-human primates prior to human clinical trials.

Immunity and Duration of Infection

A relevant question in the natural history of C. trachomatis infection is the amount of time the infected host needs to control an untreated infection. In guinea pigs and mice, primary infection lasts a few weeks before anti-chlamydial immunity and resolution of infection develops naturally. In humans however, the duration of infection can be much more extended. A review of human epidemiological studies on C. trachomatis infections reported that in the short-term intervals (weeks) between initial screening and follow-up, spontaneous resolution rates were between 11% and 44%. In a long-term study of 82 women with untreated C. trachomatis cervical infection, it was demonstrated that 54% spontaneously resolved infection at one year, 82% at two years, 91% at three years, and 95% at four years. Similarly, another follow-up cohort study has reported that only 45% of C. trachomatis positive women cleared infection after one-year. From these studies, it is not known for certain if those long duration infections were unresolved infections or if they were re-infections. Nevertheless, under natural conditions, immunity to C. trachomatis infection in humans appears to take months to develop. Protracted development of immunity in humans may be due to a number of factors such as low virulence properties of the bacteria at the time of infection, host immunosuppressive abilities of the microbe (reviewed in ref. 4), enhanced survival of chlamydia outside cells, and ability to persist intracellularly.

Once infected, as many as 85–90 percent of C. trachomatis infections in men and women remain asymptomatic. At least one third of asymptomatic infected women present local signs of infection. The reason for the low virulence of C. trachomatis is not well understood. C. trachomatis contains a lipopolysaccharide (LPS) of reduced potency at triggering activation of host immunity. For example, C. trachomatis LPS is at least 100 times less potent at activating blood leukocytes than LPS from Salmonella. The reduced LPS response may explain, in part, why genital tract infection remains mostly asymptomatic. In addition, C. trachomatis downregulates MHC class I and II genes induced by IFN-γ. Together, these observations suggest that by inducing immunosuppressive mechanisms on the host and by not inducing or stimulating sufficient immune responses, C. trachomatis has evolved effective mechanisms for survival which should be considered in the design of prophylactic vaccines.

Human Immunity

For ethical reasons, studies addressing the dynamics of anti-chlamydial immunity in humans have been difficult to develop. Once diagnosed, patients infected with C. trachomatis are required to be promptly treated. Nevertheless, evidence from epidemiological observations has shown that immunity in humans does develop slowly over time. Both the prevalence and intensity of infection among young women are significantly higher than those observed in older women, suggesting development of age acquired immunity. Furthermore, women with reduced CD4+ T cell counts, due to human immunodeficiency virus (HIV) infection, possess an increased risk for developing C. trachomatis PID, indicating that CD4+ T cells are necessary to control infection in humans. C. trachomatis infection rates are inversely correlated with duration of the disease in female commercial sex
workers. In this context, sex workers whose immune cells respond to *C. trachomatis* heat shock protein 60 by producing IFN-γ in vitro, showed reduced risk of acquiring *C. trachomatis* infection at follow-up. Although studies to date are suggestive that Th1 responses correlate with protection, a recent study provides evidence that Chlamydia-specific Th2 responses may be key to controlling infection in humans. This possibility requires further investigation.

Immunopathology to *C. trachomatis*

Innate immunity and pathology

Several studies in animal models and in humans have shown that the first contact of *C. trachomatis* with host cells during infection leads to secretion of pro-inflammatory cytokines including TNFα, IL-8, IL-1α, and GM-CSF. These cytokines, which are required to trigger the immune response, can cause collateral tissue damage. For example, production of IL-1 by infected fallopian tube organ cultures have been associated with destruction of fallopian tube epithelia in vivo. Signals derived from Toll-like receptor 2 (TLR2) have also been implicated in pathology. For example, mice without TLR2 do not develop significant pathology in the oviduct following *C. muridarum* infection. Moreover, plasmid-cured *C. muridarum* mutants that retain the ability to infect the murine genital tract were unable to trigger TLR2-mediated signaling and did not develop oviduct pathology. Recent observations demonstrate that mice lacking TLR2 do not develop significant pathology in the upper genital tract following infection with *C. muridarum*.

Most chlamydial isolates contain chlamydial plasmids. These plasmids have been found to play a significant role in chlamydial-associated pathology in primate ocular tissues. In mice, *C. muridarum* organisms lacking chlamydial plasmids do not cause significant pathology in the upper genital tract.

Matrix metalloproteinases (MMPs) play an important role in cellular turnover and extracellular matrix remodelling in the female reproductive tract. Various members of the MMPs, including MMP9, MMP13, MMP10, and others expressed by endometrial cells of mice infected with *C. muridarum* have been implicated in tissue damage in the mouse endometrium. Supporting the effect of MMPs in pathogenesis is the fact that inhibition of MMPs with captopril protected mice against chronic disease by *C. muridarum*. In humans, expression of MMP9 by fallopian tube cells infected with *C. trachomatis* was associated with epithelial tubal scarring. Remarkably, the presence of high levels of α-defensins, antimicrobial peptides produced by activated neutrophils, were linked to endometritis in *C. trachomatis* infected women. Thus, *C. trachomatis* infection upregulates a large number of innate inflammatory mediators within the reproductive tract, and the presence of these mediators have been associated with a poorer clinical outcome. The interactions of these mediators and how the inflammatory responses might be modified therapeutically, to limit the tissue damage, require further study.

Acquired immunity and pathology

Although the most potent host defense mechanism against *C. trachomatis* is based on T-cell immunity, human studies have shown correlation between anti-chlamydial T cell immunity and pathology in the genital tract (FGT). For example, IFN-γ levels were significantly higher in cervical washes of women with recurrent chlamydial infection as compared with IFN-γ levels observed in women with primary infections. These high IFN-γ levels were also associated with infertility. Another study showed that cervical cells isolated from *C. trachomatis* infected women secrete IL-1, IL-6, IL-8, and IL-10 in vitro, a cytokine profile more compatible with disease exacerbation rather than immunity. In this context, high levels of IL-10 in cervical washes of *C. trachomatis* infected women were linked to infertility.

Further studies in animals infected with sexually transmitted chlamydia have shown association of T cell immunity and pathology in the upper genital tract. For example, in macaques, cytotoxic CD8 T cells and other immune cells infiltrate tubal tissue implants infected with *C. trachomatis*. Infiltrated cells expressed Th1 type cytokines including IFN-γ, IL-2, and IL-6 and accumulation of fibrotic tissue. Moreover, studies confirmed the presence of these CD8 T cells in the fallopian tubes and their association with pathology in primates and guinea pigs following infection with *C. trachomatis*.

Chlamydia-specific CD4 T cells have also been implicated in pathology. Protective CD4 T cells were found to preferentially migrate to the upper genital tract of *C. muridarum* infected mice and their presence was associated with both immunity and tubal pathology in the genital tract. Interestingly, a recent study has demonstrated that IL-17, produced by Th17 cells, can promote modest immunity in mice infected with *C. muridarum*. However, further studies are needed to examine the role of Th17 cells in *C. trachomatis* infection. Together, these observations suggest that a complex interplay of immune responses influence both immune protection and pathology in sexually transmitted *C. trachomatis* infections. Antigens in *C. trachomatis* subunit vaccines should be rigorously examined for specificity, so that potential cross-reactivity can be avoided.

Vaccine Development

Over the past 20 y, significant advances have been made in the development of a *C. trachomatis* vaccine. Firstly, studies in mice and epidemiological observations in humans, consistently show that cellular immunity to genital chlamydia infections depends on chlamydia-specific T cells producing IFN-γ and anti-chlamydia antibodies. Secondly, a number of protective T cell antigens have now been identified (Table 1) (reviewed in ref. 86). Immunization of laboratory animals has shown that these antigens are recognized by chlamydia-specific T cells producing IFN-γ and partially protected animals following immunization. Importantly, a study has demonstrated that the chlamydia major outer membrane protein (MOMP) antigen alone is insufficient to induce the necessary protection, however MOMP and a second antigen, outer membrane protein 2
Vaccine Adjuvants

A major problem for a *C. trachomatis* vaccine is the lack of suitable non-toxic adjuvants that efficiently promote Th1 type of immunity. Immunization of mice with MOMP DNA without adjuvants,91 or MOMP with classical adjuvants such as Freund’s showed moderate levels of T cell responses. However, immunization with MOMP incorporated into *Vibrio cholerae* ghosts (rVCGs),92,93 or Immune Stimulating Complexes (ISCOMS)94 as adjuvanted delivery technologies, induced robust Th1 responses and protected mice against subsequent chlamydial infection. Likewise, transcutaneous immunization of mice with MOMP incorporated in the delivery system, lipid C, a novel lipid-based matrix originally developed for oral immunization, induced partial protection of both genital and respiratory infections with *C. muridarum*.95 Interestingly, intranasal immunization with antigen chlamydial protease-like activity factor (CPAF) and IL-12 as an adjuvant, resulted in significantly high levels of anti-IgG2a and anti-IgA antibodies in bronchoalveolar lavage and vaginal fluids. Immunized mice developed Th1 immunity against CPAF, and immunized animals significantly reduced bacterial shedding following challenge and accelerated resolution of infection as compared with non-immunized controls.96 Overall, these observations showed that vaccine adjuvants are remarkably effective at triggering and sustaining Th1 immunity, leading to increased resistance to infection challenge.

The potential of TLRs-derived adjuvants

TLRs are specialized recognition receptors expressed by immune cells and most DCs. TLRs recognize pathogen-associated molecules known as PAMPs, expressed by pathogens. Binding of TLRs to their PAMP ligands activates DCs, by triggering the NF-kB signaling pathway, resulting in transcription of pro-inflammatory mediators including chemokines, adhesion molecules, matrix metalloproteases, nitric oxide synthase, several enzymes and Th1 type cytokines such as IL-12; all of which contribute to the development of Th1 immunity.97 For example, experimental vaccines against *Salmonella Typhimurium*,98 *Toxoplasma gondii*,99 and *Leishmania major*100 have employed CpG-containing oligodeoxynucleotide (CpG-ODN), a TLR9 agonist, as adjuvant in laboratory animals. Immunized animals develop remarkably high levels of Th1 immunity and become resistant to secondary infections. CpG-ODN has been employed in experimental vaccines against *C. muridarum* and *C. caviae* in guinea pigs and in Balb/C mice. These immunization studies showed that CpG-ODN induced potent Th1 type immunity and partial resistance against chlamydial infection.82,101 CpG-ODN, and polyinosinic: polycytidylic acid (poly I:C), a TLR3 agonist, are presently undergoing human clinical trials in immunotherapies against cancer.102,103 For example, phase I trials of a vaccine against ovarian tumor employing poly I:C as adjuvant, shows rapid induction of immune response based on antibodies CD8+ and CD4+ against ovarian tumor.104 Another efficient TLR-mediated adjuvant is monophosphoryl lipid A, a TLR4 agonist, which is currently used in human papilloma virus (HPV) and human hepatitis B virus (HBV) vaccines in humans.105 In sum, TLR-derived adjuvants are strong inducers of DCs activation and Th1 immunity and are prime adjuvant candidates for a future chlamydia vaccine.

Targeting Dendritic Cells (DCs): A Novel Approach for a *C. trachomatis* Vaccine

Caldwell and collaborators immunized mice with DCs pulsed with heat-killed chlamydia. Immunized mice developed a potent Th1 immunity and resisted chlamydial genital infection.106 Brunham and co-workers have employed DCs pulsed with chlamydial immunopeptides in immunizations by adoptive transfer. Immunized mice developed Th1 protective immunity and partially resisted chlamydial lung and genital infections.75 These data show that DCs can be effective inducers of anti-chlamydial immunity and therefore, are attractive tools to design novel T-cell vaccines, including a *C. trachomatis* vaccine.

DCs are professional antigen presenting cells (APCs) with a unique capacity to stimulate naïve T cells. DCs differentiate from bone marrow CD34+ proliferating progenitors and colonize most peripheral tissues as immature non-dividing cells.107 DCs have been found in mucosal tissue108 and are recruited to cervical mucosa during *C. trachomatis* infection.4,109 The diverse functions of DCs in immunity depend in part on the state of maturation. Mature DCs optimally prime and induce expansion of both CD4+ and CD8+ T cells producing IFN-γ.107 Maturation of DCs occurs following detection of microbial PAMPs by TLRs on DCs.107 Maturing DCs express high levels of the NF-kB family of transcription factors that induce expression of MHC class I and II antigens and co-stimulatory molecules CD80, CD86, CD40, as well as enhanced secretion of IL-12 and IFN-α;110 all of which contribute to promote Th1 type of immunity.

Murine DCs Subgroups for Vaccine Targeting

Two main groups of DCs relevant to vaccine targeting have been characterized in the mouse. The first subgroup relevant to vaccine targeting expresses the inhibitory receptor, dendritic cell receptor 2 (DCR2). Antigens delivered to DCR2 DCs are processed in the MHC class II antigen pathway and presented to
CD4+ T cells.111 A second DCs subgroup expresses the endo
cytic mannose receptor DEC-205, which is a 205-kDa protein
containing C-type lectin domains. Antigens phagocytized by
DCs via DEC-205 are presented to both CD4+ T cells and to
CD8+ T cells.112 Remarkably, vaccines delivered via DEC-205
DCs have been shown to be 100–1000 times more efficient at
priming peptide-specific CD4+ and CD8+ T cells than a peptide
given in Complete Freund’s Adjuvant (CFA).113,114 Additionally,
vaccines targeting DEC-205 dendritic cells have been tested in
experimental vaccines for intracellular infections caused by
Leishmania major115 and HIV,116 with significant high levels of
both CD4+ and CD8+ T cell immunity produced.115

Potential Human DCs for Vaccine Targeting

Various human DC markers have been identified. The C-type
lectin domain family 9 member A (Clec9A), encodes a type II
membrane protein expressed by human blood DCs. In the
mouse, Clec9A DCs homologs promote CD4+ and CD8+ T
cell responses.117 An equivalent of the mouse DEC-205 receptor,
has been identified in humans and antibodies to human DEC-
205 have been developed.118 In vitro, targeting of human DCs
expressing DEC-205 results in induction of CD4+ and CD8+ T
cells.119 Similarly, the human homolog of mouse DCR2,
(DCIR), has been identified on human plasmacytoid DCs
(pDCs). Antigens targeted to pDCs via DCIR in vitro are effi-
ciently presented to T cells.119 The DC-specific intercellular
adhesion molecule-3-grabbing non-integrin (DC-SIGN) is
another marker expressed on a subset of human DCs. DC-SIGN
is abundantly expressed on immature DCs and downregulated
during DC maturation.120,121 Recent immunization studies
showed that DC-SIGN dendritic cells promote induction of anti-
gen-specific CD4+ and CD8+ T-cell responses in DC-SIGN
transgenic mice.122 Together, these results show that simulta-
neous discovery of complementary DC groups in the mouse
and in humans, can facilitate translation of immunization results
from mice to humans. Furthermore, targeting DCs with C. tra-
chomatis vaccines in the presence of safe TLR-mediated adjuvants
such as Poly:IC promise to greatly enhance Th1 type of immu-
nity and resistance to chlamydial infection.

Future Directions

A number of challenges remain before an efficacious vaccine
against C. trachomatis can be formulated. The immune regula-
tion of the FGT, which is highly influenced by sex hormones, is
poorly understood. Thus, targeting T cell vaccines to the FGT
without causing collateral pathology is a major concern. Related
to this problem is the fact that a suitable adjuvant that vigorously
promotes human T cell-mediated immunity is lacking. Experi-
mental chlamydial vaccines have employed Freund’s adjuvant,
Vibrio cholerae ghosts, and immuno-stimulating complexes, some
of which have been tested in human clinical trials.123 Current
testing of TLR mediated adjuvants is encouraging. CpG oligonu-
cleotide, poly I:C as well as monophosphoryl lipid A, are pres-
ently used in human vaccines or in clinical trials for other
infections.102,103,105 Hence, it is feasible that human C. tracho-
matis vaccine trials employing these or new adjuvants and avail-
able candidate antigens could commence in the foreseeable
future.

DCs have emerged as attractive targets to develop novel chla-
mydia vaccines. The diverse functions of DCs in immunity and
their unique ability to prime naïve T cells represent excellent
opportunity to design novel chlamydia vaccines in the future.
Vaccines targeting endogenous DCs with chlamydia antigens
promise to induce and expand both CD4+ and CD8+ T cells
producing IFN-γ, with the potential to efficiently control C. tra-
chomatis infection.124 An ideal future C. trachomatis vaccine
would contain various chlamydia antigens targeted to endoge-
 nous DCs and a TLR-derived adjuvant as a source of DC matu-
ration signal that would promote optimal DC processing and
presentation of T-cell antigens. Targeting specific receptors on
DCs requires recombinant antibody molecules and construction
of these antibodies is not always feasible. Similarly, TLR-derived
adjuvants can be toxic for host cells and chemical modifications
are needed before they can be employed in humans. These chal-
enges, which are currently being addressed in various experimen-
tal vaccines, will need to be considered when designing a
chlamydia vaccine targeting DCs in humans.

Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.

References

http://dx.doi.org/10.1038/nrmicro931
2. World Health Organization. Global Prevalence and Incidence of Selected Curable Sexually Transmitted
3. Peepert JF. Clinical practice. Genital chlamydial infec-
Mep030542
4. Brunham RC, Rey-Ladino J. Immunology of Chla-
PMID:15688042; http://dx.doi.org/10.1038/ni1531
5. Centers for Disease Control and Prevention. Sexually
transmitted disease surveillance 2009 [Internet]. Atlanta, US: Division of preventive STD prevention,
www.cdc.gov/std/stan09/surv2009-Complete.pdf
6. Centers for Disease Control and Prevention. Sexually
transmitted disease surveillance 1993 [Internet]. Atlanta, US: Division of preventive STD prevention,
wonder.cdc.gov/wonder/STD/OSTTD3069.PCW.html
LT. The unexpected impact of a Chlamydia trachomatis infection control program on susceptibil-
ity to reinfection. J Infect Dis 2005; 192:1836-44; PMID:16235186; http://dx.doi.org/10.1086/407341
8. Low N. Screening programmes for chlamydial infec-
tion: when will we ever learn? BMJ 2007; 334:725-8;PMID:17413173; http://dx.doi.org/10.1136/bmj.
39154.378079.BE
9. Fenton KA, Lownes CM. Recent trends in the epide-
miology of sexually transmitted infections in the
European Union. Sex Transm Infect 2004; 80:
255-63; PMID:15295121; http://dx.doi.org/10.1136/sti.2004.009415
10. Parrish DD, Kent CK. Access to care issues for African
American communities: implications for STD dispari-
PMID:18946368; http://dx.doi.org/10.1097/OLQ.
0801e.318182fae1
11. Hvid M, Baczynska A, Deleanu B, Fedder J, Knud-
sen HJ, Christiansen G, Birkelund S. Interleukin-1 is
the initiator of Fallopian tube destruction during
Chlamydia trachomatis infection. Cell Microbiol
2670 Human Vaccines & Immunotherapeutics Volume 10 Issue 9
2. Gondak DC, Olive AJ, Starnbach MN. CD4+ T cells are necessary and sufficient to confer protection against Chlamydia trachomatis infection in the murine upper genital tract. J Immunol 2012; 189:2441-9; PMID:22855710; http://dx.doi.org/10.4049/jimmunol.1100392
15. Vicenti Miguel RD, Harvey SA, Laframboise WA, Reighard SD, Matthews DB, Chernes TL. Human female genital tract infection by the obligate intracellu- lular bacterium Chlamydia trachomatis elicits robust Type 2 immunity. PLoS One 2013; 8:e55865; PMID:23555586; http://dx.doi.org/10.1371/journal.pone.0055865
16. www.landesbioscience.com Human Vaccines & Immunotherapeutics 2671

Human Vaccines & Immunotherapeutics
null

112. Pan MB, Kepple L, Pari EL. Langerhans cells phagocytose vaginal epithelial cells undergoing apoptosis during the murine estrous cycle. Biol Reprod 1991; 45:252-60; PMID:1786290; http://dx.doi.org/10.1095/biolreprod.45.2.252

119. Sun FX, Xie Y, Ye YP. ISCOMs and ISCOMATRIX. Vaccine 2009; 27:4388-401; PMID:19450632; http://dx.doi.org/10.1016/j.vaccine.2009.05.032