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Answer to Question #51. Applications of third-order and fifth-order differential

equations

Neuenschwander1 has asked whether there are any useful applications of third-

order or fifth-order differential equations. Some Answers have already appeared2,3,

and subsequently several more applications involving third-order equations were cited

and reviewed4.

It is well known, as emphasized in an earlier Question from the author5, that a

third-order nonlinear autonomous differential equation has the lowest order necessary

for the possibility of chaotic solutions. Since chaotic phenomena are increasingly

being discovered in experimental investigations and are the subject of intense

theoretical study, derived third-order equations may eventually be expected to assume

greater importance in the description of the physical world.

Some third-order autonomous systems of first-order equations may be

rewritten as a third-order differential equation (with respect to time) for one of the

dependent variables: this is a jerk equation, as revived in reference 5 and nicely

discussed in a broad context by von Baeyer6 (see also reference 7).

Alternatively, jerk equations  x!!!   = j( xxx !!!,, ) may be studied in their own

right. There has been a steady flow of papers in this journal8-10 and others11-14 as a

consequence of the source Question #38 originally posed by the author in reference 5

concerning the simplest jerk function that may give chaos. Although these equations

are in a sense models awaiting an application6, some may be physically implemented,

for instance as electronic circuits13.
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           In reference 1, Neuenschwander alluded to the Euler-Lagrange equations of

order higher than two. Now, for a Lagrangian whose highest contained derivative is of

nth order (say w.r.t. time), the Lagrange's equation then has highest order term15

[dn/dtn] (∂L/∂x(n)) where (n) denotes the nth order derivative. Provided that L is not

simply linear in x(n), the highest derivative in the Lagrange's equation will then be of

order 2n, i.e. even. Insofar as many physical phenomena can be expressed by some

minimization principle, leading via the calculus of variations to an Euler-Lagrange

equation, the scarcity of fundamental physical higher odd-order differential equations

may thereby be partly explained.

A further inhibitory factor may come through consideration of self-adjoint

operators, desirable in many physical theories because of the reality of eigenvalues. A

real differential operator of order n can be self-adjoint if and only if n is even16 : the

highest-order term then has the form16 [f(x) x(r)](r) with n = 2r. Actually, unlike a

second-order differential equation, a d.e. of even order higher than two cannot always

be multiplied by a factor to make it self-adjoint17. Thus second-order equations seem

to be singled out by this principle, even amongst even-order equations.

As a matter of fact, even the (spatial) fourth-order Euler-Bernoulli beam

equation mentioned by Neuenschwander1 is obtained from first principles18 as a

consequence of two (spatial) second-order equations, one for the bending moment (in

terms of transverse acceleration) and one for the transverse displacement (in terms of

the bending moment), so we are back to basic second-order equations.
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