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ABSTRACT

We present a noise adaptive speech recognition approach, where
time-varying noise parameter estimation and Viterbi process are
combined together, The Viterbi process provides approximated
joint likelihood of active partial paths and observation sequence
given the noise parameter sequence estimated till previous frame.
The joint likelihood after mormalization provides approximation
to the posterior probabilities of state sequences for an EM-type re-
cursive process based on sequential Kullback proximal algorithm
to estimate the current noise parameter. The combined process
can easily be applied to perform continuous speech recognition
in presence of non-stationary noise. Experiments were conducted
in simulated and real non-stationary noises. Results showed that
the noise adaptive system provides significant improvements in
word accuracy as compared to the baseline system (without noise
compensation) and the normal noise compensation system (which
assumes the noise to be stationary).

1. INTRODUCTION

Speech recognition has to be carried out often in situations where
there exists environment noise, which causes mismatches between
pre-trained models and real testing data. Among many approaches
for noisy speech recognition, model-based approach assumes ex-
plicit models representing noise effects on speech features. With
the assumed models, transformations can be constructed in the
model space or feature space to decrease the mismatch.

In the model-based approach, most researches are focused on
stationary or slow-varying noise conditions. In this situation, pa-
rameters representing environments are often estimated prior to
speech recognition, and then, plug into the transformations. How-
ever, it is known that the environment statistics may vary during
recognition. As a result, the noise parameters estimated prior to
speech recognition are no longer relevant to the subsequent inputs.

Recently, we have seen a number of techniques proposed to
cope with time-varying noise. They can be categorized into two
approaches. In the first approach, time-varying environment sources
are modeled by Hidden Markov Models (HMM) or Gaussian mix-
tures that were trained by prior measurement of environments, so
that noise compensation is a task of identification of the under-
lying state/mixture sequences of the noise HMM/Mixtures. In
the second approach, environment model parameters are assumed
to be time varying and need to be estimated. Works in this ap-
proach are either based on (constrained) maximum likelihood es-
timation [1)[2]f3] or Bayesian approach [4][5].
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In this paper, we apply cur recent work on sequential Kull-
back proximal algorithm [3], which is an extension of the sequen-
tial EM algorithm, to the situations where the posterior probability
of state sequence given observation sequence is approximated by
Viterbi recognition process. With the approximation, the time-
varying noise parameter estimation process is combined with the
Viterbi process, where the noise parameter estimated in the cur-
rent frame provides noise parameter for modification of the speech
mode} parameters in the next frame,

2. NOISE ADAPTIVE SPEECH RECOGNITION

2.1. MAP Decision rule for automatic speech recognition

The speech recognition problem can be described as follows. Given
a set of trained models Ax = { Az, } where Az, is the mth sub-
word HMM unit trained from X, and an observation sequence
Y(T) = (y(1),y(2), - - -, y(T)), the aim is 10 recognize the word
sequence W = (W(1), W(2), -, W(L)) embedded in Y (T').
Each speech unit medel Az, is a N-state CDHMM with state tran-
sition probability a:,{0 < ai; < 1) and each state is modeled
by a mixture of Gaussian probability density functions {bix ()}
with parameter {w;k, fiie, Dik }Jx=1,3,-..,m, Where M denotes the
number of Gaussian mixture components in each state. . and
X are the mean and variance vector of each Gaussian mixture
component. w; is the mixture weight.

In speech recognition, the model A x are used to decods Y (T)
using the maximum a posterior (MAP) decoder

W =arg m‘,%xP(WIAX’Y(T))
= argmax P(Y(T)|Ax, W) Fr(W) m

where the first term is the likelihood of observation sequence ¥ (T')
given that the word sequence is W, and the second term is denoted
as the language model. However, in many situations, there exists
mismatches due to environments, e.g., additive noise, and accord-
ingly, there is a mismatch in the likelihood of Y(T") given Ax
evaluated by (1).

2.2, Time-varying noise parameter estimation

We consider mismatches due to additive noise. The model-based
approach assumes explicit models representing environment ef-
fects on speech features. A commonly accepted model is

Y= X' 4 log(1 +exp(N' - X*)) @



where ¥, X' and N each denote the noisy observation, speech,
and additive noise. Superscript { denotes that the observations are
in log-spectral domain,

By explicit using the model in (2), (1) can be carried out as,

W = argmax P(Y (T)|Ax, Av, W)Pr (W)  (3)

where A is the noise model. In case that noise is stationary, Ay
can be estimated prior to speech recognition.

Recent trend in the area of noisy speech recognition is to treat
this noise to be non-stationary and estimate the noise parameters
frame-by-frame. It considers that Ax (in (3)) is seldom available
before speech recognition, or even it is available, the true noise
environment may change during the recognition process, so that
the Ax estimated prior to speech recognition is not related to the
true noise parameter during the recognition process. Recent works
are either based upon {constrained) maximum likelihood estima-
tion, e.g., [1][2]{3], or Bayesian approach [4][5]. In this paper, we
consider methods based upon (constrained) maximum likelihood,
since our method in this approach [3] shows less computational
complexity than our work in [5].

In this approach, the noise parameter is recursively estimated.
Denote the estimated noise parameter sequence till frame £ — 1 as
An{t—1) = (An (1), AN(2), -+, Aw{t — 1))}. Given the current
observation sequence Y'(£) = (y(1), %(2), - -+, y(t)) till frame ¢,
the noise parameter estimation procedure will find Ay (t) as the
current noise parameter estimate, which satisfies,

S PY (), SEIAX, (An(t = 1), An () 2 O

S(t)

3P (), SE)Ax, (An(t— 1), An(t — 1))

5(¢)

where S(t) = (3(1),8(2), -+, 3(t)) is the state sequence till
frame ¢. The formula shows that the updated noise parameter se-
quence will not decrease the likelihood of observation sequence
Y (t), over that given by the previously estimated noise parameter
sequence.

Since S(t) is hidden, at each frame, we iteratively maximize
the lower bound of the log-likelihood according to Jensen’s in-
equality, i.c.,

log P(Y (£)|Ax, (An(t = 1), 3w (D)) 2 Qe(N5{£); An (2))
= Y PSEIY(E), Ax, (An(t = 1), A {E))

§(t)
PY(t), S@)|Ax, (An(t — 1), An (1)) )
P(S@IY (1), Ax, (An(t — 1), A% (1))

where A% (t) is initialized to be An(t — 1). At each iteration, the
procedure will calculate P(SEHY (), Ax, (Ax(t — 1), A% (D)),
and then maximize the lower bound fo obiain An(t). Afer one
iteration, the estimated An (£) will be set to A%(t), and a new
iteration is carried out. Though, generally, several iterations are
required to obtain the final An (£) as the estimate of Ay (2), it can
in fact be approximately estimated by only cne iteration. The time
recursive procedure is known as sequential EM algorithm.

Forgetting factor p(0 < p < 1.0) can be adopted to improve
convergence rate by reducing the effects of past observations rel-
ative to the new input, so that (5) is modified to,

QAN () dn(t) =

log
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ST Pla(n)Y (r), Ax, (An (T = 1), 05(7)
r=1 #(7)
o P, 80 Ax, (An(r — 1), An(r)))
& PGV, Ax, (Anir — 1), A4 (1))
The estimate can be regularized by a Kullback-Leibler diver-
pence between {An (£ — 1), An (£ — 1)) and (An (£ — 1), An (£)),

QAR AN () — (A — 1) ™
E log P(S(t)u,(t)l AX-; (AN (t — 1)| ’\f\:(t - 1)))
S0 PSEIYE),Ax, (An(t—1), An (2)))

P(S(OIY (1), Ax, (Aw(t = 1), At — 1))

where B, € R works as a relaxation factor. Recursive procedure
by (7) is denoted as sequential Kullback proximal algorithm [3].
The sequential EM algorithm is a special case of this algorithm
and corresponds 1o setting 8¢ equal to 1.0 in the algorithm. The
algorithm can achieve faster parameter estimation than that by se-
quential EM algorithm.

(6)

2.3. Approximation of the posterior probability

Normmally, time-varying noise parameter estimation is carried out
separately from the recognition process, as that in [1]{2], by se-
quential EM algorithm with summation over all state/mixture se-
quences of a separately trained speech model. In fact, the joint
likelihood of observation sequence Y (t) and state sequence S(£)
can be approximately obtained from the Viterbi process, i.e.,

P(Y(2),S(8)|Ax, An(t)) = aue s 132y Bagey (¥(2)}
P(Y(t—1),5(t~ D)|Ax,An{t — 1)) (8

where

S*t-1)= 9

arg staﬁ)ﬂ.u-ua(np(l’(t —1), 8@ - 1Ax,An(t~ 1))
By normalizing the joint likelihood w.r.t. sum of those from all
active partial state sequences, an approximation of the posterior
probability of state sequence can be obtained. Thus in (5) and (7),
instead of summing over all state/mixture sequences, the summa-
tion is over all active partial state sequence (path) till frame ¢ pro-
vided by Viterbi process. By Jensen's inequality (5), the summa-
tion still provides the lower bound of the log-likelihood. This ap-
proximation makes it easy to combine time-varying noise param-
eter estimation with the Viterbi process. We denote this scheme of
time-varying noise parameter estimation as noise adaptive speech
recogrition.

3. IMPLEMENTATION

Time-varying noise parameter estimation is carried out in the log-
spectral domain, The noise model Aw{t) is a single Gaussian with
time-varying mean vector gk (t) € RY, which needs to be esti-
mated, and constant variance ¥, € R, J is the number of filter
banks. At each frame, the pre-trained mean vector ul, € R? in
each mixture k of state ¢ in speech models is transformed by a
non-linear transformation in the log-spectral domain,

phi(t) = pi + log(1 + exp(pnit) — ph))  (10)



The covariance between components of the above mean vector
is assumed to be zero. Cepstral mean vector pnc(t) € R
obtained by DCT on the above transformed mean vector ply (t)
D is the cepstral vector size,

The time-varying noise parameter ul, (t} is estimated by the
sequential Kul]back proximal algorithm [3]. Let Awn(t) denote
the mean vector (1), and Ax{0) be the initial parameter, Then
given Y (1), the recursive update of Aw(t} is given as,

An(t) = An(E-1)
ag‘g.\uge—ll;im
X Is
2 —1); % FTRE An=An(t—1)
5:8 Q‘QBNAEL 1); M1+(1_ﬂt)ag‘\g:m N=AN
where
8Q:0wt = k) _

MAn
2 D PL@K®IY (), Ax, At~ 1)

() k(D) M
FQAnlt — 11 An) _ FQua(An(t - 2 n)
833 —F a3z, +
8 tog b,y (4(t))
203 ROV (), Ax Anlt - )= O

4(e) k(1)

a8 lg(;\p.v)
ST =33 P(s(t)k®)|Y(t), Ax, An(t — 1))
o(8) k(D)
[(3logbnu1hm(y(¢)))z+ & 10gbau)1=m(y(t))]
dAn g,
AQu(An(t = 1) 3w s
———— 14
( 3 ) 4
and
8log 5.(:1»:(9(9(’)) = G 3!‘1.(1)1(@) (t)
Bhn AT a3
9% log b, (ks (¥(t)) H (3#‘:(:)1:(«)(*) 2
832, T 93
azpi(t)k(l)(t)
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where the jjth element in diagonal matrices G, and Hy  are

respectively givenas Gs, ;. = za NE L‘M;.&MM]

»aphiand
and Hy_; Z gz [— g t— 24,] The posterior probabil-
ity at state and mixture index (s( Jk(t)) given observation se-
quence Y (t) and noise parameter sequence A (¢ — 1) is approx-
imated by Viterbi process as in subsection 2.3. The jth element
expuh ()= ey )

Bl ryugy ()
n and
iy Traxplal ()= 5000005

and

821":(¢)1(c) )
833,

' '

ﬂp(#‘nlj (‘)‘P,](;];.(,J,‘ )
{T Fexp(pg ; (D~ 43000y )
cient.

i respectively. zg; is the DCT coeffi-
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Olog b,y {u(t))

4. EXPERIMENTAL RESULTS

4.1. Experimental setup

Experiments were performed on TI-Digits database down-sampled
to 16kHz. Five hundred clean speech utterances from 15 speakers
were used for training and 111 utterances unseen in the training set
were used for testing. Digits and silence were respectively mod-
eled by 10-state and 3-state whole word HMMs with 4 diagonal
Gaussian mixtures in each state. The window size was 25.0ms
with a 10.0ms shift. A filter-bank of Twenty-six filters was used
in the binning stage. The features were MFCC + CO.

We comnpared three systems. The first was the baseline trained
on clean speech without noise compensation, denoted as Baseline,
and the second was the system with noise compensation by (10)
assuming stationary noise, i.e., th(t) was kept as constant once
initialized, denoted as Normal. The third was the noise adaptive
recognition system by (11). It is denoted according to the relax-
ation factor B; set. Forgetting factor p in (6) and (13) was set to

995 empirically. Time-varying noise patameter estimation was
unsupervised.

Four seconds of contaminating noise was used in each exper-
iment to obtain noise mean vector for Normal, It was also for
initialization of uh (0) in the third system. Baseline performance
in clean condition was 97.89% word accuracy (WA).

4.2. Speech recognition in simulated non-stationary noise

(13) White noise signals were multiplied by a Chirp signal, so that the

noise power, e.g., in the 12th filter bank, changed continuously as
the dash-dotted curve shown in Figure 1. The SNR ranged from
0dB to 20.4dB. We also plotted the estimated noise power versus
time in the filter bank by the noise adaptive system,

Observations are as follows. First, the noise adaptive system
can track the evolution of the true noise power. Second, the re-
sults show that the smaller relaxation factor 8, the faster the con-
vergence rate in estimation process. For example, estimation by
A: = 0.5 shows much better tracking performance than that by
setting B¢ = 1.0,

In terms of performance, “Baseline” without noise compen-
sation attained 34.34% WA, and “Normal” with stationary noisc
compensation attained 58.73% WA. All the noise adaptive sys-
tems achieved 95.48% WA, higher than that by “Normal” assum-
ing stationary noise.

4.3. Speech recognition in real noise

Speech signals were contaminated by non-stationary Babble noise
in different SNRs. Recognition performances are shown in Ta-
ble 1, together with “Baseline” and “Normal”. It is observed that,
in all SNR conditions, the noise adaptive system can further im-
prove system performance, compared to that obtained by “Nor-
mal”, over “Baseline”. For example, in 2].5dB, the “Baseline”
achieved 34.04% WA, and “Normal” attained 95.18%. The noise
adaptive system with 8; = 1.0 achieved 96.69% WA. As a whole,
the adaptive system with 8, set to 0.5, 0.9, and 1.0, achieved, re-
spectively, 26.9%, 30.9%, and 30.9% relative error rate reduction
(ERR) over that by “Normail”.

We then increased the non-siationarity of the Babble noise by
multiplying the noise signal with the Chirp signal as that in sub-
section 4.2. Results are shown in Table 2. [t is observed that the



Fig. 1. Estimation of the time-varying parameter pb, (t) by the
noise adaptive systems in the 12th filter bank. Estimates are la-
beled according to the relaxation factor 3¢, The dashed-dotted
curve shows evolution of the true noise power in the filter bank.

Table §. Word Accuracy (in %) in Babble noise, achieved by
the noise adaptive system as a function of §; in comparison with
baseline without noise compensation (Baseline), and noise com-
pensation assuming stationary noise (Normal). Relative error rate
reduction (ERR) as a function of 3; over Normal are in the last
row.

SNR (dB) || Baseline | Normal 0.5 0.9 1.0
295 96,69 96.69 | 97.59 | 97.89 | 97.89
21.5 34.04 95.18 | 96.39 | 96.69 | 96.69
13.6 2530 83.13 | 90.96 | 91.27 | 91.27
7.6 1627 ' { 7319 [ 7560 | 75.30 | 75.30

ERR (in% ) 269 | 309 | 309

Relative error rate reduction (ERR) of the noise adaptive system
are larger than those in Table 1.

We also tested systems in highly non-stationary Machine-gun
noise. Through results shown in Table 3, we observe that the
noise adaptive system can improve recognition performance in the
noise.

We have the following observations on the results: 1) Our
derivation is based on the assumption that the noise is time vary-
ing. The assumption fits the real situations. In the non-stationary
noises, we observed improvements over noise compensation as-
suming stationary noise. 2) As shown in Table 1, the highest ERR
of the adaptive system over “Normal” was achieved at §; equal
to 1.0 and 0.9, whereas it achieved the highest ERR at 8y = 0.5,
when the non-stationarity of the Babble noise was increased by
multiplying it with a Chirp signal. Also, we observed that the
highest ERR was achieved at §; = 0.5 in Machine-gun noise,
which is more non-staticnary than Babble noise, It seems that the
more non-stationary the noise is, the smaller the 8, to be set',

I'The B cannot be too small, since, otherwise, the estimation error after
convergence might be large [3].
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Table 2. Word Accuracy (in %) in the Chirp-signal-multiplied
Babble noise, achieved by the noise adaptive system as a func-
tion of B; in comparison with baseline without noise compensa-
tion (Baseline), and noise compensation assuming stationary noise
(Normal). Relative error rate reduction (ERR) as a function of 5,
over Normal are in the last row.

SNR (dB} [[ Baseline | Normal | 0.5 09 1.0
124 28.31 64.14 [ 93.07 | 92.77 | 92.17
6.9 17.17 50.06 | 82.83 | 82.23 | 81.93
44 16.87 48.49 7410 | 71.99 | 71.69
-1.6 14.76 37.65 47.59 | 500 | 51.51

ERR {in% ) 53.0 | 524 | 523

Table 3. Word Accuracy (in %) in Machine-gun noise, achieved
by the noise adaptive system as a function of 3 in comparison
with baseline without noise compensation (Baseline), and noise
compensation assuming stationary noise (Normal). Relative emmor
rate reduction (ERR) as a function of 8, over Normal are in the
last row. .

SNR (dB) || Baseline | Normal | 0.5 0.9 1.0
333 91.87 93.37 | 9669 | 9548 | 97.59
28.8 87.95 90.60 | 94.28 | 95.18 | 94.28
22.8 78.61 81.33 | 87.05 | 83.43 | 8283
20.9 77.41 79.82 § 83.73 | 85.24 | 76.51

ERR (in%) 348 | 297 | 236

5. DISCUSSION AND SUMMARY

The above results have shown that the noise adaptive speech recog-
nition improves system performances in time-varying noises. Re-
sults also show a possible relationship between the best relaxation
factor 3, of the recursive noise parameter estimation and the con-
taminating noise. The noise parameter updating was derived for
static MFCCs, [t will be more beneficial by making it related to
dynamic MFCCs as well. We are still investigating these issues
and will report those results in future.
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