
Optional Instant Locking in Distributed Collaborative
Graphics Editing Systems

David Chen Chengzheng Sun
School of Computing and Information Technology

Griffith University
Brisbane, QLD 4111, Australia

D. Chen@cit .gu.edu.au, C.Sun@cit .gu.edu.au

Abstract
Real-time collaborative editing systems are distributed
groupware systems that allow multiple users to edit the
same document at the same t ime from multiple sites.
A specific type of collaborative editing system is the
object-based collaborative graphics editing system. f i a -
ditionally, locking has been used as the major concur-
rency control techniques in this type of system. This
paper examines locking i n a supporting role to the con-
currency control technique of multi-versioning. Two
types of locks are examined: object and region. Two
optional and responsive locking schemes, instant lock-
ing and instant exclusive locking, are presented. Their
advantages and disadvantages are discussed.

1 Introduction
Computer-Supported Cooperative Work (CSCW) or
computer-based groupware systems assist groups of
people working simultaneously on a common task by
providing an interface for a shared environment [2].
Groupware systems range from asynchronous or non-
real-time tools such as electronic mail, t o highly inter-
active synchronous systems such as Real-time Collab-
orative Editing Systems (CESs). CESs are distributed
groupware systems which allow multiple users in differ-
ent sites to edit the same document simultaneously.

A particular type of CES are the collaborative object
graphics editing systems (OCESs). In OCESs, graph-
ical objects such as line, rectangle, circle, etc., can be
created. Each object is represented by attributes such
as type, size, position, color, group, etc.. Editing oper-
ations are used to create, modify or delete graphical ob-
jects. In this type of systems conflicts may occur when
concurrent operations are generated from multiple sites
t o change the same attribute of the same object. The
operations involved in a conflict are called conflicting

operations. The application of conflicting operations
may result in inconsistency which is a typical problem
in distributed systems. For example, two concurrent
move operations are conflicting if both move the same
object to different positions. This may result in in-
consistency where the same object appears in different
positions at different sites.

Locking is a technique originally developed for con-
currency control t o maintain consistency in database
systems. Locking is also used to maintain consis-
tency in many OCESs including Ensemble [7], Group-
Draw [5], GroupGraphics [8], and GroupKit [4]. In
these systems, before an operation can be generated to
edit an object, an exclusive lock on that object must
be obtained. For example, to move an object, a lock on
that object must first be obtained. This will guarantee
that only one user, the lock owner, can edit an object
at a time and conflict will not occur. Since locking is
required before each request to edit an existing object,
most systems provide locking implicitly. Once a user
generate a request to edit an object, the system will
automatically try to obtain the lock on that object.

However, traditional locking for concurrency control
has some disadvantages. As the main/only concurrency
control mechanism, locking is compulsory. For situa-
tions where conflicts rarely occur, compulsory locking
is inefficient. One of the approaches to achieve locking
is pessimistic locking. With this approach, when a user
wants to edit an object, the system has to obtain an
exclusive lock on that object before the user can edit
that object. This approach has the disadvantage that
the response time is slowed down by the time it takes to
obtain the exclusive lock. To obtain an exclusive lock,
synchronization between all sites are required. This
network synchronization time is variable, and it can be
large when the network is congested or the editing sites
are far apart, this means slow response time.

109
0-7695-1 153-8/01 $10.00 0 2001 IEEE

To overcome this problem, some systems use opti-
mistic locking. With this approach, the system assumes
the exclusive lock will be granted, therefore, editing op-
erations generated are executed locally without delay.
This means two or more users may concurrently edit
the same object. To ensure consistency, only the opera-
tions from one user is kept, concurrent operations from
other users are aborted. To abort an executed opera-
tion, a roll back method is used which involves undoing
the effects of executed operations to be aborted. This
solution works well for database systems. However,
having an operation undone by the system is uncon-
ventional in interactive editing systems. Furthermore,
there is the problem of which operation to abort. The
system decides which operations are to be aborted.
However, this decision is not based on the merits of
the operations such as the new position, color or size.
This decision is made based on unrelated information
such as the arriving order of the operations to a par-
ticular site. Randomly select operations to abort does
not contribute to collaboration.

Our OCES called GRACE [l, 9](GRAphics Collabo-
rative Editing system) works in an environment where
the users coordinate their activities, and conflict is
possible but would be rare. So compulsory locking
would be inefficient. GRACE is designed to provide
high responsiveness, so pessimistic locking is not suit-
able. There are certain consistency properties GRACE
needs to maintain. The roll back method used in opti-
mistic locking scheme does not satisfy these properties.
Therefore, GRACE uses a multi-versioning scheme (de-
scribed in the next subsection) which provides fast r e
sponse time and maintains the consistency properties.
This scheme informs the users of the occurrence of con-
flict. It facilitates the resolution of conflicts by display-
ing the effects of all conflicting operations. This allows
the users to make informed decisions on the desirable
effect (this can be done at anytime that is convenient
to the users).

Despite the use of the multi-versioning scheme, lock-
ing still has an important role in GRACE. Locking can
be used to reduce the amount of conflicting operations.
Locks can be placed by the system or the users where
conflicts are likely to occur. Once exclusive locks are
obtained, future conflicts will be prevented. In sum-
mary, without locking, consistency will still be main-
tained by the multi-versioning scheme. With the use
of locking, the amount of possible conflicts can be re-
duced. Therefore, this locking scheme is optional [ll].
This is in contrast to other OCES locking schemes
where locking is compulsory.

In order to incorporate locking into GRACE, concur-
rency control issues regarding locking operations need

to be addressed. For example, how to solve inconsis-
tency problems caused by concurrent locking opera-
tions targeting the same object? The solution to these
problems should not slow down the response time and
need to satisfy the consistency properties maintained
by GRACE.

This paper examines optional locking for GRACE.
It is organized as follows: the next section presents
the existing results on GRACE; Section 3 examines the
types of locks suitable for OCESs, locking operation
generation, and inconsistency associated with locking;
two locking schemes are devised to maintain locking
consistency, they are presented in Sections 4 and 5;
Section 6 discusses when locks are stabilized; lastly,
the conclusion is presented in Section 7.

2 Existing results on GRACE
The aim of this section is to provide some brief defini-
tions and properties of GRACE to facilitate discussion.
For more details about these definitions and properties,
please refer to their respective referenced papers.

GRACE has a distributed replicated architecture.
Users of the system may be located in geographically-
separated sites. All sites are connected via the Internet.
Each site runs a copy of the GRACE software and has
a copy of the shared document being edited. When
an operation is generated, it is executed immediately
at the local site. Then it is sent directly to all remote
sites for execution. Depends on their orders of gen-
eration and execution, operations may be dependent
or independent of each other [lo] as defined in Defini-
tion 1.

Definition 1 Causal ordering and dependency rela-
tionships:

Given two operations 0, and ob, generated at
sites i and j , then 0, is causally before ob, de-
noted by 0, + Ob, @ (1) i = j and the genera-
tion of 0, happened before the generation of Ob, or
(2) i # j and the execution of 0, at site j happened
before the generation of ob, or (3) there exists an
operation O,, such that 0, + 0, and 0, + ob.

Given any two operations 0, and ob. (1) Ob is
said to be dependent on O, iff Oa + ob. (2) O a
and ob are said to be independent (or concurrent)
iff neither 0, + ob, nor ob + 0,, which is ex-

State vectors are used to determine the dependency
relationships between operations. A state vector is a
list of logical clocks. Each site maintains a state vec-
tor. Whenever an operation is generated at a site, it is
time-stamped with the state vector value of that site.

-pressed as OallOb.

110

By comparing the state vector values between two op-
erations, their dependency relationship can be deter-
mined [lo].

Definition 2 Conflicting operations
Given two operations 0, and ob, 0, and ob are con-
act ing iff OaIIob and their effects are to change the
same attribute of the same object to different values.

With the multi-versioning scheme, the conflicting re-
lationship between operations is as defined in Defini-
tion 2. The execution of n mutually conflicting oper-
ations targeting object G will result in n concurrent
versions of G in which each version will accommodate
the effect of a conflicting operation. Non-conflicting
operations have the compatible relationship. For any
pair of compatible operations targeting the same ob-
ject, there must be an object version which contains
the effects of both operations.

3 Locking in GRACE
In OCGEs, graphical objects are the obvious and suit-
able choice for applying locking since editing opera-
tions are generated to edit objects. Locking objects
can prevent conflicts from occurring on those objects.
Therefore, object locks have been chosen as one of the
locking operations in GRACE. An object locking op-
eration contains one or more object identifiers which
specify the locking targets.

The other type of lock is region lock. A region lock
can be used to lock an area of the shared document.
Once a region is locked, only the lock owner can mod-
ify, create or delete objects within that region. Re-
gion locks are useful because users can specify private
working areas which no other users can intrude. Con-
ceptually, a region can be regarded as an object which
contains a rectangular area (the region) and a list of
objects within the region.

The term lockable item or simply item will be used
in the following sections to represent either objects or
regions which can be locked.

3.1
Locking before applying operations is compulsory in
other OCESs. However, locking is optional in GRACE.
Locks can be generated implicitly or explicitly. Locks
are generated implicitly if they are placed automati-
cally by the system. This approach is commonly used
when locking is compulsory. However, to apply op-
tional locks implicitly requires an intelligent system
which can decide whether locks are required for a cer-
tain situation. The discussion of implicit locking gen-
eration is outside the scope of this paper. Locks are

To lock or not to lock?

generated explicitly if they are issued by users (just
like other editing operations).

What do the users get by locking before editing? If
a user has locked an item, then the system guarantees
that user the editing right to that item. If a user U1

does not lock an item before editing, then it is pos-
sible that another user U2 may lock that item. If U2
has locked that item then U1 would lose editing right
to that item. If a user obtains an exclusive lock on
an item, then no other user can edit that item, hence
no conflict will occur on that item (until that item be-
comes unlocks). In addition to editing rights, locking
can also inform other users which part of the document
a user is currently editing.

The terminology of lock ownership will now be intro-
duced. If a user has a lock on an item, than that user
owns the lock on that item, or simply that user owns
that item. If a user owns an item, than that user has
the editing right t o that item.

3.2 Responsive operation generation
With the introduction of locking, user generated edit-
ing and locking requests need to be validated. A user’s
request is valid if its target item is either unlocked or
s/he owns the lock of this item. Once a request has
been validated, an operation is generated. Invalid re-
quests are rejected, and the users are informed.

How to determine if an item is locked or not? Con-
ceptually, each item has an attribute which indicates if
that item is locked and by who. Each site maintains
a list of all items. By finding an item in this list, the
locking status of this item at a site can be determined.

Ideally, a user’s request should be valid if at all sites
the target item is either locked by this user or this item
is unlocked. If a user owns the lock of an item at the
local site, then this user will own the lock of this item
at all sites. In this case, validation for any request by
this user on this item can be done by checking the local
locking status of this item. However, if an item is un-
locked at the local site, it does not mean that this item
is unlocked at all other sites. Under this condition, to
validate a user request on an item which is unlock at
the local site, synchronization is required to determine
if this item is also unlock at other remote sites. This
would slow down the validation process and thus the
response time. In order to achieve fast response time,
the synchronization in the validation process needs to
be eliminated. Without synchronization, only the local
locking status is known. Therefore, the validation con-
dition is reduced to require only the item be unlocked
locally as stated in Definition 3.

Definition 3 A valid request

111

I
Local atomic event

Figure 1: The operation generation process
Given an editing or locking request Q generated by user
UQ from site j, to edit/lock item I , Q is valid if either
UQ owns the lock on I or I is not locked in site j.

With this definition of a valid request, the validation
process only checks the local document to determine
if a request is valid. This means synchronization is
not needed in' the process starting from when a request
is generated, until when an operation is executed 10-
cally. Only after that, is network communication used
to broadcast the operation to all remote sites for ex-
ecution. It should be noted that these steps from re-
quest generation till operation broadcasting are done
atomically at the local site. The process of operation
generation is as shown in Figure 1.

3.3 Inconsistency problems
Let I be an item which is unlocked at all sites and 01
be a locking operation generated from site k to lock I.
At the same time, another operation 0 2 is generated
independent of 01 by a different user from site j to
lock I. 01 and 0 2 would be first executed locally, then
sent to remote sites for execution. However, when these
operations arrive at the remote site, I has already been
locked by the other user. As the result, these operations
would have to be aborted. An inconsistency result will
be produced where at site j , I is locked by 0 2 , and at
site k, I is locked by 01. A similar problem would occur
if 0 2 is an editing operation. 0 2 would be applied at
site j , but has to be aborted in site k because I has
already been locked.

Divergence can be resolved by using serialization.
However, serialization would lead to intention viola-
tion. This is because to achieve serialization, the effect
of one operation needs to be undone after it has already
been executed at the local site. For example, if the se-
rial effect is that I should be locked by 01 instead of
0 2 . At site j, I is already locked by 0 2 when 01 ar-
rives, so 0 2 will need to be undone to allow 01 to lock
I. Therefore, the effect of 0 2 is not preserved.

In the following sections two different locking
schemes will be presented, instant locking and instant
exclusive locking.

4 Instant locking scheme
How to apply and preserve the effects of independent
operations targeting the same item, where there is at

least one locking operation? To satisfy the consistency
property, once an operation is generated it has to be
applied at all sites. So, the basic idea behind this ap-
proach is to allow independent operations target-
ing the same item to be applied to that item.

In order to examine the effects of this approach in
detail, consider the application of this approach to the
example from the previous section. 01 is a locking
operation and 0 2 can be either an editing or locking
operation, so there are two situations at site k after O1
has been applied to I:

1. If 0 2 is an editing operation, then at site k, I is
first locked by 01 before being modified by Oz.
This means that a locked item may be modified
by a user who does not own the lock on that item.

2. If 0 2 is also a locking operation, then at site I C ,
I is first locked by 01 before it is also locked by
0 2 . This means after a user has locked an item, it
may have to share the ownership of that lock with
other users.

So what is the point of locking if after a user has
locked an item, that item may be modified or locked by
other users? In this example, 01 and 0 2 are indepen-
dent operations and only because of this such situation
occurs. It is impossible to have an operation 0 3 where
O1 -+ O3 and O3 is generated by a different user from
O1 to editllock I. Such a request would be invalid.

The users should be informed that after they have
locked an item, it is possible that this item may still be
modified or locked by other users. At some stage, oper-
.ations independent of the locking operation will all be
,applied, then the locked item can only be modified by
iits owner(s). This period, starting from when a locking
operation is executed, until all operations independent
of that locking operation are executed is called the un-
.gtable period. During this period, a lock is said to be
unstable. After the unstable period, a lock become sta-
bilized.

]Definition 4 Unstable period
Let I be any item at site j and 0 be any locking op-
eration to lock I . The unstable period of the lock on

starts when 0 is executed at I at site j until all op-
erations independent of 0 have been executed at site
J'.

While a lock is unstable, the number of owner of that
lock can increase due to the application of independent
locking operations. It is also possible for conflicts to
occur on an object while its lock is unstable (the lock-
ing effect for this situation is discussed in Section 4.2).
After this lock has stabilized, the number of lock owner
cannot increase. Only the lock owners can edit or un-
lock this locked item. The number of owner decreases

112

Figure 2: Region locks R1 and R2 with overlapping
area P.
when an unlock operation is applied to this item. If
the number of owner of this item is one, then the lock
is exclusive and no conflict will occur on this item.

With this locking scheme, when a locking operation
is generated the user who generated this operation will
gain ownership to the target item instantly. Therefore,
this locking scheme is called instant locking scheme and
the lock placed by this locking scheme is called instant
lock. The next two subsections address some specific
issues associated with this locking scheme.

4.1 Instant lock sharing
This section discusses the details of lock sharing. What
should be the lock ownership for independent locking
operations whose target item is the same or overlaps?
For independent object locking operations targeting
the same object, the users who generated those op-
erations will share the ownership on that object. For
independent region locks with overlapping regions, the
ownership for overlapping regions will be shared and
non-overlapping regions remain exclusive. For exam-
ple, two target regions RI and R2 with overlapping
area of P . Only the ownership of P will be share and
the ownership for rest of R1 and R2 remains exclusively
as shown in Figure 2.

Lock ownership for these two situations are obvious.
However, what should be the lock ownership if there
are independent object and region locking operations
where the object G is inside the region R (as shown
in Figure 3)? Let UR be the set of owners who gener-
ated the region locking operations and UG be the set of
owners who generated object locking operations. The
lock ownership on G and R is as follows:

All users in UR and UG should own G because G
is inside R (or partially inside).
Only the users in UR should own R because users
in UG did not request for the region lock.

Since G is within a region lock, its behaviour is dif-
ferent from other locked objects. The effect on G is as
follows:

Figure 3: Independent object and region locks where
the target object G is inside the region R .

All users in UR can edit G and can move G within

All users in UG can edit G but cannot move G

0 All users in UR and UG can move G outside of R.
After G has been moved outside of R (i.e. at the
completion of drag and drop) then UR lose their
lock ownership on G. This is because the owner-
ship of UR on G is solely due to G being in R. So
if G is outside of R, it is not within the scope of
the region lock.

R.

within R, since UG do not have access to R.

4.2 Instant locking and concurrent ver-
sions

For any object G with a lock that is shared or in the
unstable period, conflicts may occur on G. Conflict will
result in concurrent versions. What should be the lock
ownership for these versions of G?

The first approach is to let the users who owned the
lock on G own the locks on all versions of G. For ex-
ample, let U1 and U2 be the users who share the lock
on G. U1 and U2 generated conflicting operations 0 1

and 0 2 respectively to edit G. Versions of G will be
made, the version G1 for the application of 0 1 and the
version G2 for the application of 0 2 . Both U1 and U2

will own the lock on both GI and G2. The end result
is that the lock on G1 and Gz is still shared.

The second approach is t o let the users who caused
the creation of the versions to own different versions
according to which object their operation is applied
to. For example, users U1 and U2 issued conflicting
operations 0 1 and 0 2 on G. 0 1 is applied to G1 and
0 2 is applied to Ga. Then U1 will own the lock on GI
and U2 will own the lock on G2. So the locks on both
versions are exclusive.

Which approach is better? The goal of locking is to
reduce conflict by (eventually) granting a user exclusive
access to an item. With the first approach, the lock on
the versions are shared and conflicts may still occur on

113

these versions. With the second approach the lock on
the versions are exclusive and no conflict will occur on
these versions (until they are unlocked). Therefore, the
second approach is more desirable.

The example for the second approach works because
each lock owner generated a conflicting operation which
is applied to a different version. As the result, the
lock ownership can be determined by which versions
their operations are applied to. However, it is possible
that some lock owners may generate operations which
are applied to more than one version and some may
not generate any operation at the time. What should
happen to their lock ownership?

Let U3 be the user who also owns the lock on G (in
addition to U1 and U2). U3 generated an operation
O3 which is independent and compatible with 01 and
0 2 , 0 3 will be applied to both G1 and Gz. So which
version’s lock U3 should own?

To reduce the number of shared locks, U3 can sim-
ply own the lock to one of the versions. Which version
U3 owns does not matter as long as it is the same at
all sites. However, operations may arrive in different
orders at different sites. Without waiting for all inde-
pendent operations to arrive, different objects may be
selected at different sites. For example, let the sub-
script attached to the operation also denote the site
identifier where the object is generated, i.e. 0 1 is from
site 1. Let U3 own the lock of the version made for the
operation whose site identifier is the smallest, i.e. GI.
With only two conflicting operations, the correct object
can always be selected. However, if there is another op-
eration O4 which conflicts with 01 and 0 2 . 0 2 and 0 4

arrive first at site 3 (where U3 is), then versions G2 and
G4 will be created. Now G2 would be incorrectly se-
lected as the locked object for U3 because 2 < 4. When
01 arrives the system can change Us’s ownership from
G2 to G1. However, this is too late because in the mean
time, U3 could have generated operations to edit G2.
This is wrong because U3 is not suppose to have access
to G2.

Selecting an object for U3 based on any condition is
going to have the same problem. The only solution is
let U3 own all the versions which may be selected. With
this approach, the versions which may be selected are
only the ones which O3 is applied to. So if O3 conflicts
with O4 then U3 will own the lock of GI and G2 but
not G4.

Some lock owners may not generate any operation on
G while these conflicting and compatible operations are
being generated. What should happen to these users’
lock ownership on versions of G? As with the previ-
ous case, simply choosing a version would be incorrect.
These users did not generate any operation, so select-

ing the version their operations are applied to is out of
the question. The only option is to let these users own
the lock of all versions of G.

In summary, let S be a set of independent operations
all targeting the locked object G. Assume there is at
least a pair of conflicting operations in S. For any
user UG who owns the lock on G, after executing all
operations in S:

e If UG generated an operation 0 E S, then for any
version G’ of G which 0 is applied to, UG will own
the lock on G’ .

0 If UG did not generate any operation in S, then
UG owns the lock for all versions of G.

5 Instant exclusive locking
scheme

Although instant locking satisfies the consistency prop-
erties, during the unstable period, an item may be
modified or locked by other independent operations.
This may be undesirable for some situations. This sec-
tion presents an instant exclusive locking scheme where
once a user locks an item at the local site, the
locked item will not be modified or locked by
any other user. Therefore, the user will obtain ex-
clusive access to the item instantly. This type of lock is
called instant exclusive lock or IE lock for short. With
this scheme, what the user sees is what s/he has locked.

IE locking scheme can be achieved by multi-
versioning. When a user generate a locking operation
0 1 to lock item I , an exclusive lock on I is granted
instantly. No special action needs to be taken when
there is no independent locking operation. However, if
there is an operation 0 2 which is independent of O1
and 0 2 is a locking operation to lock I, then versions
of I’ are generated, where one version is locked by O1
and another version is locked by 0 2 .

5.1 Multi-versioning of locked items
An existing multi-versioning algorithm [9] is used in
GRACE to handle conflicting modification operations.
This section will examine how to utilize the existing
algorithm to achieve instant exclusive locking.

The multi-versioning algorithm takes in an opera-
tion, compares it with a list of executed operations to
determine if this operation conflicts with any executed
operation. If there is no conflict, then this operation
is simply executed. Otherwise, versions of the object
targeted by the conflicting operations are made to ac-
commodate the effects of these operations.

The locking operation, like any other modification
operations can be feed into the multi-versioning algo-
rithm and compare for conflict. However, the con-
dition for conflict is different for locking operations,

114

therefore it needs to be redefined. A locking operation
conflicts with any independent operation targeting the
same item. This is because independent operations are
generated by different users. If a user has a lock on an
item, then that item cannot be editedllocked by other
users. If a conflict is detected, the multi-versioning
algorithm will make versions of the target object and
assign these objects with unique identifiers.

Definition 5 Conflict IE locking operation
For an IE locking operation 0 1 , 0 1 conflicts with any
operation 0 2 iff: (1) 0 1 1 1 0 2 , and (2) 0 1 and 0 2 target
the same item.

Simply defining a conflict condition for locking op-
erations will allow the multi-version algorithm to work
with IE object locking operations. However, something
extra is needed to determine conflict and make versions
when IE region locking operations are involved. A re-
gion is regarded as a rectangular area and a list of ob-
jects within the region. For any region R, an operation
0 is targeting R if 1) is targeting any object within R,
2) is creating an object within R.

Once a conflict is detected, what or how to create
versions? Simply create object versions for all ob-
jects within the region would not work because the ob-
ject versions would still appear inside the same region.
Hence, versions need to be created for both the objects
and the editing space. Each region is implemented as a
type of object. When creating a version, a new object
is created which contains a rectangle that specifies the
required region and a list of objects in that region. To
differentiate between different region versions, each re-
gion version is assigned an object identifier. The same
object identification scheme used in multi-versioning
can be directly applied to determine the identifier for
regions. Versions of graphical objects in the region
needs to be created, one set of objects for each region
version. This is so that editing an object in a region
version will not change the same object in a different
region version. These objects’ identifiers need not be
changed since they belong to different region versions.
An object in a region version can be uniquely identified
by the using both the object and region identifiers.

5.2 Conflict locking effect
With IE locking scheme there is also an unstable pe-
riod. During the unstable period the locked item will
not be modified or locked by other users, however, con-
current versions of that item may be created. This
section will examine specific cases of where concurrent
versions are made and what should be their effects.

If all conflicting operations are IE object locking
operations then object versions will be created. One

Figure 4: Independent and overlapping IE region locks
result in region P being duplicated. PI is on top of P2.

version is locked for each user who generated the IE
locking operation. If the conflicting operations are IE
region locking operations, then only the overlapping
regions should have different versions. These region
versions will overlap each other and are displayed like
overlapping objects. Only the region on top is visible
to the users. The users are free to choose which region
version at the local site should be visible. For example,
there are two independent operations to lock regions
R1 and R2. If these two regions have overlapping area
of P , then only P will have multiple versions. This is
as shown in Figure 4, where region PI in R1 is on top
of region P2 in R2.

It is also possible that there are concurrent region
and object locking operations 01 and 0 2 respectively.
The target object G of 0 2 is inside the region R to
be locked by 0 1 . Should versions be created for the
object or the region? Consider the case where only
the object versions are created. Versions GI and Gz
are made for 01 and 0 2 respectively. GI will be in R,
locked along with the surrounding objects. G2 would
be locked by 0 2 . G2 is located in R, but it cannot
appear in R because R is IE locked and should not
contain G2. Therefore, only creating object versions
would not work. Region versions need to be created. In
this example, region versions R1 and R2 will be made.
R1 is locked by 0 1 . R2 is not locked, except for the
object G in R2 is locked by 0 2 .

If the the conflict involves both locking and editing
operations, then only the versions the locking opera-
tions are applied to should be locked. For example, if
O1 is an IE locking operation to lock region R, and 0 2

is an editing operation to move object G located inside
of R. The result after the execution of 01 and 0 2 is
that versions of R, R1 and R2, are created for the ap-
plication of 0 1 and 0 2 respectively. 0 1 is applied to
R1 so R1 will be locked. 0 2 is applied to R2, then G in
R2 will be changed by 0 2 , but R2 remains unlocked.

At some stage, users may decide to compare the item

115

versions to make a decision on which item to keep. Sup-
porting systems such as a voting system can be used to
help users make such a decision. Once the decision is
made, then unwanted items can be deleted or user(s)
can issue an undo operation to undo the effect of con-
flict operations.

6 When does a lock stabilize?
How to determine when a lock stabilizes? How would a
site know when all operations independent of the lock-
ing operation have been executed at that site? This
problem is similar t o the garbage collection problem
described in [lo] for the REDUCE system. The solu-
tion is based on the assumption that the underlying
network is reliable and order-preserving between any
pair of sites (e.g. TCP). This means if a sequence of
operations is sent from the same site, then these opera-
tions will arrive at its destination in the sending order.

The basic approach is that whenever a site j executes
a locking operation 0, j needs to sent a message to
all remote sites telling them that j has executed 0.
Any site k receives this message from j then k knows
that any operation independent of 0 from j must have
already arrived and been executed at k. If there are
N sites, and k has received N - 1 messages (excluding
itself), then operations independent of 0 from all sites
must have already arrived and been executed at k.

The actual implementation can be done by simply
checking dependency of the operations, Dependency
can be determined by comparing the state vectors. Af-
ter j has executed 0, it sends a message M containing
the state vector of j to all sites. By comparing the state
vector of 0 with M it can be determined that 0 -+ M .
So all operations from j independent of 0 must have
already arrived.

Definition 6 Lock stabilization
For any item I locked by operation 0, the lock on I
at site j becomes stable 28 j has received an operation
dependent on 0 from all participating sites.

7 Conclusion
Two optional locking schemes for collaborative graph-
ics editing systems are presented in this paper. The
instant locking scheme provides users with locks to ob-
jects instantly (although the lock may be shared). The
instant exclusive locking scheme provides users with
instant and exclusive locks to objects.

A prototype GRACE has been built as a Java appli-
cation. Currently, GRACE only supports some basic
objects and operations. We plan to extend the func-
tionality of GRACE so it can be used for collaborative

CAD or to draw connect diagrams such as ER-diagram,
flow charts etc. By implementing and using the system,
more research issues will be identified and investigated.

References
[l] D. Chen and C. Sun. A distributed algorithm for

graphic objects replication in real-time group editors.
In Proc. of the International ACM SIGGROUP Con-
ference on Supporting Group Work, pages 121-130,
Phoenix, USA, Nov. 1999.

[2] C. Ellis, S. Gibbs, and G. Rein. Groupware: some
issues and experiences. Communications of ACM 34,

[3] J. Fjermestad and S. R. Hiltz. An assessment of group
support systems experiment research: Methodology
and results. Journal of Management Information Sys-
tems, 15(3):7-149, 1999.

Real time group-
ware as a distributed system: concurrency control and
its effect on the interface. In Proc. ACM Conference
on Computer Supported Cooperative Work, pages 207-
217, Nov. 1994.

[5] S. Greenberg, M. Roseman, and D. Webster. Is-
sues and experiences designing and implementing two
group drawing tools. In Proc. of the 25th Annual
Hawaii International Conference on the System Sci-
ences, pages 139-250, Jan. 1992.

[6] J. F. N. Jr., R. 0. Briggs, D. D. Mittleman, and P. B.
Balthazard. Lessons from a dozen years of group s u p
port systems research: A discussion of lab and field
findings. Journal of Management Information Sys-
tems, 13(3): 163-207, 1996- 1997.

[7] R. E. Newman-Wolfe, M. L. Webb, and M. Montes.
Implicit locking in the Ensemble concurrent object-
oriented graphics editor. In Proc. ACM Conference
on Computer Supported Cooperative Work, pages 265-
272, Nov. 1992.

[8] M. 0. Pendergast. GroupGraphics: prototype to prod-
uct. In S. Greenberg, S. Hayne, and R. Rada, edi-
tors, Groupware for Real-time Drawing: A Designer’s
guide, pages 209-227. McGraw-Hill, 1995.

(91 C. Sun and D.Chen. A multi-version approach to con-
flict resolution in distributed groupware systems. In
Proceedings of the 80th IEEE International Confer-
ence on Distributed Computing Systems, pages 316-
325, Taipei, Taiwan, Apr. 2000.

[lo] C. Sun, X. Jia, Y. Zhang, Y. Yang, and D. Chen.
Achieiving convergence, causality-preservation, and
intention-preservation in real-time cooperative editing
systems. ACM Tkansactions on Computer-Human In-
teraction, 5(1):63-108, Mar. 1998.

Optional locking integrated
with operational transformation in distributed real-
time group editors. In Proceedings of ACM 18th Sym-
posium on Principles of Distributed Computing, pages
43-52, Atlanta, USA, May 1999.

1:39-58, Jan. 1991.

[4] S. Greenberg and D. Marwood.

1.111 C. Sun and R. Sosic.

116

