Show simple item record

dc.contributor.authorLiu, Juntao
dc.contributor.authorGe, Xiao
dc.contributor.authorYe, Xinxin
dc.contributor.authorWang, Guozhong
dc.contributor.authorZhang, Haimin
dc.contributor.authorZhou, Hongjian
dc.contributor.authorZhang, Yunxia
dc.contributor.authorZhao, Huijun
dc.date.accessioned2017-11-29T12:00:40Z
dc.date.available2017-11-29T12:00:40Z
dc.date.issued2016
dc.identifier.issn2050-7488
dc.identifier.doi10.1039/C5TA08106H
dc.identifier.urihttp://hdl.handle.net/10072/100167
dc.description.abstractNovel three-dimensional (3D) graphene/δ-MnO2 aerogels were fabricated via self-assembly and reduction of graphene oxide, followed by in situ solution-phase deposition of ultrathin δ-MnO2 nanosheets. The resultant graphene/δ-MnO2 architectures showed an interconnected 3D network microstructure, in which a large number of ultrathin birnessite MnO2 nanosheets were homogenously deposited on the graphene framework. Due to their unique structural characteristics, the resulting 3D aerogels exhibited a fast adsorption kinetic rate and superior adsorption capacity toward heavy metal ions. The saturated adsorption capacities of graphene/δ-MnO2 aerogels were as large as 643.62 mg g−1 for Pb2+, 250.31 mg g−1 for Cd2+ and 228.46 mg g−1 for Cu2+ calculated by the Langmuir isotherm model, exceeding largely the corresponding pristine 3D graphene and δ-MnO2 nanosheets. It was noted that the heavy metal ions could not only adsorb on the surface of graphene/δ-MnO2, but also intercalate into the interlayer gaps of birnessite MnO2, which reveals the synergistic effect of the static electrical attraction, surface complexation and ion exchange between heavy metal ions and pre-intercalated K+, supported by the expansion of the basic crystal structure of layered MnO2 after adsorption. Furthermore, it is interesting that the regenerated aerogels after the initial HCl and subsequent KOH treatment still maintain their original shape and can be repeatedly used for more than eight cycles without obvious degradation of performance, which achieved the sustainability of the absorbents. More importantly, the hybrid aerogels can be easily separated and do not generate secondary contaminants. High removal efficiency, fast adsorption kinetics, excellent regeneration and reusability, and ease of separation operation make these hybrid aerogels ideal candidates for heavy metal ion decontamination in practical application.
dc.description.peerreviewedYes
dc.languageEnglish
dc.language.isoeng
dc.publisherRoyal Society of Chemistry
dc.relation.ispartofpagefrom1970
dc.relation.ispartofpageto1979
dc.relation.ispartofissue5
dc.relation.ispartofjournalJournal of Materials Chemistry A
dc.relation.ispartofvolume4
dc.subject.fieldofresearchMacromolecular and materials chemistry
dc.subject.fieldofresearchMacromolecular and materials chemistry not elsewhere classified
dc.subject.fieldofresearchMaterials engineering
dc.subject.fieldofresearchOther engineering
dc.subject.fieldofresearchcode3403
dc.subject.fieldofresearchcode340399
dc.subject.fieldofresearchcode4016
dc.subject.fieldofresearchcode4099
dc.title3D graphene/δ-MnO2 aerogels for highly efficient and reversible removal of heavy metal ions
dc.typeJournal article
dc.type.descriptionC1 - Articles
dc.type.codeC - Journal Articles
gro.hasfulltextNo Full Text
gro.griffith.authorZhao, Huijun


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

  • Journal articles
    Contains articles published by Griffith authors in scholarly journals.

Show simple item record