• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Variable source contributions to river bed sediments across three size fractions

    Author(s)
    Haddadchi, Arman
    Olley, Jon
    Pietsch, Tim
    Griffith University Author(s)
    Olley, Jon M.
    Year published
    2016
    Metadata
    Show full item record
    Abstract
    Sediment tracing using geochemical properties is an efficient way to identify the spatial sources of transported sediments delivered to waterways. Here, the contribution of soil sources to river bed sediments has been quantified in Emu Creek, a headwater catchment in south eastern Queensland, Australia. Soil samples were collected from the eight major rock types present in the catchment and were related to river bed sediments collected from eight sites along the main channel. Geochemistry, as characterized by 39 elemental concentrations, was measured using inductively coupled plasma mass spectrometry and inductively coupled ...
    View more >
    Sediment tracing using geochemical properties is an efficient way to identify the spatial sources of transported sediments delivered to waterways. Here, the contribution of soil sources to river bed sediments has been quantified in Emu Creek, a headwater catchment in south eastern Queensland, Australia. Soil samples were collected from the eight major rock types present in the catchment and were related to river bed sediments collected from eight sites along the main channel. Geochemistry, as characterized by 39 elemental concentrations, was measured using inductively coupled plasma mass spectrometry and inductively coupled plasma optical emission spectrometry. Three particle size fractions were examined, <10, 10–63 and 63–212 µm, with the three resultant mixing models showing divergent results. We conclude that the results of sediment mixing models based on the analysis of one grain size should not be assumed to apply across the entire particle size range of transported sediment, emphasizing the need to match the size fraction used in tracing studies to that size fraction of interest in downstream sinks. Furthermore, we present results highlighting the control transport distance plays in source dominance, with this particularly evident in the coarser fraction, where local sources dominate over more distant sources.
    View less >
    Journal Title
    Hydrological Processes
    Volume
    30
    Issue
    10
    DOI
    https://doi.org/10.1002/hyp.10732
    Subject
    Physical geography and environmental geoscience
    Hydrology not elsewhere classified
    Civil engineering
    Environmental engineering
    Publication URI
    http://hdl.handle.net/10072/100014
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander