MicroRNA Regulation of Human Genes Essential for Influenza A (H7N9) Replication

View/ Open
File version
Version of Record (VoR)
Author(s)
Wolf, Stefan
Wu, Weilin
Jones, Cheryl
Perwitasari, Olivia
Mahalingam, Suresh
Tripp, Ralph A
Year published
2016
Metadata
Show full item recordAbstract
Influenza A viruses are important pathogens of humans and animals. While seasonal influenza
viruses infect humans every year, occasionally animal-origin viruses emerge to cause
pandemics with significantly higher morbidity and mortality rates. In March 2013, the public
health authorities of China reported three cases of laboratory confirmed human infection
with avian influenza A (H7N9) virus, and subsequently there have been many cases
reported across South East Asia and recently in North America. Most patients experience
severe respiratory illness, and morbidity with mortality rates near 40%. No vaccine is currently
available ...
View more >Influenza A viruses are important pathogens of humans and animals. While seasonal influenza viruses infect humans every year, occasionally animal-origin viruses emerge to cause pandemics with significantly higher morbidity and mortality rates. In March 2013, the public health authorities of China reported three cases of laboratory confirmed human infection with avian influenza A (H7N9) virus, and subsequently there have been many cases reported across South East Asia and recently in North America. Most patients experience severe respiratory illness, and morbidity with mortality rates near 40%. No vaccine is currently available and the use of antivirals is complicated due the frequent emergence of drug resistant strains. Thus, there is an imminent need to identify new drug targets for therapeutic intervention. In the current study, a high-throughput screening (HTS) assay was performed using microRNA (miRNA) inhibitors to identify new host miRNA targets that reduce influenza H7N9 replication in human respiratory (A549) cells. Validation studies lead to a top hit, hsa-miR-664a-3p, that had potent antiviral effects in reducing H7N9 replication (TCID50 titers) by two logs. In silico pathway analysis revealed that this microRNA targeted the LIF and NEK7 genes with effects on pro-inflammatory factors. In follow up studies using siRNAs, anti-viral properties were shown for LIF. Furthermore, inhibition of hsa-miR-664a-3p also reduced virus replication of pandemic influenza A strains H1N1 and H3N2.
View less >
View more >Influenza A viruses are important pathogens of humans and animals. While seasonal influenza viruses infect humans every year, occasionally animal-origin viruses emerge to cause pandemics with significantly higher morbidity and mortality rates. In March 2013, the public health authorities of China reported three cases of laboratory confirmed human infection with avian influenza A (H7N9) virus, and subsequently there have been many cases reported across South East Asia and recently in North America. Most patients experience severe respiratory illness, and morbidity with mortality rates near 40%. No vaccine is currently available and the use of antivirals is complicated due the frequent emergence of drug resistant strains. Thus, there is an imminent need to identify new drug targets for therapeutic intervention. In the current study, a high-throughput screening (HTS) assay was performed using microRNA (miRNA) inhibitors to identify new host miRNA targets that reduce influenza H7N9 replication in human respiratory (A549) cells. Validation studies lead to a top hit, hsa-miR-664a-3p, that had potent antiviral effects in reducing H7N9 replication (TCID50 titers) by two logs. In silico pathway analysis revealed that this microRNA targeted the LIF and NEK7 genes with effects on pro-inflammatory factors. In follow up studies using siRNAs, anti-viral properties were shown for LIF. Furthermore, inhibition of hsa-miR-664a-3p also reduced virus replication of pandemic influenza A strains H1N1 and H3N2.
View less >
Journal Title
PLoS One
Volume
11
Issue
5
Copyright Statement
© 2016 Wolf et al. This is an open access
article distributed under the terms of the Creative
Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.
Subject
Medical Genetics (excl. Cancer Genetics)