• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Building seismic response and visualization using 3D urban polygonal modeling

    Thumbnail
    View/Open
    GuanPUB205.pdf (935.7Kb)
    Author(s)
    Xiong, Chen
    Lu, Xinzheng
    Hori, Muneo
    Guan, Hong
    Xu, Zhen
    Griffith University Author(s)
    Guan, Hong
    Year published
    2015
    Metadata
    Show full item record
    Abstract
    The widely accessible 3D urban polygonal model is adopted herein to solve the two major challenges in urban seismic simulation: (1) building data acquisition and (2) high-fidelity visualization. A building identification method and a floor plan generation method are proposed in this study. These methods facilitate the automatic generation of 3D-GIS data of buildings, using the widely available 3D urban polygonal model and 2D-GIS data, to achieve the integrated earthquake simulation (IES)-based urban seismic simulation. In addition, a high-fidelity urban earthquake disaster scenario is generated based on the 3D urban polygonal ...
    View more >
    The widely accessible 3D urban polygonal model is adopted herein to solve the two major challenges in urban seismic simulation: (1) building data acquisition and (2) high-fidelity visualization. A building identification method and a floor plan generation method are proposed in this study. These methods facilitate the automatic generation of 3D-GIS data of buildings, using the widely available 3D urban polygonal model and 2D-GIS data, to achieve the integrated earthquake simulation (IES)-based urban seismic simulation. In addition, a high-fidelity urban earthquake disaster scenario is generated based on the 3D urban polygonal model, the seismic simulation results from IES, and the proposed remeshing and displacement interpolation techniques, which is significantly more realistic than the existing 2.5D visualization method. The outcome of this research will provide a technical reference for improving emergency preparedness and mitigating possible earthquake-induced losses for high seismic regions and cities.
    View less >
    Journal Title
    Automation in Construction
    Volume
    55
    DOI
    https://doi.org/10.1016/j.autcon.2015.03.023
    Copyright Statement
    © 2015 Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (http://creativecommons.org/licenses/by-nc-nd/4.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, providing that the work is properly cited.
    Subject
    Engineering
    Other engineering not elsewhere classified
    Built environment and design
    Other built environment and design not elsewhere classified
    Publication URI
    http://hdl.handle.net/10072/100176
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander