• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Alpha-synuclein aggregates are excluded from calbindin-D28k-positive neurons in dementia with Lewy bodies and a unilateral rotenone mouse model

    Author(s)
    Rcom-H'cheo-Gauthier, Alexandre N
    Davis, Amelia
    Meedeniya, Adrian CB
    Pountney, Dean L
    Griffith University Author(s)
    Pountney, Dean L.
    Year published
    2016
    Metadata
    Show full item record
    Abstract
    α-Synuclein (α-syn) aggregates (Lewy bodies) in Dementia with Lewy Bodies (DLB) may be associated with disturbed calcium homeostasis and oxidative stress. We investigated the interplay between α-syn aggregation, expression of the calbindin-D28k (CB) neuronal calcium-buffering protein and oxidative stress, combining immunofluorescence double labelling and Western analysis, and examining DLB and normal human cases and a unilateral oxidative stress lesion model of α-syn disease (rotenone mouse). DLB cases showed a greater proportion of CB + cells in affected brain regions compared to normal cases with Lewy bodies largely present ...
    View more >
    α-Synuclein (α-syn) aggregates (Lewy bodies) in Dementia with Lewy Bodies (DLB) may be associated with disturbed calcium homeostasis and oxidative stress. We investigated the interplay between α-syn aggregation, expression of the calbindin-D28k (CB) neuronal calcium-buffering protein and oxidative stress, combining immunofluorescence double labelling and Western analysis, and examining DLB and normal human cases and a unilateral oxidative stress lesion model of α-syn disease (rotenone mouse). DLB cases showed a greater proportion of CB + cells in affected brain regions compared to normal cases with Lewy bodies largely present in CB − neurons and virtually undetected in CB + neurons. The unilateral rotenone-lesioned mouse model showed a greater proportion of CB + cells and α-syn aggregates within the lesioned hemisphere than the control hemisphere, especially proximal to the lesion site, and α-syn inclusions occurred primarily in CB − cells and were almost completely absent in CB + cells. Consistent with the immunofluorescence data, Western analysis showed the total CB level was 25% higher in lesioned compared to control hemisphere in aged animals that are more sensitive to lesion and 20% higher in aged compared to young mice in lesioned hemisphere, but not significantly different between young and aged in the control hemisphere. Taken together, the findings show α-syn aggregation is excluded from CB + neurons, although the increased sensitivity of aged animals to lesion was not related to differential CB expression.
    View less >
    Journal Title
    Molecular and Cellular Neuroscience
    Volume
    77
    DOI
    https://doi.org/10.1016/j.mcn.2016.10.003
    Subject
    Neurosciences
    Neurosciences not elsewhere classified
    Psychology
    Cognitive and computational psychology
    Publication URI
    http://hdl.handle.net/10072/100651
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander