• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Identification of Novel FAM134B (JK1) Mutations in Oesophageal Squamous Cell Carcinoma

    Thumbnail
    View/Open
    HaquePUB2489.pdf (813.8Kb)
    File version
    Version of Record (VoR)
    Author(s)
    Haque, Md Hakimul
    Gopalan, Vinod
    Chan, Kwok-wah
    Shiddiky, Muhammad JA
    Smith, Robert Anthony
    Lam, Alfred King-yin
    Griffith University Author(s)
    Lam, Alfred K.
    Gopalan, Vinod
    Shiddiky, Muhammad J.
    Year published
    2016
    Metadata
    Show full item record
    Abstract
    Mutation of FAM134B (Family with Sequence Similarity 134, Member B) leading to loss of function of its encoded Golgi protein and has been reported induce apoptosis in neurological disorders. FAM134B mutation is still unexplored in cancer. Herein, we studied the DNA copy number variation and novel mutation sites of FAM134B in a large cohort of freshly collected oesophageal squamous cell carcinoma (ESCC) tissue samples. In ESCC tissues, 37% (38/102) showed increased FAM134B DNA copies whereas 35% (36/102) showed loss of FAM134B copies relative to matched non-cancer tissues. Novel mutations were detected in exons 4, 5, 7, 9 as ...
    View more >
    Mutation of FAM134B (Family with Sequence Similarity 134, Member B) leading to loss of function of its encoded Golgi protein and has been reported induce apoptosis in neurological disorders. FAM134B mutation is still unexplored in cancer. Herein, we studied the DNA copy number variation and novel mutation sites of FAM134B in a large cohort of freshly collected oesophageal squamous cell carcinoma (ESCC) tissue samples. In ESCC tissues, 37% (38/102) showed increased FAM134B DNA copies whereas 35% (36/102) showed loss of FAM134B copies relative to matched non-cancer tissues. Novel mutations were detected in exons 4, 5, 7, 9 as well as introns 2, 4-8 of FAM134B via HRM (High-Resolution Melt) and Sanger sequencing analysis. Overall, thirty-seven FAM134B mutations were noted in which most (31/37) mutations were homozygous. FAM134B mutations were detected in all the cases with metastatic ESCC in the lymph node tested and in 14% (8/57) of the primary ESCC. Genetic alteration of FAM134B is a frequent event in the progression of ESCCs. These findings imply that mutation might be the major driving source of FAM134B genetic modulation in ESCCs.
    View less >
    Journal Title
    Scientific Reports
    Volume
    6
    DOI
    https://doi.org/10.1038/srep29173
    Copyright Statement
    © The Author(s) 2016. This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
    Subject
    Biochemistry and cell biology not elsewhere classified
    Publication URI
    http://hdl.handle.net/10072/100662
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander