Background
Pathology, imaging and other tests have an essential role in the diagnosis and screening for disease in medical practice. However, over-testing has recently emerged as a significant issue and has implications for the patient, doctor and health system. Vocational training is arguably the most critical period in the development of future patterns of clinical practice for the GP. This includes the development of test ordering behaviour. The general practitioner (GP) supervisor, therefore, has a key role to play in educating registrars to avoid over-testing.

Objective
In this article, we discuss general approaches and practical strategies for GP supervisors to teach their registrars rational test ordering.

Discussion
Teaching should take a patient-centred focus and an emphasis on fostering a greater tolerance of uncertainty. Role modelling and demonstrated use of relevant clinical guidelines is a strong influence on registrar behaviour. Specific strategies for teaching rational test ordering include random case analysis, investigation audit, topic tutorials and use of targeted resources.

Keywords
diagnostic imaging; vocational education/graduate education; education, medical; evidence-based medicine; pathology

We live in testing times
Teaching rational test ordering in general practice

Simon Morgan
Justin Coleman

If you’re facing a screening test for breast or prostate cancer, high cholesterol, or low testosterone, someone is about to turn you into a patient. You need to ask yourself one simple question: Am I ready for all the things that could go wrong? (Alan Cassels)\

Les gens bien portants sont des malades qui s’ignorent [well people are sick people who simply don’t know it—yet] (Jules Romaines).

Pathology, imaging and other investigations have a critical role in the diagnosis, monitoring and screening for disease in medical practice. Reference books of medical tests are at least as old as the Hippocratic Corpus. The number of available tests has risen rapidly in recent decades and the Royal College of Pathologists of Australasia manual now lists over 750 individual tests. The use of laboratory and imaging tests is increasing in many countries. In Australia, the number of Medicare-funded pathology tests increased by 54% from 2000–2001 to 2007–2008, a volume increase from 62.1 million to 95.7 million tests. Over this period, pathology costs increased from $1.2 billion to almost $1.9 billion. General practitioners (GPs) are responsible for initiating 70% of Medicare-funded pathology tests.

While much of this increase is appropriate, a growing body of evidence suggests that over-testing is a significant problem. Australian data suggest that pathology testing does not always align well with recommended guidelines and 25–75% of tests are not supported by evidence or expert opinion. Concerns have been raised about the inappropriate use of many common tests, including full blood count (FBC), liver function tests (LFTs), B12/ folate, thyroid function tests (TFTs), vitamin D, prostate-specific antigen (PSA), screening mammography, lumbar spine X-rays and shoulder imaging.

Inappropriate test ordering substantially increases healthcare expenditure, including the opportunity costs of wasted resources. In addition, unexpected abnormal results can be problematic for the GP to interpret and manage. This includes the assessment of increasing numbers of ‘incidentalomas’ (tumours unexpectedly identified during medical imaging), for example, in the kidney and thyroid. Most importantly, over-testing can lead to patient harm. The pre-test probability of disease in general practice is relatively low; meaning false positive tests are common, even in tests with reasonable specificity. For example, if a healthy person is subjected to 10 unnecessary tests, there is a 40% chance of at least one false-positive result. False-positive results and incidental findings can lead to a cascade of further tests.
We live in testing times – teaching rational test ordering in general practice

CLINICAL

So-called ‘investigation momentum’ (see Case study). This, in turn, leads to a greater risk of complications and patient harm, as well as the potential for significant patient anxiety. Investigations can also cause harm directly: for example, radiation from computed tomography (CT) scanning in children aged <15 years in one year in the USA has been estimated to produce nearly 5000 future cancers. Lastly, over-testing may lead to overdiagnosis, the circumstance where people without symptoms are diagnosed with a disease that ultimately will not cause them to experience symptoms or early death. This can lead to unnecessary treatment, adding to the risk of patient harm.

A number of influences have been described on the test ordering behaviour of doctors. These comprise doctor factors (e.g., demographics, knowledge, prior experience, personality, fear of litigation), patient factors (trust, anxiety), practice factors (billing practices) and systems factors (development of new tests).

Over-testing and its counterparts, over-diagnosis and over-treatment, are now the subject of dedicated medical journal series such as *Less is More* and *Too Much Medicine*, and campaigns such as *Choosing Wisely*. In Australia, NPS MedicineWise has recently expanded its role into the appropriate use of tests.

General practice training

Vocational training is arguably the most critical period in the development of future patterns of clinical practice for the GP. This includes the development of test ordering behaviour. Critical use of investigations is one of the core skills of the Royal Australian College of General Practitioners (RACGP) Common Training Outcomes. However, there is some evidence for lack of training for Australian GP registrars in quality use of pathology.

GP registrars in Australia learn by the apprenticeship model, seeing patients under the supervision of accredited GP supervisors. Supervisors have a core role in assessing learning needs, facilitating learning and providing feedback to registrars. Targeted education and feedback around test ordering has been shown to lead to changes in the behaviour of primary care practitioners. The GP supervisor has been identified as having a key role in the teaching of

Table 1. Teaching rational test ordering in the practice setting

<table>
<thead>
<tr>
<th>General approach</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patient-centred approach</td>
</tr>
<tr>
<td>Fostering tolerance of uncertainty</td>
</tr>
<tr>
<td>Role modelling</td>
</tr>
<tr>
<td>Focusing on importance of clinical assessment</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Specific strategies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consultation observation</td>
</tr>
<tr>
<td>Problem case discussion</td>
</tr>
<tr>
<td>Random case analysis</td>
</tr>
<tr>
<td>Pathology/radiology inbox review</td>
</tr>
<tr>
<td>Topic tutorials</td>
</tr>
<tr>
<td>Use of clinical guidelines</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Specific resources</th>
</tr>
</thead>
<tbody>
<tr>
<td>iNvestigate. Available at investigate.med.unsw.edu.au/home.jsf</td>
</tr>
<tr>
<td>Common sense pathology. Available at www.rcp.edu.au/Publications/CommonSensePathology.htm</td>
</tr>
</tbody>
</table>
and investigations framed as an adjunct to a comprehensive clinical assessment.

Specific teaching and learning strategies

Rational test ordering can be assessed and taught using a range of traditional methods, including consultation observation and problem case discussion. However, a number of strategies are ideally suited to teaching the effective and appropriate use of laboratory testing in the practice setting (Table 1).

Random case analysis (RCA) is a powerful tool for clinical supervision, assessment and teaching. In RCA, the registrar’s clinical notes are randomly selected and the case analysed in detail. Its particular strength is in identifying unconscious incompetence, or the ‘unknown unknowns’, of the learner. Test ordering can be reviewed in the context of the actual clinical case, but hypothetical scenarios can also be posed to further challenge the registrar.

A more specific teaching method is regular auditing of test results. This can be readily performed by reviewing the inbox of incoming test results in the computerised medical record. This inbox review is an efficient and straightforward method of appraising a registrar’s overall test ordering behaviour. It provides an opportunity for focused teaching on specific tests and a means of evaluation of the effectiveness of teaching. Table 2 outlines a suggested framework for analysis.

RCA and inbox review may help identify commonly identified causes of overtesting in the registrar. These include (potentially unknown) clinical knowledge gaps, the desire to be complete, and indiscriminate use of disease-specific test panels (e.g. diabetes check) in the computer software.

Some evidence shows that test ordering is reduced when providers are made aware of the cost of the test. Such information can form part of a dedicated topic tutorial on rational test ordering, which may also include important concepts such as sensitivity, specificity and predictive value of tests; pre-test probability of disease; principles of screening; common drivers to over-testing; and the potential for harm as a result of over-testing. Supervisors can target their teaching on clinical scenarios where evidence-based clinical guidelines exist for testing (e.g.

<table>
<thead>
<tr>
<th>Table 2. Framework for analysis of test ordering</th>
</tr>
</thead>
<tbody>
<tr>
<td>Why did you order this test?</td>
</tr>
<tr>
<td>How will the result alter your management?</td>
</tr>
<tr>
<td>What are the risks of ordering/not ordering this test?</td>
</tr>
<tr>
<td>Is there a risk of overdiagnosis?</td>
</tr>
<tr>
<td>What is the likelihood of a positive result?</td>
</tr>
<tr>
<td>What is the prevalence of the provisional diagnosis?</td>
</tr>
<tr>
<td>Did any other factors influence your decision to order the test?</td>
</tr>
<tr>
<td>Does this presentation have any guidelines for testing?</td>
</tr>
</tbody>
</table>

Case study. Illustration of investigation momentum

Michael Hildred, aged 51 years, presented to his GP (a term 1 registrar) for a ‘50,000 km service’. He was well, with no significant past medical history or family history, but felt he should have a health check. The registrar examined him and requested ‘routine screening bloods’ from the computer software program: FBC, electrolytes urea creatinine (EUC), LFT, blood glucose levels (BGL), lipids, thyroid-stimulating hormone (TSH), iron studies, PSA, B12, folate and vitamin D. The results were all normal apart from mildly elevated transaminases on the LFTs. The registrar recalled Michael and suggested repeating the LFTs in one month. The repeat tests remained abnormal and Michael was referred for hepatitis serology and autoantibodies (normal) and an upper abdominal ultrasound. The ultrasound was normal apart from an incidental 2.5 cm lesion ‘suggestive of focal nodular hyperplasia (FNH)’, with a recommendation for further investigation. The registrar recalled Michael again, causing great anxiety about a possible malignant cause. Michael was referred for a CT scan, which confirmed FNH, but with a recommendation for follow up in 12 months ‘to monitor size’. Repeat LFT returned to normal.

References

We live in testing times – teaching rational test ordering in general practice

$File/Enhancing%20the%20quality%20use%20of%20pathology%20for%20GP%20registrars%20and%20International%20medical%20graduates.pdf
[Accessed 26 February 2014].

27. Journal of the American Medical Association Less is More series. Available at jamaretwork.com/collec-

31. Royal Australian College of General Practitioners Common Training Outcomes. Available at curriculum. rcagc.org.au/statements/common-training-out-
comes/ [Accessed 7 September 2013].

35. Mindemark M, Larsson A. Long-term effects of an educational programme on the optimal use of clin-

43. Winkens R, Dinant G-J. Evidence base of diagnostic research: rational, cost effective use of investiga-

45. Ring A, Dowrick C, Humphris G, Salmon P. Do patients with unexplained physical symptoms pres-

47. Stolper E, van Bokhoven M, Houben P et al. The diag-
nostic role of gut feelings in general practice. A focus group of the concept and its determinants. Gut feel-

54. National Health and Medical Research Council. Evidence-based management of acute musculo-