Poly(A) Extensions of miRNAs for Amplification-Free Electrochemical Detection on Screen-Printed Gold Electrodes
Author(s)
Koo, Kevin M
Carrascosa, Laura G
Shiddiky, Muhammad JA
Trau, Matt
Griffith University Author(s)
Year published
2016
Metadata
Show full item recordAbstract
Current amplification-based microRNA (miRNA) detection approaches are limited by the small sizes of miRNAs as well as amplification bias/artifacts. Herein, we report on an amplification-free miRNA assay based on elevated affinity interaction between polyadenylated miRNA and bare gold electrode. The poly(A) extension on the 3′ ends of magnetically isolated miRNA targets facilitated high adsorption efficiency onto gold electrode surfaces for electrochemical detection without any cumbersome electrode surface functionalization procedures. The assay showed excellent detection sensitivity (10 fM) and specificity and was demonstrated ...
View more >Current amplification-based microRNA (miRNA) detection approaches are limited by the small sizes of miRNAs as well as amplification bias/artifacts. Herein, we report on an amplification-free miRNA assay based on elevated affinity interaction between polyadenylated miRNA and bare gold electrode. The poly(A) extension on the 3′ ends of magnetically isolated miRNA targets facilitated high adsorption efficiency onto gold electrode surfaces for electrochemical detection without any cumbersome electrode surface functionalization procedures. The assay showed excellent detection sensitivity (10 fM) and specificity and was demonstrated for quantitative miR-107 detection in human cancer cell lines and clinical urine samples. We believe our assay could be useful as an amplification-free alternative for miRNA detection.
View less >
View more >Current amplification-based microRNA (miRNA) detection approaches are limited by the small sizes of miRNAs as well as amplification bias/artifacts. Herein, we report on an amplification-free miRNA assay based on elevated affinity interaction between polyadenylated miRNA and bare gold electrode. The poly(A) extension on the 3′ ends of magnetically isolated miRNA targets facilitated high adsorption efficiency onto gold electrode surfaces for electrochemical detection without any cumbersome electrode surface functionalization procedures. The assay showed excellent detection sensitivity (10 fM) and specificity and was demonstrated for quantitative miR-107 detection in human cancer cell lines and clinical urine samples. We believe our assay could be useful as an amplification-free alternative for miRNA detection.
View less >
Journal Title
Analytical Chemistry
Volume
88
Subject
Analytical chemistry
Analytical chemistry not elsewhere classified
Other chemical sciences