The dual actions of modified polybenzimidazole in taming the polysulfide shuttle for long-life lithium–sulfur batteries

View/ Open
File version
Version of Record (VoR)
Author(s)
Li, Gaoran
Wang, Can
Cai, Wenlong
Lin, Zhan
Li, Zhoupeng
Zhang, Shanqing
Griffith University Author(s)
Year published
2016
Metadata
Show full item recordAbstract
The development of lithium–sulfur (Li–S) batteries is of practical significance to meet the rapidly escalating demand for advanced energy storage technologies with long life and high-energy density. However, the dissolution and shuttling of the intermediate polysulfides (PS) initiates the loss of active sulfur and the poisoning of the lithium anode, leading to unsatisfactory cyclability and consequently hinders the commercialization of Li–S batteries. Herein, we develop a facile strategy to tame the PS dissolution and the shuttling effect in the Li–S system by introducing a modified polybenzimidazole (mPBI) with multiple ...
View more >The development of lithium–sulfur (Li–S) batteries is of practical significance to meet the rapidly escalating demand for advanced energy storage technologies with long life and high-energy density. However, the dissolution and shuttling of the intermediate polysulfides (PS) initiates the loss of active sulfur and the poisoning of the lithium anode, leading to unsatisfactory cyclability and consequently hinders the commercialization of Li–S batteries. Herein, we develop a facile strategy to tame the PS dissolution and the shuttling effect in the Li–S system by introducing a modified polybenzimidazole (mPBI) with multiple functions. As a binder, the excellent mechanical property of mPBI endows the sulfur electrode with strong integrity and, therefore, results in high sulfur loading (7.2 mg cm−2), whereas the abundant chemical interaction between mPBI and PS affords efficient PS adsorption to inhibit sulfur loss and prolong battery life. As a functional agent for the separator, the mPBI builds a PS shield onto the separator to block PS’s migration to further suppress the PS shuttling. The dual actions of mPBI confer an excellent performance of 750 mAh g−1 (or 5.2 mAh cm−2) after 500 cycles at C/5 on the Li–S battery with an ultralow capacity fading rate of 0.08% per cycle.
View less >
View more >The development of lithium–sulfur (Li–S) batteries is of practical significance to meet the rapidly escalating demand for advanced energy storage technologies with long life and high-energy density. However, the dissolution and shuttling of the intermediate polysulfides (PS) initiates the loss of active sulfur and the poisoning of the lithium anode, leading to unsatisfactory cyclability and consequently hinders the commercialization of Li–S batteries. Herein, we develop a facile strategy to tame the PS dissolution and the shuttling effect in the Li–S system by introducing a modified polybenzimidazole (mPBI) with multiple functions. As a binder, the excellent mechanical property of mPBI endows the sulfur electrode with strong integrity and, therefore, results in high sulfur loading (7.2 mg cm−2), whereas the abundant chemical interaction between mPBI and PS affords efficient PS adsorption to inhibit sulfur loss and prolong battery life. As a functional agent for the separator, the mPBI builds a PS shield onto the separator to block PS’s migration to further suppress the PS shuttling. The dual actions of mPBI confer an excellent performance of 750 mAh g−1 (or 5.2 mAh cm−2) after 500 cycles at C/5 on the Li–S battery with an ultralow capacity fading rate of 0.08% per cycle.
View less >
Journal Title
NPG Asia Materials
Volume
8
Issue
10
Copyright Statement
© 2016 The Author. This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
Subject
Condensed matter physics
Physical chemistry
Materials engineering
Materials engineering not elsewhere classified